Submitted
- Yue Yu, Ning Liu, Fei Lu, Tian Gao, Siavash Jafarzadeh, Stewart Silling. Nonlocal Attention Operator: Materializing Hidden Knowledge Towards Interpretable Physics Discovery. arXiv2408
- Xingjie Li, F.Lu, Molei Tao, Felix X-F Ye. Robust First and Second-Order Differentiation for Regularized Optimal Transport. arXiv2407    
- Meng Fang, Xiangpeng Wan, F.Lu, Fei Xing, and Kai Zou. MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data. arXiv2406
- Erhan Bayraktar, F.Lu, Mauro Maggioni, Ruoyu Wu, and Sichen Yang. Probabilistic cellular automata with local transition matrices: synchronization, ergodicity, and inference. arXiv2405   PDF  
- Quanjun Lang, Xiong Wang, F.Lu, and Mauro Maggioni. Interacting Particle Systems on Networks: joint inference of the network and the interaction kernel. arXiv2402   PDF   MATLAB code
- Haibo Li, Jinchao Feng, and F.Lu. Scalable iterative data-adaptive RKHS regularization. arXiv2401   PDF   MATLAB code
- Xiong Wang, Inbar Serrousi, and F.Lu. Optimal minimax rate of learning interaction kernels. arXiv2311   PDF  
- Quanjun Lang and F.Lu. Small noise analysis for Tikhonov and RKHS regularizations. arXiv2305   PDF  
- F.Lu and Miao-Jung Yvonne Ou. An adaptive RKHS regularization for Fredholm integral equations. arXiv2303   PDF   MATLAB code
- Zehong Zhang, F.Lu, Esther Xu Fei, Terry Lyons, Yannis Kevrekidis, and Tom Woolf. Benchmarking optimality of time series classification methods in distinguishing diffusions. arXiv2301   PDF  
- Neil K. Chada, Quanjun Lang, F.Lu, and Xiong Wang. A data-adaptive prior for Bayesian learning of kernels in operators. arXiv2212   PDF  
- F.Lu, Changhong Mou, Honghu Liu, and Traian Iliescu. Stochastic Data-Driven Variational Multiscale Reduced Order Models. preprint. arXiv2209   PDF   MATLAB code
Published
- F.Lu, Qingci An, and Yue Yu. Nonparametric learning of kernels in nonlocal operators. Journal of Peridynamics and Nonlocal Modeling, 2023. arXiv2205   PDF
- Quanjun Lang and F. Lu. Identifiability of interaction kernels in mean-field equations of
interacting particles. to appear on Foundation of Data Science. arXiv2106   PDF
- Zhongyang Li and F. Lu. On the coercivity condition in the learning of interacting particle systems.   to appear on Stochastic Dynamics. arXiv2011   PDF
- Xingjie Li, F.Lu, Molei Tao and Felix Ye. NySALT: Nyström-type inference-based schemes adaptive to large time-stepping.   J. Comput. Phys. 2023. journal arXiv2207   PDF
- Qingci An, Yannis Kevrekidis, F.Lu and Mauro Maggioni. Unsupervised learning of observation functions in state-space models by nonparametric moment methods. Foundation of Data Science journal arXiv2207   PDF
- ⭐ F.Lu, Quanjun Lang and Qingci An. DARTR: Data adaptive RKHS Tikhonov regularization for learning kernels in operators. Presented at MSML22 arXiv2203   PDF   MATLAB code
- Nan Chen, Honghu Liu and F. Lu. Shock trace prediction by reduced models for a viscous stochastic Burgers equation. Chaos, 32(4), 043109, 2022. arXiv2112   PDF
- Quanjun Lang and F. Lu. Learning interaction kernels in mean-field equations of 1st-order systems of interacting particles. SIAM Journal on Scientific Computing 44 (1), A260–A285, 2022. arXiv2010   PDF
- Xingjie Li, F. Lu and Felix X.F. Ye. ISALT: Inference-based schemes adaptive to large time-stepping for locally Lipschitz ergodic systems. Discrete and Continuous Dynamical Systems - Series S (DCDS-S) 15 (4), 747-771, 2022.   arXiv2102   PDF
