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Abstract

Modeling multi-agent systems on networks is a fundamental challenge in a wide variety of
disciplines. We jointly infer the weight matrix of the network and the interaction kernel, which
determine respectively which agents interact with which others, and the rules of such interac-
tions, from data consisting of multiple trajectories. The estimator we propose leads naturally
to a non-convex optimization problem, and we investigate two approaches for its solution: one
is based on the alternating least squares (ALS) algorithm; another is based on a new algorithm
named operator regression with alternating least squares (ORALS). Both algorithms are scal-
able to large ensembles of data trajectories. We establish coercivity conditions guaranteeing
identifiability and well-posedness. The ALS algorithm appears statistically efficient and robust
even in the small data regime, but lacks performance and convergence guarantees. The ORALS
estimator is consistent and asymptotically normal under a coercivity condition. We conduct
several numerical experiments ranging from Kuramoto particle systems on networks to opinion
dynamics in leader-follower models.
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Interaction topology plays an important role in the dynamics of many multi-agent systems, such as
opinions on social networks, flows on electric power grids or airport networks, or the abstract space
meshes in numerical computations [BLM*06, TJP03,OSFM07, PM21, WPC*20]. Therefore, it is of



paramount interest to learn such systems from data.

We consider a heterogeneous dynamical system with NV interacting agents on a graph: let G =
(V,E,a) be a graph with weight matrix a = (a;;) € [0,1]V*" and a;; > 0 iff (4,7) € E, and at
each vertex i € [N] := {1,..., N} there is an agent with a state represented, at time ¢, by a vector
X/ e R? Suppose that the evolution of the state (Xti)l-e[N] e RV*4 of the system at time ¢ is
governed by the system of ODEs/SDEs:

Saw :  dX} =) a;®(X] — X})dt + odW/, i=1,....N, (1.1)
J#

where we write };; to denote Zje[N]\{i}. The interaction kernel ® : R? — R? determines the
interaction laws, which, crucially, apply only when a;; is strictly positive. The random initial
condition (Xgo)ie[ w7 is sampled from a probability measure y on RN*d_ The forcing term (W})ey is
an RV*9valued standard Brownian motion. The diffusion coefficient ¢ is a constant; the system is
deterministic when ¢ = 0 and stochastic when ¢ > 0. Various normalizations of the weight matrix
exist. For example, one may consider an unweighted graph G = (V, E, A) with a binary matrix
with a;; € {0, 1} denoting the connection or disconnection between node i and node j; one may also
consider a normalization by letting a;; = ﬁai]’, where the set N; = {j € V : (j,i) € E,j # i} is
the directed neighborhood of vertex ¢ in the graph G, consisting of those vertices that can influence
¢ when a;; = 1. These normalizations become important when one studies the mean-field limit
N — +oo, see, e.g., [LRW23] and references therein. In this study, we will normalize the rows of a
in £2, but both theory and algorithms are unaffected by this choice and apply to other normalizations.

We study the following statistical inference problem: given knowledge of the general form of
System (1.1) and multi-trajectory data of the system, jointly estimate the unknown weight matrix
a and the interaction kernel ®.

This joint estimation is a nonlinear inverse problem, since the data depends on the product of
the two unknowns a and ® in (1.1). The two unknowns play significantly different roles in the
dynamics: a encodes the geometry of the space on which the agents are allowed to interact and
has no structure nor symmetries; meanwhile, ® is the law for all interactions, which is a common
structure that will enable to tackle the task without requiring an excessive number of observations.

When the graph is complete and undirected, ie., a;; = % for all (7,7), we have homoge-
neous interactions. In this case, the learning of radial interaction kernels ® in the form ®(z,y) =
o(|lz—yl) |§:Z\ has been systematically studied in [LZTM19,LMT21a,LMT21b,LLM* 21| and gener-
alized to second-order systems and non-radial interaction kernels [MTZM23], and even to interaction
kernels whose variables are learned [FMMZ22|. Generally, when the graph is directed and incom-
plete with a general weight matrix, we have heterogeneous interactions. These graphs arise in various
applications, for example, when the agents’ interactions are constrained (e.g., on a fixed commu-
nication/social network), or when agents have different influence power (e.g., leaders/followers in
a social network, websites, airport hubs with low/high connectivity, etc...). The learning of the
interaction kernel from a single trajectory, assuming knowledge of the underlying network, has been
studied in [ASM22]|. Another related problem is estimating the graph underlying linear Markovian
dynamics on the graph when only sparse observations in space and time are given [CK22|. However,
none of these works address the joint estimation problem.




1.1 Problem setup

We assume that the weight matrix a is in the admissible set

N
M= {a = (ai;) € [0,1]VN: Vie [N] az =0, |a;|> = [ai |3 = Y af; =1 } (1.2)
j=1

This removes a trivial issue in the identifiability of (a, ®) due to rescaling: (a, ®) can be replaced by
(Aa,\71®) in (1.1), for any A > 0, without changing the trajectories, and therefore the observations.
The choice of the 2 normalization is not essential in our analysis and algorithms; other norms, such
as the ¢!-norm or the Frobenius norm, may be used depending on the modeling assumptions.

In this work, we restrict our attention to parametric families of interaction kernels: we estimate
the coefficient ¢ = (c1,...,¢p) € RP of the kernel ®(x) = >7_, eyt (x) under a given set of basis
functions {wk}zzl. However, we don’t require the true interaction kernel to be in the hypothesis
space H := span{wk}ﬁzl, and our estimator is robust to mis-specification of basis functions with
regularization.

We let X; == (X/,...,X}¥) € RV*4 be the state vector, W = [dW/]; € RN* be the white
noise in the forcing term, and B(Xy); := (¢ (X{ — X})) € RN*1xdxp for each i € [N]. We can

j7
then rewrite (1.1) in tensor form:

Sac X, = aB(Xy)c + oW = (ai-B(Xt)iC)ie[N] +0oW, where

P . . (1.3)
ai.B(Xt)ic = Z aij Z @Dk(Xg — XZ)Ck € Rd, 7€ [N],
jAEL k=1
with a;. is the i-th row of the matrix a. We summarize the notation in Table 1.
Problem statement. Our goal is to jointly estimate the weight matrix a and the coefficient
vector ¢, and therefore the interaction kernel ®, given

Data: {X}", YM_ . where tg : t, denotes (to,t1,t,...,t1), with t; = IAt, (1.4)

i.e., observations of the state vector at discrete times along multiple-trajectories indexed by m,
started from initial conditions X} sampled from u®N  where p is a distribution on R4 We let
T =ty and tyg = 0.

Table 1: Notations for the indices, vectors, and arrays in the system.

[N] : index set {1,..., N} X; = (X1, ..., X}V) e RVX4: state vector at time ¢
i,7 € [N]: index for agents ae RY*N: graph weight matrix

k € [p]: index for basis of kernel c € RP*1: coefficient vector of K on a basis {1y}

m € [M]: index for samples B(X;) = (Q/Jk(Xt] - X}))”k € RVXNxdxp: hasis array
l € [L]: index of time instants | - |F: the Frobenius norm of a matrix

| - |: the Euclidean norm of a vector | Vec : RV*P — RNPXL is the vectorization operation.

