Submitted
 
              	    
	 -   Haibo Li and Fei Lu. Automatic reproducing kernel and regularization for learning convolution kernels.   arXiv2507     
 
         -   Fei Lu and Yue Yu. Transformer learns the cross-task prior and regularization for in-context learning.   arXiv2505  
     Podcast by Google NotebookLM         slides   
 
	 -  Sichong Zhang, Xiong Wang, and Fei Lu. Minimax rates for learning kernels in operators.   arXiv2502       Podcast by Google NotebookLM   
 
	 -  Yuan Gao, Quanjun Lang, and Fei Lu. Self-test loss functions for learning weak-form operators and gradient flows.   arXiv2412  
  
     -  Quanjun Lang, Xiong Wang, F.Lu, and Mauro Maggioni. Interacting Particle Systems on Networks: joint inference of the network and the interaction kernel.  arXiv2402       PDF     MATLAB code        Podcast by Google NotebookLM   
   
     -  Haibo Li, Jinchao Feng, and F.Lu. Scalable iterative data-adaptive RKHS regularization.  arXiv2401        PDF      MATLAB code   
   
     -   Xiong Wang, Inbar Serrousi, and F.Lu. Optimal Minimax Rates for Learning Interaction Kernels.  arXiv2311       PDF      
  
     -   Quanjun Lang and F.Lu. Small noise analysis for Tikhonov and RKHS regularizations.  arXiv2305       PDF      
  	
	         
  	         
     Other preprints 
             
 	 -    Zehong Zhang, F.Lu, Esther Xu Fei, Terry Lyons, Yannis Kevrekidis, and Tom Woolf. Benchmarking optimality of time series classification methods in distinguishing diffusions.   arXiv2301       PDF      
      
	 -    F.Lu, Changhong Mou, Honghu Liu, and Traian Iliescu. Stochastic Data-Driven Variational Multiscale Reduced Order Models. preprint.  arXiv2209        PDF        MATLAB code  
         
	   
  	 
  
   
  
      Published
      	  	
	 -  Erhan Bayraktar, F.Lu, Mauro Maggioni, Ruoyu Wu, and Sichen Yang. Probabilistic cellular automata with local transition matrices: synchronization, ergodicity, and inference. To appear in Bernoulli Journal.  arXiv2405       PDF      
   
	 -  Meng Fang, Xiangpeng Wan, F.Lu, Fei Xing, and Kai Zou. MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data. to appear on Scientific Data.  arXiv2406 
  
	  -   F.Lu and Miao-Jung Yvonne Ou. An adaptive RKHS regularization for Fredholm integral equations. to appear in Mathematical Methods in the Applied Sciences.   arXiv2303       PDF       MATLAB code    
      	    
	  -  Yue Yu, Ning Liu, Fei Lu, Tian Gao, Siavash Jafarzadeh, Stewart Silling. Nonlocal Attention Operator: Materializing Hidden Knowledge Towards Interpretable Physics Discovery. NeurIPS 2024.   arXiv2408  
 
	 -  Xingjie Li, F.Lu, Molei Tao, Felix X-F Ye. Robust First and Second-Order Differentiation for Regularized Optimal Transport.    SIAM Journal on Scientific Coomputing (SISC),  vol 47, Iss. 3, 2025.   journal        arXiv2407        
 
	-    Neil K. Chada, Quanjun Lang, F.Lu, and Xiong Wang. A data-adaptive prior for Bayesian learning of kernels in operators. J. Machine Learning Research, vol. 25, no.317, 1-37, 2024.  arXiv2212       PDF      
      
	 - F.Lu, Qingci An, and Yue Yu.  Nonparametric learning of kernels in nonlocal operators.  Journal of Peridynamics and Nonlocal Modeling, 2023.  arXiv2205      PDF   
 
	 -     Quanjun Lang and F. Lu. Identifiability of interaction kernels in mean-field equations of
  interacting particles. to appear on Foundation of Data Science.  arXiv2106      PDF  
  
     -    Zhongyang Li and F. Lu. On the coercivity condition in the learning of interacting particle systems.   to appear on Stochastic Dynamics.   arXiv2011      PDF   
  
	 -    Xingjie Li, F.Lu, Molei Tao and Felix Ye.  NySALT: Nyström-type inference-based schemes adaptive to large time-stepping.   J. Comput. Phys. 2023.   journal     arXiv2207      PDF   
 
	 -    Qingci An, Yannis Kevrekidis, F.Lu and Mauro Maggioni.  Unsupervised learning of observation functions in state-space models  by nonparametric moment methods. Foundation of Data Science  journal    arXiv2207       PDF   
 
			 
	 -   ⭐  F.Lu, Quanjun Lang and Qingci An. DARTR: Data adaptive RKHS Tikhonov regularization for learning kernels in operators. Presented at MSML22  arXiv2203      PDF       MATLAB code   
  
     -    Nan Chen, Honghu Liu and F. Lu. Shock trace prediction by reduced models for a viscous stochastic Burgers equation. Chaos, 32(4), 043109, 2022.   arXiv2112      PDF  
  