- F. Lu, M. Maggioni and S. Tang. Learning interaction kernels in stochastic systems of interacting particles from multiple trajectories. Found Comput Math (2021). 1-55. arXiv2007 Journal   PDF
- F. Lu, M. Maggioni and S. Tang: Learning interaction kernels in heterogeneous systems of agents from multiple trajectories. J. Machine Learning Research, vol. 22, no.32, 1-67, 2021. arXiv1910 Journal   PDF
- Zehong Zhang and F. Lu, Cluster prediction for opinion dynamics from partial observations. IEEE Transactions on Signal and Information Processing over Networks. vol 7, 101-113, 2021. arXiv2007 Journal   PDF
- F. Lu. Data-driven model reduction for stochastic Burgers equations. Entropy, 22(12), 1360, 2020. arXiv2010 Journal   PDF
- Z. Li, F. Lu, M. Maggioni, S. Tang and C. Zhang: On the identifiability of interaction functions in systems of interacting particles. Stoch.Process.Their Appl. 132, 135-163, 2021. arXiv1912 Journal PDF
- K.K. Lin and F. Lu. Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism.   J. Comput. Phys. 424, 109864, 2021. arXiv1908   Journal   PDF
- F. Lu, N. Weitzel and A. Monahan. Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data. Nonlin. Processes Geophys., 26, 227- 250, 2019. Journal PDF
- F. Lu, M Zhong, S Tang and M Maggioni. Nonparametric inference of interaction laws in systems of agents from trajectory data. Proc. Natl. Acad. Sci. USA. 116 (29) 14424--14433. 2019 Journal PDF (SI)
- F. Lu, X. Tu and A. J. Chorin. Accounting for model error from unresolved scales in ensemble Kalman filters by stochastic parametrization. Mon. Wea. Rev., 145(2017), no. 9, 3709--3723. Journal PDF
- F. Lu, K. K. Lin and A. J. Chorin. Data-based stochastic model reduction for the Kuramoto--Sivashinsky equation. Physica D, 340 (2017), 46--57. Journal PDF
- F. Lu, K. K. Lin and A. J. Chorin. Comparison of continuous and discrete-time data-based modeling for hypoelliptic systems. Comm. App. Math. Com. Sc., 11 (2016), no. 2, 187--216. Journal PDF
- A. J. Chorin, F. Lu, R. N. Miller, M. Morzfeld and X. Tu. Sampling, feasibility, and priors in data assimilation. Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), no. 8, 4227--4246. Journal PDF
- A. J. Chorin and F. Lu. Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics. Proc. Natl. Acad. Sci. USA, 112 (2015), no. 32, 9804--9809. Journal PDF
- F. Lu, M. Morzfeld, X. Tu and A. J. Chorin. Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems. J. Comput. Phys. 282 (2015), 138--147. Journal PDF
- Y. Hu, F. Lu and D. Nualart. Convergence of Densities of functionals of Gaussian Processes. J. Funct. Anal. 266 (2014), no. 2, 814--875. Journal PDF
- Y. Hu, F. Lu and D. Nualart. Non-degeneracy of Sobolev Pseudo-norms of fractional Brownian motions. Electron. Commun. Probab. 18(2013), no.84, 1--8.Journal PDF
- Y. Hu, F. Lu and D. Nualart. Holder continuity of the solution for a class of nonlinear SPDEs arising from one-dimensional superprocesses. Probab. Theory Related Fields 156 (2013), no.1-2, 27--49. Journal PDF
- Y. Hu, F. Lu and D. Nualart. Feynman-Kac formula for the heat equation driven by fractional noise with Hurst parameter H<1/2. Ann. Probab. 40 (2012), No. 3, 1041--1068. Journal PDF
- F. Lu. Branching points for a class of variational equations involving potential with parameter. Adv. Nonlinear Stud. 8 (2008), no. 2, 251--269.
Conference papers and other publications
F.Lu, K.K. Lin, and A.J. Chorin. Data-driven stochastic model reduction. Paper for Advancing X-cutting Ideas for Computational Climate Science, 2016.
F. Lu, Malliavin Calculus and its applications to SPDEs. PhD thesis, University of Kansas, 2013.