* We use letters for vectors, bold letters for arrays/matrices of dimension dependent on N, and calligraphic letters

for operators.



1.2 Proposed estimator: scalable algorithms, identifiability, and convergence

Our estimator of the parameter (a,c) is a minimizer of a loss function &, p:

L—1,M
~ A~ . . 1 \ 2
(a,c) = argmin & m(a,c), with &pu(a,c):= UT Z HAXZL — aB(XZl)cAt”F, (1.5)
(a,c)e M xRP =0,m=1
where M is the admissible set defined in (1.2) and | - | denotes the Frobenuous norm on RV,

Here AX;, = Xy,,, — Xy;; if the system were deterministic (¢ = 0) and we had observations of th,
we use these instead. This loss function comes from the differential system (1.3): its scaled version
(At)7rE&L ar(a, ¢) is the mean square error between the two sides of the system when o = 0; it is the
scaled log-likelihood ratio (up to a constant independent of the data trajectories) for the stochastic
system when o > 0.

The loss function &, 3 is non-convex in (a,c), but quadratic in either a or ¢ separately; the
optimization landscape may have multiple local minima. This joint estimation problem is closely
related to compressed sensing and matrix sensing as elaborated in seminal works including [Can08,
CR09, CT10,RFP10,GJZ17,ZSL19]. The array {B(X}')} plays the role of sensing linear operator
for the unknowns a and c¢. Diverging from the conventional framework of matrix sensing, where
the entries of the sensing matrix are typically independent, the entries of B(X{!') are correlated,
depending on the dynamics and the basis functions. Furthermore, here we have the additional
constraint that the entries of the weight matrix a are nonnegative. These differences can lead to
multiple local minima for the loss function &7, 57, even in the limit M — o0, posing a risk for methods
such as deterministic gradient descent.

We introduce coercivity conditions in Section 2.2.1, key properties in the learning theory of
interaction kernels (see, for example, [LMT21a,LMT21b,LLM*21|) that guarantee the identifiability
of the parameters and the well-posedness of the inverse problem. The coercivity conditions are
closely related to the Restricted Isometry Property (RIP) conditions in matrix sensing.

We consider two efficient algorithms for computing the estimator. The first one is based on
classical alternating minimization over a and ¢, and since such minimization steps lead to least
squares problems, this corresponds to Alternating Least Squares (ALS) [KDL80|. The second one,
called ORALS, is based on first an Operator Regression, which estimates product matrices of a and
¢, and then uses ALS on much simpler matrix factorization problems to obtain the factors a and ¢
from the estimated products.

The number of parameters (a, ¢) to be estimated is N2 +p, and the number of scalar observations
is MLNd. Ideally, an estimator will perform well when M LNd = N? + p. This is, however, quite
optimistic in general, as we have independence of the observations in M, but not in L or N or
d; the dependency in L is dependent on the dynamics of the system, as more observations on a
longer interval of time may not add information useful to the estimation, for example, depending
on whether the system is ergodic or not. Thus, a more realistic expectation for the minimal sample
requirements is M ~ N? + p, which we call the critical sampling regime. The estimator constructed
by ALS shows nearly ideal estimation performance in this critical sample size regime, but it lacks
a theoretical justification for such performance, and even for its convergence. ORALS appears to
perform comparably well only in the large sample regime M = N2p, but we are able to analyze its
performance as M — oo, proving convergence and even asymptotic normality.

1.3 Extensions

General pairwise interaction kernels. Our estimators and algorithms are immediately appli-



cable to general interaction kernels in the form ®(X7, X?) (or on a variety of variables, as in the
Euclidean settings considered in [MTZM23]), since the estimation is parametric. The theoretical
analysis can also be generalized in this direction by suitably modifying the coercivity conditions
that are crucial in proving the estimator’s uniqueness and well-posedness.

Nonparametric estimation. In this study, we consider the parametric estimation, where ® is ap-
proximated on the finite-dimensional hypothesis space H = {1y, }izl. For nonparametric estimation,
the dimension of the hypothesis space must adaptively increase with the number of observations.
Algorithmically, this is a direct extension of this work, but its analysis, particularly the optimal con-
vergence rate, is more involved and not developed here; see [LZTM19, LMT21a, LMT21b, LLM*21]
for the case of particles in Euclidean space.

Agents of different types. In many applications, there are different types of agents, for example,
different types of cells or genetic genes in biology, prey and predators in ecological models, leaders
and followers in social networks, and so on. The model we introduce above may be generalized to
some of these settings, by considering a system with @ types of agents and corresponding interaction
kernels (<I>q)qQ:1, where the type of agent i is denoted by k(i), and governing equations

S :
a?(¢‘1)§:17’{

dX} = a0, (X] — X})dt + odW;, ie[N]. (1.6)
J#i
We tackle here the challenging problem where the type s of each agent is not known, and it needs

to be estimated together with the weight matrix a and the interaction kernels ¢1,...,¢g. We
introduce a three-fold ALS algorithm to solve this problem; see Section 4.3.

2 Construction and analysis of the estimator, via ALS and ORALS

We detail the two algorithms we propose for constructing the estimator in (1.5): an Alternating
Least Squares (ALS) approach and a new two-step algorithm based on Operator Regression followed
by an Alternating Least Squares (ORALS), present their theoretical guarantees with new coerciv-
ity conditions, and discuss their computational complexity. ALS is computationally efficient, with
well-conditioned matrices as soon the number of observations is comparable to the number of un-
known parameters (a, c), but with weak theoretical guarantees. ORALS is amenable to theoretical
analysis, achieving consistency and asymptotic normality, albeit at a somewhat higher (in N and
p) computational cost. We will further examine their numerical performance in the next section.

2.1 Two algorithms: ALS and ORALS

2.1.1 Alternating Least Squares (ALS)

The ALS algorithm exploits the convexity in each variable by alternating between the estimation
of the weight matrix a and of the coefficient ¢ while keeping the other fixed:

Inference of the weight matriz.  Given an interaction kernel, represented by the corresponding
set of coefficients ¢, we estimate the weight matrix a by directly solving the minimizer of the
quadratic loss function with ¢ fixed, followed by row-normalizing the estimator. For every i € [N],
we obtain the minimizer (with a;; = 0) of the loss function &z, s (a, ¢) in (1.5) with ¢ fixed by solving
Va, €r,m(a, c) = 0, which is a linear equation in a;.:

& AN = i ((BX)ilime) = [(AXP)ilum/At, i€ [N], (2.1)

where [B(X}");]1,, € RNV¥WEMP>p AMLS = [B(X[);]) e € RVXUEEM) and [AX]]; ,, € RVXLMN
are obtained by matrix-vector multiplication of the appropriate tensor slices by c¢. We solve this



procedure ALS_IPSONGRAPH({X[",, }2_ 17{¢k}k 1> € Nmagiter)
Construct the arrays {B(X}})}i,, and {AX}'} in (1.5) for each trajectory.
Randomly pick an initial condition ¢;.
for 7 =1,..., Nmagiter dO
Estimate the weight matrix a, by solving (2.2) with ¢ = ¢,_1, by nonnegative least squares,
followed by a row normalization.
Estimate the parameter ¢, by solving (2.1) with a = a,, by least squares.