	-  Quanjun Lang and F. Lu. Learning interaction kernels in mean-field equations of 1st-order systems of interacting particles. SIAM Journal on Scientific Computing 44 (1), A260–A285, 2022.   arXiv2010      PDF  
  
     -  Xingjie Li, F. Lu and Felix X.F. Ye.  ISALT: Inference-based schemes adaptive to large time-stepping for locally Lipschitz ergodic systems. Discrete and Continuous Dynamical Systems - Series S (DCDS-S) 15 (4), 747-771, 2022.     arXiv2102      PDF   
  
	 -   F. Lu, M. Maggioni and S. Tang.  Learning interaction kernels in stochastic systems of interacting particles from multiple trajectories.  Found Comput Math (2021). 1-55.  arXiv2007  Journal          PDF  
  
	 -  F. Lu, M. Maggioni and S. Tang:  Learning interaction kernels in heterogeneous systems of agents from multiple trajectories.  J. Machine Learning Research, vol. 22, no.32, 1-67, 2021.   arXiv1910    Journal         PDF   
   
	 -  Zehong Zhang and F. Lu,  Cluster prediction for opinion dynamics from partial observations.  IEEE Transactions on Signal and Information Processing over Networks. vol 7, 101-113, 2021.  arXiv2007   Journal       PDF   
   
	 -   F. Lu. Data-driven model reduction for stochastic Burgers equations. Entropy, 22(12), 1360,  2020.   arXiv2010  Journal        PDF  
   	  
	 -  Z. Li, F. Lu, M. Maggioni, S. Tang and C. Zhang:  On the identifiability of interaction functions in systems of interacting particles.  Stoch.Process.Their Appl. 132, 135-163, 2021.  arXiv1912 Journal   PDF 
  
     -  K.K. Lin and F. Lu. Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism.   J. Comput. Phys. 424, 109864, 2021. arXiv1908     Journal     PDF  
  
     -  F. Lu, N. Weitzel and A. Monahan. Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data.  Nonlin. Processes Geophys., 26, 227- 250, 2019.  Journal      PDF   
 
    
     -  F. Lu, M Zhong, S Tang and M Maggioni. Nonparametric inference of interaction laws in systems of agents from trajectory data. Proc. Natl. Acad. Sci. USA. 116 (29) 14424--14433. 2019  Journal   PDF   (SI)  
 
     -  F. Lu, X. Tu and A. J. Chorin. Accounting for model error from unresolved scales in ensemble Kalman filters by stochastic parametrization. Mon. Wea. Rev., 145(2017), no. 9, 3709--3723. Journal    PDF 
 
     -  F. Lu, K. K. Lin and A. J. Chorin. Data-based stochastic model reduction for the Kuramoto--Sivashinsky equation. Physica D, 340 (2017), 46--57. Journal    PDF  
 
     -  F. Lu, K. K. Lin and A. J. Chorin. Comparison of continuous and discrete-time data-based modeling for hypoelliptic systems. Comm. App. Math. Com. Sc., 11 (2016), no. 2, 187--216. Journal     PDF 
           
      -  A. J. Chorin, F. Lu, R. N. Miller, M. Morzfeld and X. Tu. Sampling, feasibility, and priors in data assimilation. Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), no. 8, 4227--4246. Journal    PDF 
 
     -  A. J. Chorin and F. Lu. Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics. Proc. Natl. Acad. Sci. USA, 112 (2015), no. 32, 9804--9809.  Journal     PDF 
 
     -  F. Lu, M. Morzfeld, X. Tu and A. J. Chorin. Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems. J. Comput. Phys. 282 (2015), 138--147. Journal    PDF  
 
      - Y. Hu, F. Lu and D. Nualart. Convergence of Densities of functionals of Gaussian Processes. J. Funct. Anal. 266 (2014), no. 2, 814--875. Journal    PDF  
 
      -  Y. Hu, F. Lu and D. Nualart. Non-degeneracy of Sobolev Pseudo-norms of fractional Brownian motions. Electron. Commun. Probab. 18(2013), no.84, 1--8.Journal    PDF  
 
      - Y. Hu, F. Lu and D. Nualart. Holder continuity of the solution for a class of nonlinear SPDEs arising from one-dimensional superprocesses. Probab. Theory Related Fields 156 (2013), no.1-2, 27--49. Journal   PDF  
 
      -  Y. Hu, F. Lu and D. Nualart. Feynman-Kac formula for the heat equation driven by fractional noise with Hurst parameter H<1/2. Ann. Probab. 40 (2012), No. 3, 1041--1068.  Journal    PDF  
 
     -  F.  Lu. Branching points for a class of variational equations involving potential with parameter. Adv. Nonlinear Stud. 8 (2008), no. 2, 251--269. 
 
         
	 
            
     
      Conference papers and other publications 
	 
       F.Lu, K.K. Lin, and A.J. Chorin.  Data-driven stochastic model reduction. Paper for Advancing X-cutting Ideas for Computational Climate Science, 2016.  
        F. Lu, Malliavin Calculus and its applications to SPDEs. PhD thesis, University of Kansas, 2013.