Exit loop if |[&- — &r1]| < €l[&r_1] and [|a, — &r_1]| < €l[&r_1].
return ¢,,a,.

Algorithm 1: ALS: alternating least squares

linear system by least squares with nonnegative constraints [LH95, Chapter 23|, since a € M implies
that the entries of a are nonnegative, followed by a normalization in £?>-norm to obtain an estimator
a;. in the admissible set M defined in (1.2).

Estimating the parametric interaction kernel. In this step, we estimate the parameter ¢ by minimiz-
ing the loss function &1, ar(a, ¢) in (1.5) with a fixed weight matrix a estimated above, by solving
the least squares problem

ASES 2 = [aB(X[")]1mC = [AX]"]m/At, (2.2)

where AALS = [aB(X{)]1m € RILMNXP g again obtained by stacking in a block-row fashion and
‘AQI](;,@ = [aB(X ) ]l m-

We alternate these two steps until the updates to the estimators are smaller than a tolerance
threshold € or until maximal iteration number n,,4z:ter is reached, as in Algorithm 1.

2.1.2 Operator Regression and Alternating Least Squares (ORALS)

ORALS divides the estimation into two stages: a statistical operator regression stage and a de-
terministic alternating least squares stage. The first stage estimates the entries of the matrices
{a T e RWW-1xp }N (excluding the zero entries a;;) by least squares regression with regulariza-
tion. It is called operator regression because we view the data as the output of a sensing operator
over these matrices. After this step, a deterministic alternating least squares stage jointly factorizes
these estimated matrices to obtain the weight matrix a and the coefficient c.

Operator Regression stage. Consider the arrays {Z; = a;l:cT e RW *I)XP}N treated as vectors in
RWV-Dpx1 that is, z; = Vec(Z;) = (aj1c1, ..., 2i1Cp, 8, 2C1, . .., & 2Cp, . - )T e ROV =1px1 for each i.
They are solutions of the linear equations with sensing operators A; py = [A;]1.m € R*™M Lx(N-1)p.

Aivzi = [Ailimzi = [(@B(XE)cAL)i]im = [(AXE)ilim, i€ [V], (2.3)

where, as usual, [-];, denotes stacking block rows. With the above notation, we can write the loss
function in (1.5) as

L,M,N
- . . 1 2
(Brar,-- - Evar) = argmin Ep (21, 28) = 52 D1 HAX™)]m — [Adimzi] (2.4)
ZLyeZN I,m,i=1

and obtain {2; y/} by solving this least squares problem for each i € [N].




Deterministic ALS stage. The rows of a and the vector ¢ are estimated via a joint factorization of
the matrices of the estimated vectors {Z; ys}, denoted by Z; ps, with a shared vector c:

@M, eM) = argmin &(a,c) Z HZzM —a} .C H2 , (2.5)
aeM, ceRpP F

where M is the admissible set in (1.2). A deterministic alternating least squares algorithm solves
this problem: we first estimate each row of a by nonnegative least squares and then estimate c
using all the estimated a with row-normalization. We iterate them for two steps, starting from ¢y
obtained from rank-1 singular value decomposition, as in Algorithm 2. Numerical tests show that
two iteration steps are often sufficient to complete the factorization, and the result is robust for
more iteration steps.

Theorem 2.7 shows that the estimator obtained by ORALS is consistent and, in fact, asymptot-
ically normal under a suitable coercivity condition.

procedure ORALS IPSONGRAPH({Xt0 a M Ay y)
Construct the sensing operators A; p; (from the arrays {B(X})}i,m) and {AX}"} in (2.3) for each
trajectory.
Solve the vector Z; ar’s in (2.4) by least squares with regularization; and transform them into matrices
ZiMm- R
Factorize each matrix Z; »;. Set the initial condition ¢y to be the first right singular vector.
for 7=1,2 do
Estimate the weight matrix a, by solving (2.5) with ¢ = é,_; by nonnegative least squares,
followed by a row normalization.
Estimate the parameter ¢; by solving (2.5) with a = a; by least squares.
return c,,a,.

Algorithm 2: ORALS: Operator Regression and Alternating Least Squares.

2.2 Theoretical guarantees

Three fundamental issues in our inference problem are (i) the identifiability of the weight matrix
and the interaction kernel, i.e., the uniqueness of the minimizer of the loss function; (ii) the well-
posedness of the inverse problem in terms of the condition numbers of the regression matrices in
the ALS and ORALS algorithms, and (iii) the convergence of the estimators as the sample size
increases. We address these issues by introducing coercivity conditions in the next section.

Here, we say the true parameter (a*, ®,) is identifiable if it is the unique zero of the loss function
in the large sample limit

]

o153

when the data has no noise and when the model is deterministic. We say the inverse problem is
well-posed if the estimator is robust to noise.

D M@ (rij(t)) — afPu(rij ()]

J#i

2.2.1 Exploration measure

We define a function space L?(pr) for learning the interaction kernel, where py is a probability
measure that quantifies data exploration to the interaction kernel. Let

I‘Z‘j(tl) = Xt]l — Xtil and I‘;?(tl) = Xt]l’m — thl,m . (2.6)




These pairwise differences {r}(¢;)} are the independent variable of the interaction kernel. Thus, we
define py, as follows.

Deﬁnition 2.1 (Exploration measure) With observations of M trajectories at the discrete times
{tl}l o » we introduce an empirical measure, and its large sample limit, on R?, defined as

L-1 M

prar(dr) = T NLMZE 20 Oeppa (dr), (27)

=0 m=11<i#j<N

pr(dr) = ) NLZ D E[by, @ (dr)], (2.8)

1=0 1<i#j<N

N N
wh67“€ ZlSz;ﬁ]SN Stands for Zz:l Z]:L]#Z

The empirical measure depends on the sample trajectories, but pg, is the large sample limit, uniquely
determined by the distribution of the stochastic process Xy,., ,, and hence data-independent.

2.2.2 Two coercivity conditions

We introduce two types of coercivity conditions to ensure the identifiability and the invertibility of
the regression matrices in ALS and ORALS. The first one is a joint type, including two coercivity
conditions. We call them rank-1 and rank-2 joint coercivity conditions, which guarantee that the
bilinear forms defined by the loss function in terms of either the kernel or the weight matrix are
coercive (recall that a bilinear function f(z,y) is coercive in a Hilbert space H if f(z,z) = c|z|3
for any x € H [Lax02]).

Definition 2.2 (Joint coercivity conditions) The system (1.1) is said to satisfy a rank-1 joint
coercivity condition on a hypothesis function space H < L*(pr) with constant cz > 0 if for all
deH and allae M,

1L—1
15
L&

Moreover, we say system (1.1) satisfies a rank-2 joint coercivity condition on H if there ezists a
constant cy > 0 such that for all 1, Py € H with (Pq, (I)2>L2(pL) =0, and all a®,a® e M,

12

=0

> a®(rij(t))

2
] >CH|ai.|2H<I>H/2)L, Yie[N]. (2.9)
VE)

2
D lal @1 (i (0)) + a§?<1>z<rij<tl>>]' ] > oy |l P02, + al” Ploal2, | ,vie [V].
J#i

(2.10)

Note that (2.10) implies (2.9) by taking ®5 = 0.

The rank-1 joint coercivity condition (2.9) ensures that the regression matrices in any iteration
of ALS are invertible with the smallest singular values bounded from below; see Proposition 2.6.
However, it does not guarantee identifiability. The stronger rank-2 joint coercivity condition (2.10)
does provide a sufficient condition for identifiability:

Proposition 2.3 (Rank-2 Joint coercivity implies identifiability) Let the true parameters be
a* e M and ¢, € H\{0} c LZ. Assume the rank-2 joint coercivity condition holds with cyy > 0.
Then, we have the identifiability, namely, (a*, @) is the unique solution to 1 (a, @) = 0.



The proof can be found in Appendix A.1.

The joint coercivity conditions may be viewed as extensions of the Restricted Isometry Property
(RIP) in matrix sensing [RFP10] to our setting of joint parameter-function estimation. They corre-
spond to the lower bounds in the RIP conditions. However, as noted in [BR17,GJZ17,1.523,CLP22|,
a relatively small RIP constant, corresponding to a large coercivity constant cy in our setting, is
necessary for an optimization algorithm to attain the minimizer. This, however, is often not the
case in our setting; see the discussion in Appendix C.

We introduce another coercivity condition, called the interaction kernel coercivity condition,
which also guarantees identifiability and well-posedness. It ensures the invertibility of the regression
matrix in ORALS with a high probability when the sample size is large. As a result, it ensures
the uniqueness of the minimizer of the loss function and, therefore, the identifiability of both the
weight matrix and the kernel since the second stage in ORALS is similar to a rank-1 factorization
of a matrix, which always has a unique solution.

Definition 2.4 (Interaction kernel coercivity condition) The system (1.1) satisfies an inter-
action kernel coercivity condition in a hypothesis function space H < L?*(pr) with a constant
co € (0,1), if for each ® € H and all i € [N]

L—1

D) Eftr Cov(@(ri; (k) | Fi)l = conl @[3, ¥ € H, (2.11)
1=0 j#i

where F| := F(Xy_,, X})) is the o-algebra generated by (Xy,_,, X}). Here tr Cov(®(r;;(t;)) | F{) is
the trace of the covariance matriz of the R%-valued random variable ®(r;;(t;)) conditional on F;.

1
L(N —1)

Condition (2.11) is inspired by the well-known De Finetti theorem (e.g., [Kal05, Theorem 1.1]),
which shows that an exchangeable infinite sequence of random variables is conditionally independent
relative to some latent variable. This condition holds, for example, when L = 1 and the components
¢ i]\il are independent, because r;; = X7 — X' and ri = X7 — X' are pairwise independent
conditioned on X*; see [WSL23, Section 2| for a discussion in the case of radial interaction kernels.
The interaction kernel coercivity condition implies the joint coercivity conditions; see Proposition
A.1. We verify it in an example of Gaussian distributions in Proposition A.4. The rank-1 joint
coercivity condition can also be viewed an extension of the classical coercivity condition in [BFHM16]
and [LLM™21, Definition 1.2], which was introduced for homogeneous systems (with a = 1 except
for 0’s on the diagonal) with radial interaction kernel, i.e., ®(z) = <i>(|x\)|i—| For homogeneous
systems, we present a detailed discussion on the relation between these conditions in Section A.5.

2.2.3 Coercivity and invertibility of normal matrices

We show that coercivity conditions imply that the normal matrices in ORALS and ALS are non-
singular, with their eigenvalues bounded from below by a positive constant, with a high probability.
We consider hypothesis spaces satisfying the following conditions.

Assumption 2.5 (Uniformly bounded basis functions) The basis functions of the hypothesis
space H = span{yy, -+ ,1p} are orthonormal in L*(pr) and uniformly bounded, i.e., SUPkefp] ¥k [0
< Ly.

The next proposition shows that the smallest singular values of the matrices in ORALS and ALS
are bounded from below by the coercivity constants with high probability (w.h.p.), guaranteeing
that they are well-conditioned. We defer its proof to Appendix A.2.
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Proposition 2.6 Assume {1y} e[y satisfy Assumption 2.5 and H = span{yy}pefp. Then:

(i) under the kernel coercivity condition (2.11), the matriz in the Operator Regressions stage of
ORALS is well-conditioned: for eachi € [N], the matriz A; ar in (2.3) satisfies 1702, (E[A; ar])
> ¢y ; moreover, for e >0 and any M,

1 Mée?/2
P! —o2. (A; —ep=>1—2pN — ; 2.12
{Mamln(A ,M) > o 6} PIV €Xp < 2(])NL%_[)2 —i—pNL%_[&/B) ( )

(ii) under the rank-1 joint coercivity condition (2.9), the matrices in the least squares problems in
the ALS algorithm are well-conditioned:

(a) in the estimation of a; with a given nonzero ¢ € RP, we have that 1 o2 (E [.Afffz]) =

culle|? for each i € [N] and the matriz in (2.1) is well—conditioned. Moreover, for any

M and e > 0,
1 ALS 2 Me?/2 ,
]P{M rnln(Ac M,i) = CHHCH —er=1- 2Nexp - (pLg-L)z —l—pL%_lE/B ) (213)
(b) in the estimation of c € RP with a given a with |a;| = 1, we have that 5702, (E [-’434%;1]) >
cy for each i € [N] and the matriz in (2.2) is well-conditioned. Moreover, for any M
and € > 0,
1 ALS Me?/2
P{M omin(ALTT ) = on — 6} >1—2pexp (— (NIZ2+ NLZ:3) (2.14)

Note that already in this result the bounds (2.13), (2.14) for ALS only require M = (N?+p?)(log N +
log p) (where p? may perhaps be replaced by p with more refined arguments, such as the PAC-Bayes
argument applied in the proof of [WSL23, Lemma 3.12|), while the bound (2.12) for ORALS requires

M z (pN)?log(pN), in line with our discussion of the expected sample size requirements of ORALS
and ALS.

2.2.4 Convergence and asymptotic normality of the ORALS estimator

Convergence of the ORALS estimator follows from the kernel coercivity condition. We will prove
that the estimator is consistent (i.e., it converges almost surely to the true parameter) and is
asymptotically normal. Here, for simplicity, we consider the case when the data are generated by
an Euler-Maruyama discretization of the SDE (1.3). The case of discrete-time data from contin-
uous paths can be treated by careful examinations of the stochastic integrals and their numerical
approximations, using arguments similar to those in [LMT21b].

Theorem 2.7 Assume {r}re[p) satisfy Assumption 2.5, H = span{yp}re[p), and that the data
(1.4) is generated by the Euler-Maruyama scheme

Ath = th+1 — th = a*B(th)c*At + oV Ath, (215)
where a, and ¢y are the true parameters, {W}; are independent, with distribution N (0, Ing), and

|(ax)ill2 = 1 for each i € [N]. Then we have:
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(i) The estimator z; pr in (2.4) is asymptotically normal for each i. More precisely, Ziy =
zi + & v, where z; = Vec(Z;), with Z; = (a *)ch, and &y is a centered RW=DP_yalyed

random vector s.t. \M&; y 4, Eioo ~ N0, UQAtAi,olo)-

(ii) Starting from any co € RP such that clco # 0, the first iteration ' and second iteration
estimator aM2 for the deterministic ALS in (2.5) are consistent up to a change of sign and
are asymptotically normal:

VMM — sgn(clcy)eq] EﬁT a.);

VM[(E")T —sgn(ceo)(@0l] S lex 2[€ics — (as)i€icw(an)T],

where the random matriz & € RN=DXP 45 the vectorized form of the Gaussian vector ELOO in

(i), i.e., Emo = Vec(&;).

Convergence of the ALS estimator remains an open question. It involves two layers of challenges:
the convergence in the iterations, and the convergence as the sample size increases. The restricted
isometry property (RIP) conditions, typically stronger than the joint coercivity conditions used
here, enable one to construct estimators via provably convergent optimization algorithms from data
of small size [RFP10,BR17,GJZ17,1.523, CLP22|. However, these conditions are rarely satisfied in
our setting.

We summarize in Figure 1 the relations between the coercivity, RIP conditions, and their main
consequences.

ALS well-conditioned

=}
c; ‘Pm- Rank 1-Joint lpmp C4  [Rank 1-RIP
g 9 coercivity condition
g =
s g Prop A.1 N =
3 = Thm 2.7 Top @)
2 L — % b
g £ A A
Zp
= o -
x = _8 Rank 2-Joint J Rank 2-RIP
o < 3> PYOP 23 __| coercivity Prop C.4 condition

Identlﬁablhty

Figure 1: The coercivity conditions: connections with RIP conditions, identifiability, and well-
conditionedness of ALS and ORALS algorithms.

2.2.5 Trajectory prediction

In the above, we have studied the accuracy of our estimator in terms of the Frobenius norm on the
graph weight matrix and L?(pz) norm on the interaction kernel. Of course, it is also of interest
to ask whether the dynamics generated by our estimated system are close to the ones of the true
system; in particular, whether we can control the trajectory prediction error by the error of the
estimator. The following proposition provides an affirmative answer, similar to the previous results
in [LMT21b, Proposition 2.1].
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Proposition 2.8 (Trajectory prediction error) Let(a,c) be an estimator of (a,c) in the system

(1.3), where & and a are row-normalized. Assume that the basis functions {y},_, are in {w €

CLRY) : Y] + Vo] < Co}, for some Co > 0. Denote by (Xy)o<t<r and (Xi)o<i<r the

solutions to the systems Sz z and Sa,. associated to (a,c) and (a,c), respectively, starting from the
same initial condition sampled from u, and driven by the same realization of the stochastic force.
Then,

sup E [[X; = X[} | < 72207 (Cylla—al + |6 - cff) (2.16)
te[0,T]

with Cy = 2pC¢ and Cy := ||2]3 + |c|3.

2.3 Algorithmic details
2.3.1 Comparison between ALS and ORALS

ALS minimizes, at every iteration, over a and ¢ separately, thereby capturing the joint 2-parameter
structure of the problem. This is crucial to achieve a near-optimal sample complexity of N2 + p,
up to constants and logarithmic factors, for our estimation problem, as Proposition 2.6 suggested.
Numerical experiments (see, for example, Figure 4) suggest that indeed ALS starts converging to
accurate estimators as soon as the sampling size is about N2 + p, and that ALS consistently and
significantly outperforms ORALS at small and medium sample sizes. In each of the two steps at
each iteration of ALS, the update of the involved parameter is non-local, making the algorithm
potentially robust to local minima in the landscape of the loss function over (a, ¢): we witness paths
of ALS overcoming local minima and bypassing ridges in the optimization landscape to converge to
a global minimizer quickly. The computational cost is smaller than ORALS, especially as a function
of N and p.

A major drawback of ALS is the challenge in establishing global convergence of the iterations,
particularly around the critical sample size, but also for large sample size. Similar problems are
intensively studied in matrix sensing, where certain restricted isometry property conditions and their
generalizations [GJZ17,ZSL19,1.S23| are sufficient to ensure the uniqueness of a global minimum or
the absence of local minima. However, these conditions appear not to be satisfied in our setting in
general, and local minima can exist: see, e.g., Figure 17 in Appendix Section C for more detailed
investigations. It remains an open problem to study the convergence of the ALS algorithm in this
new setting.

For the ORALS estimator, Theorem 2.7 guarantees both convergence and asymptotic normality
as the number of paths M goes to infinity; in practice, we observe that ORALS starts constructing
accurate estimators when M = N 2pQ. The second step of ORALS is a classical rank-1 matr/i\x
factorization problem: it has an accurate solution robust to the sampling errors in the matrices Z;
estimated in the statistical operator regression stage. These sampling errors can be analyzed with
non-asymptotic bounds by concentration inequalities and asymptotic bounds by the central limit
theorem.

2.3.2 Computational complexity

Table 2 shows the theoretical computational complexity of ALS and ORALS, and Figure 10 in
Section B.1 shows the practical scaling in terms of the two fundamental parameters M and N.
The computational cost is dominated by assembling the regression matrices from the input data,
whereas the solution of the linear equations takes a lower order of computations. Observe that the
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data size is comparable to M LdN, with independence in M but not in L or N, and the number of
parameters being estimated is N2 +p. It is natural therefore to assume M = N2+p or, perhaps more
optimistically assuming independence in L and N, MLdN = N? + p. In a non-parametric setting,
we would expect p to grow with M (as in [LZTM19, LMT21a, WSL23|, where optimal choices of p
are p ~ M for some a € (0,1)), so the dependency of the computational complexity on M and
p is of particular interest. The summary of the computational costs is in Table 2, and empirical
measurements of wall-clock time are discussed in Section B.1.

Table 2: Computational complexity of ALS, per iteration, and ORALS. Recall that the size of the
input data is M LdN.

ALS ORALS
Assembling mats/vecs O(M LdN?p) O(M LdN3p?)
Solving O(MLAN (p? + N?)) O(MLAN?3 + N'p?)
Total (if MLd > N) O(MLAN (p?> + Np + N?)) | O(MLAN? + N*p?)

2.3.3 Ill-posedness and regularization

Robust solutions to least squares problems are crucial for the ALS and ORALS algorithms. When
the matrices in the least squares problems are well-conditioned (i.e., the ratio between the largest
and the smallest positive singular values are not too large), the inverse problem is well-posed, and
pseudo-inverses lead to accurate solutions robust to noise.

However, regularization becomes necessary to obtain estimators robust to noise when the matrix
is ill-conditioned or nearly rank deficient. This happens when the sample size is too small or the basis
functions are nearly linearly dependent. In such cases, numerical tests show that the minimal-norm
least squares method and the data-adaptive RKHS Tikhonov regularization in [LLA22| lead to more
robust and accurate estimators than the pseudo-inverse and the Tikhonov regularization with the
Euclidean norm. See more details in Appendix Section B.2. In this study, we consider only Tikhonov
regularizers that are suitable for least squares type estimators in ALS and ORALS; of course, there
is a very large literature on regularization methods (see, e.g., [EHN96, Han98, CS02, GHN19| and
the references therein).

3 Numerical experiments

We examine the ALS and ORALS algorithms numerically in terms of the dependence of their
accuracy and robustness on each of the following three key parameters: sample size, misspecification
of basis functions, level of observation noise, and strength of the stochastic force.

ALS appears to be particularly efficient and robust, both statistically and computationally, as
soon the number of observations is comparable to the number of unknown parameters (a, c); and
its estimator converges as sample size increases, although it does not have theoretical guarantees;
ORALS performs as well as ALS in the large sample regime, with estimator converging at the
theoretical rate M~1/2.

The settings of the systems in our experiments are as follows. There are N = 6 agents in
a relatively sparse network in which each agent is influenced by |N;| = 2 other agents, selected
uniformly at random. The non-zero off-diagonal entries of the weight matrix are randomly sampled
independently from the uniform distribution in [0, 1] followed by a row-normalization, i.e., a;; €
[0,1], aii = 0, and 371 | a2, = 1 for each i € [N]. The state vector X is in R? with d = 2. The
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interaction potential is a version of the Lennard-Jones potential ®(z) = d)(|:c\)|i—| with a cut-off near
0: the interaction kernel ¢ given by

— x4+ —273, x =0.5
(3.1)

— 160, 0<xz<D0.5.

We consider a parametric from ¢ = Zizl ¢ with misspecified basis functions

{14k = 90_9]1[0.25k+0.5,+oo]}i:0 U {4k = 33_3]1[0.25k+0.5,+oo]}z:0 U Y74k = ﬂ[o,0.25k+0.5]}2:0-

Thus, the true parameters ¢* has zero components except for (cf, ¢}, c) = (—1/3,4/3,—160). Note
that we do not assume or enforce sparsity in our estimation procedure.

The multi-trajectory synthetic data (1.4) are generated by the Euler-Maruyama scheme with
At = 107%, and with initial condition X;, = (Xtil,z' = 1,...,N) sampled component-wise from a
initial distribution pg. The distribution pg, stochastic force o, the observation noise strength ops,
and total time T, will be specified in each of the following tests. The number of iterations in ALS
is limited to 10 in all examples.

We report the following measures of estimation error, called the (relative) graph error, kernel
error, and trajectory error respectively:

™) = (X7l r20m)

la, — & 1P — |12 1 &I
fa= T 0 KT T, 8X:MZ X
fal 2], PR[5S

)

where (X{”/)t and ()’i;"')t denote trajectories started from new random initial conditions, generated
with the true graph and interaction kernel and with the estimated ones, respectively. The measure
p is the exploration measure defined in (2.8); since it is unknown, we use a large set of observations
independently of the training data set to estimate it; note that, of course, such estimate of p is not
used in the inference procedure — it is only used to assess and report the errors above.

3.1 A typical estimator and its trajectory prediction

In this section, we show a typical instance of the estimators. The initial distribution g is the
uniform distribution over the interval [0,1.5], the training dataset has M = 103 trajectories, the
stochastic force has ¢ = 1073, the observation noise has o, = 1073, and time 7" = 0.005 (i.e.,
making observations at L = 50 time instances). Figure 2 shows the graph, the kernel, the trajectory,
and their estimators. Our algorithms return accurate estimates of the graph and the kernel; see the
estimation errors in Table 3. We also present the mean and SD of the trajectory prediction errors
of 100 independent trajectories sampled from the initial distribution.

Graph error e, Kernel error ex Traj. error ex Exp. traj. error ex
ALS 8.47 x 1073 1.45 x 1072 6.1 x 1073 6.19 x 1073 £8.12 x 10~*
ORALS| 1.67 x 1072 1.47 x 1072 6.6 x 1073 7.41 x 1073 £ 1.07 x 1073

Table 3: Error of the estimators in Figure 2 in a typical simulation, and, in the fourth column,
mean and SD of trajectory prediction errors of 100 random trajectories.
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Figure 2: Top: a typical weight matrix estimation. The first two columns show the true graph
and its weight matrix. The two columns on the right show the entry-wise errors of the ALS and
ORALS estimators. Bottom: Estimator of interaction kernel and trajectory prediction. The left
column shows a true trajectory. The middle two columns show the true and estimated kernels with
a zoom-in to show the details in a rectangular region. The fourth column presents the true (the
same as in column 1) and predicted trajectories. Note that X3 and X2 do not converge to the same
cluster, in both the true and estimated trajectory, even though they are close at time 0, since there
are no edges between them in the graph.

3.2 Convergence in sample size

Rate of convergence and robustness. We examine the estimators’ convergence rates in sample
size M and their robustness to basis misspecification and noise in data. Thus, we consider two
cases: a case with noiseless data and a well-specified basis {11, 14, %7}, which we aim to show the
convergence rate of M —1/2 45 proved for the parametric setting; and a case with noisy data with
oobs = 1072 and the above basis functions {Q,Z)k}]zzl, which we aim to test the robustness of the
convergence.

Figure 3 shows that both ALS and ORALS yield convergent estimators as the sample size M
increases. Here, the data trajectories are generated from the system with a stochastic force with
o = 1072, In either case, the boxplots show the relative errors in 100 random simulations. In
each simulation, we compute a sequence of estimators from M sample trajectories, where M €
{10, 24,59, 146, 359, 879, 2154, 5274, 12915, 31622}. In each boxplot, the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme data points not considered outliers, and the outliers are
plotted individually using the “4” marker symbol.

In the case of noiseless data and well-specified basis, the top row shows nearly perfect decay rates
of M~1/2 for both the graph errors and the kernel errors and for both ALS and ORALS algorithms.
For ORALS, this convergence rate agrees with Theorem 2.7. ALS has similar convergence rates,
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Figure 3: Convergence with sample size M increasing in 100 independent experiment runs. The top
row shows almost perfect rates of M~Y2 for both algorithms for the case of noiseless data and a
well-specified basis. For the case of noisy data and misspecified basis, the bottom row shows robust
convergence with the errors decaying until they reach 10™4, the variance of observation noise.

even though it does not have a theoretical guarantee for convergence.

In the case of noisy data and misspecified basis, as shown in the bottom row, the decay rate
remains clear for the graph errors, but the kernel errors decay at a rate slightly slower than M —1/2
before reaching the level of observation noise O'gbs = 10~*. ALS’s graph errors are about half a digit
smaller than the ORALS’ graph errors; while both algorithms lead to similar kernel errors when
the sample size is large, the ALS’ kernel errors are much smaller when the sample size is small.
Thus, ALS is more robust to noise and misspecification than ORALS, and it can lead to reasonable

estimators even if the sample size is small, which we further examine next.

Behavior of the estimators as a function of M and L. We further examine the performance
of our estimators as a function of the number of sample paths M and the trajectory length L, so that
the total number of observations is M L, each a d-dimensional vector. Here we consider an interaction
kernel ®(z) = ¢(|x\)% with ¢(r) = D) _, wi/ksin(27kr)/(r + 0.1), where wy, . N(0,1).

Figure 4 shows the results for N = 32, p = 16, d = 1, 0 = 10~* and observation noise 107
The top panel shows the results with L = 2 (left) and L = 8 (right). The first dashed vertical bar
is in correspondence of M = (N2 + p)/(NL) (left) and M = (N? + p)/(NL/2) (right); the second
dashed vertical bar is at M = (N?p)/(NL): since we have a total of M LdN scalar observations, and
N? + p parameters to estimate, the first one corresponds to a nearly information-theoretic optimal
sampling complexity, and we see that ALS appears to start performing well around that level of
samples, albeit, because of the lack of independence in L, on the right we have to multiply by 2;
the second one appears to be consistent with the sample size at which ORALS starting to get a
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good performance. In the small and medium sample regime, between the two vertical bars, ALS
significantly and consistently outperforms ORALS; for large sample sizes, the two estimators have
similar performance.

The bottom panel shows the performance of the ALS estimator as a function of both M and L
(recall that T' = Ldt). The performance improves not only as M increases but also as L increases,
at least for this particular system.

The main takeaways are that (i) ALS appears to achieve good performance as soon as the
number of samples is comparable to (N2 + p)/(Ld) (after what might be a phase transition from the
phase where the samples are insufficient), while the number for ORALS is of order (N?p)/(Ld); (ii)
the effective sample size, at least for this dynamics, appears to increase with L, and perhaps as fast
as the product M L, notwithstanding the dependence between samples along a single trajectory.

~— Int. Kernel error (ALS)

—a&— Graph error (ALS)

- =1 B —=e— Traj. error (ALS)

------------------- AN\ ~ == Int. Kernel error (ORALS)
\ — - Graph error (ORALS)

—-&-- Traj. error (ORALS)

Estimation Error
Estimation Error

Graph error

I R I

M M M

Figure 4: Top: Estimation errors as a function of M (with all other parameters fixed), for both
ALS and ORALS, for a random Fourier interaction kernel with p = 16, N = 32, L = 2 (left)
and L = 8 (right). In the small and medium sample regime, between the two vertical bars, ALS
significantly and consistently outperforms ORALS; for large sample sizes, the two estimators have
similar performance. Bottom: The performance of the ALS estimator improves not only as M
increases but also as L increases.

3.3 Dependence on noise level and stochastic force

Numerical tests also show that the estimator’s error decays linearly in the scale of the stochastic
force and the noise level. The linear decay rate in the scale of the stochastic force agrees with
Theorem 2.7, where the variance of the error for the ORALS estimator is proportional to o2. We
refer to Sect.B.3 for details.
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4 Applications
4.1 Kuramoto model on network, with misspecified hypothesis spaces

We consider the Kuramoto model with network

dX{ =k ). aijsin(X] — X})dt + odW{, i=1,...,N. (4.1)
JEN;

When a;; = 1 and o = 0, it reduces to the classical Kuramoto model of N coupled oscillators,
where X} represents the phase of the i-th oscillator. Here x represents the coupling constant.
The Kuramoto model was introduced to study the behavior of systems of chemical and biological
oscillators [Kur75] and has been extended to study flocking, schooling, vehicle coordination, and
electric power networks (see [DB14, GFR22| and the reference therein).

In this example, our goal is to jointly estimate from multi-trajectory data the weight matrix a,
and the coefficient ¢ of the (true) interaction kernel ®(z) = sin(x) over the misspecified hypothesis
space

H = span{cos(z), sin(2x), cos(2z), ..., cos(7x),sin(7z)},

which does not contain ®, and over the hypothesis space H, := span{H, ®}.

We consider a system with N = 10 oscillators, using the uniform distribution over the interval
[—2,2] as the initial distribution, as well as a stochastic force with ¢ = 107%, an observation noise
with oops = 1073, time 7' = 0.1 and At = 0.001 (therefore, L = 100). We compare the kernel esti-
mation result using H and M4, with the number of observed trajectories M € {8,64,512}. In Figure
5, we present the true graph and a typical trajectory; in particular, we present the kernel estimators’
mean, with one SD range represented by the shaded region, from 20 independent simulations. The
successful joint estimation results suggest ALS and ORALS may overcome the discrepancy between
the true kernel and the hypothesis space, making them applicable to nonparametric estimation.

Due to the network structure, the system can have interesting synchronization patterns. The
bottom left of Figure 5 shows an example of such a pattern: groups of particles moving in clusters,
with each cluster having a similar angular velocity robust to the perturbation by the stochastic
force. These synchronization patterns appear dictated by the network structure, and appear robust
to the initial condition. In general, it is nontrivial to predict when these synchronization patterns
emerge and what their features are depending on the network; for a recent study in the case of
random Erdos-Rényi graphs, we refer the reader to [ABK™ 23] and references therein.

4.2 Estimating a leader-follower network

Consider the problem of identifying the leaders and followers in a system of interacting agents from
trajectory data. In this system, the leader agents make a stronger influence through more connec-
tions to other agents than the follower agents. Such a system can describe opinion dynamics on
social network [WS06, MT14, DTW18, HZBL*20] and collective motion of pigeon flocks [NABV10].
We consider the following leader-follower model

4X; = Y ay®(X] ~ X])dt + 0dWj, =1, N 42)
J#i

where the true interaction kernel (named influence function in the opinion dynamics literature)

O(z) = =P () — 0.1P9(x)
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Figure 5: The first column shows the true weight matrix a and a trajectory of the system with an
interesting clustering pattern. In the remaining columns, we show the estimators of the interaction
function with misspecified and well-specified hypothesis spaces, i.e., ¢ ¢ H (top row) and ¢ € Hy
(bottom row) respectively, with M ranging in [8,64,521]. Our estimators appear robust to basis
misspecification, albeit with performance worse than in the well-specified case.

with the bases ®1(7) = 1,<1y and ®2(z) = 11 4<1.5)- The weight matrix a represents a leadership
network, with the weights on the directed edges to be understood as a measure of impact or influence.
We identify the agents as leaders or followers by first estimating the weight matrix a from data
by the ALS algorithm and then using the K-means method (e.g., [Bis06, Chapter 9]) to analyze
the impact feature and the influence feature extracted from the matrix. The detailed algorithm of
clustering is presented as follows.
Step 1: Identify the leaders. Given the weight matrix, observe that for any agent A;, the
row-wise sum [a;.|¢, = >, [a;| represents its impact on other agents in the system, and the
column-wise sum [a.;|s, = >3;_; |aji| corresponds to the influence of the system on i. We posit that
leadership can be characterized as the linear combination of impact on the system and influence
from others:

L; = ala;|¢ + Blaile,, witha+p8=1,a> 4, (4.3)

Typically, the impact factor « is expected to surpass the influence factor 5 when discussing lead-
ership. Subsequently, we identify the leaders and followers by applying the K-means method to
cluster the leadership features {L;}Y ;. We represent leaders and followers by a partition of the
index set: [N] = S1|JS2 = {i1, - izt Ulj1, -+, Jx ) with N = N + N, representing leaders and
followers, respectively.

Step 2: Classify the Followers. We further classify each follower in a group according to his
or her leader. We start by setting the N groups to be {G! = {ir},---,GN = {iz}}. To classify
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follower j € So, we consider another leadership feature:

E;?:aZ ‘aij’-l-ﬂE laj;|, Vk=1,---,

i€Gk ieGk

_22

Then we find the largest INLfO and classify agent j to group kg and set this group to be {G*0, j}. We
continue this procedure until all followers are classified.

Figure 6 demonstrates the identified network of the agents via the above method with (o, §) =
(0.8,0.2). In this experiment, we have two leaders, labeled as Al (red group) and A6 (blue group),
out of N = 20 agents, and we consider three sample sizes M € {15,30,100}. The figure shows the
identification of the leader-follower network depends on sample size: we can identify the leader-
follower network accurately when the sample size is large, e.g., M = 100. The error of graph
estimation is 0.0018. But when the sample is too small, e.g., M = 15 and M = 30, the inference
can have large errors: the errors of graph estimation are 0.1254 when M = 15 and 0.0094 when
M = 30. Nevertheless, the leaders and followers are correctly identified; see more detailed results
in Appendix B.5.

This example suggests that we can consistently identify and cluster leaders and followers from
a small sample size.

Leader-follower network M=15

Leader-follower network M=30

Leader-follower network M=100

Leader-follower network True

OA20 -

#A15

?AlZ

PAL9

eAL2

SAL9

AR :T/us

eA12

~eadal]
by A

A\ A
AN 2N A7 A7

/s A9
o[ ®AL9
v

s

®AL9

Figure 6: Estimated networks of leaders and followers from datasets with sample sizes M €
{15,30,100} and the ground truth. When M = 100, the estimated network is accurate. When
M = 30, the leaders-follower network is correctly identified, though the weight matrix is less accu-
rate. When M = 15, the sample size is too small for a meaningful inference; but the clustering is
still reliable.

4.3 Multitype interaction kernels

We consider further the joint inference of a generalized model with multiple types of agents dis-
tinguished by their interaction kernels. Specifically, consider a system with @ types of interaction
kernels, and denote by x(7) the type of kernel for the agent i:

S

a:(cbll)?:l Pad )

dX] = > ay;®,)(X] — X))dt + cdW}, i=1,...,N, (4.4)
J#i

where @, is the interaction kernel for agents of type gq. Given a hypothesis space H = span{zpk}i:l

that includes these kernels, there a exists coefficients matrix ¢ € RP*Y such that

p
D) (2) = ) critpr(z)
k=1
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with ¢; = ¢ if k(i) = k(j), namely the matrix ¢ has @ distinct columns. Using the same tensor
notation as before, we have

Sac X, = aB(X;)c + oW = (ai.B(Xt)ic.i)i + oW, where

e[NV]

p
a;iB(Xy)ici = Y ay Y (X! — X])ewi e RY i € [N].
J#i k=1

(4.5)

Our goal is to jointly estimate the weight matrix a and the matrix ¢, which represents the @
kernels without knowing the type function x, from data consisting of multiple trajectories.

Since ¢ has @ distinct columns, we have rank(c) < @, which is a weaker condition. However,
the low-rank property of c is sufficient for us to apply the idea of ALS. Using SVD on ¢, we can
decompose ¢ as

c=uv’ (4.6)

where u € RP*€? is called the coefficient matriz. This is because u represents the orthogonalized
coefficients of the @Q interaction kernels on the basis {¢;}. And the type matriz v e RN*? is
assumed to be orthonormal, i.e., viv = Ig, as it represents the type of the i-th particle with each
row of v represents the weight of the orthogonalized @ interaction kernels that the kernel @
has. Such normalization condition avoids the simple non-identifiability issue, as demonstrated in
the admissible set of a. We write the above system as

Sauv X, = aB(Xt)uvT + oW = (ai.B(Xt)iuvZ-T,)Z. + O'W, where

e[N]
- Q . (4.7)
B(Xy) 1uv Zawzmc Xj tZ)ZukqvinR i€ [N].
J#i k=1 qg=1
With data of multiple trajectories {Xj". tL}m 1, the loss function is defined as
(a,u,v) = arg min Erm(a,u,v), with
(a,u,v)eM xRP*Q@ xRNV *Q
VTV=IQ

. LM (4.8)

Erm(a,u,v) = WUT Z |AX]" — aB(X] )uVTAtHF,

I=1,m=1

We introduce a three-fold ALS algorithm to solve the above optimization problem. Notice that
the loss function (4.8) is quadratic in each of the unknowns a,u, v if we fix the other two. The
three-fold ALS algorithm alternatively solves for each of the unknowns while fixing the other two.
In each iteration, this algorithm proceeds as follows: solving a via least squares with nonnegative
constraints, next solving u by least square, and then solving v via least squares followed by an
ortho-normalization step, which is an orthogonal Procrustes problem [GD04]. Additionally, we add
an optional K-means step to ensure that ¢ has only @) distinct columns. The details of the algorithm
are postponed to Section D.

Figure 7 numerically compares the three-fold ALS with and without the K-means step. Here we
consider ) = 2 types of kernels corresponding to short-range and long-range interactions. We use
the data of M = 400 independent trajectories, with a uniform distribution over the interval [0, 5] as
initial distribution, At = 1073, L = 50 so that 7" = 0.05, and the stochastic force and the observation
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noise have o = o, = 1073. The weight matrix is randomly generated with entries sampled from
the uniform distribution on [0, 1], followed by a row-normalization. The true kernels are constructed
on spline basis functions, representing short-range interaction (Type 1) and long-range interaction
(Type 2).

Figure 7 reports the error decay in the iteration number and the comparison between the esti-
mated and true kernels. It shows that the algorithm using K-means at each step performs better
than the one without the K-means since it preserves more model information.

Error decay with iterations Kernel Type 1 Kernel Type 2

mee Using K means, kernel error

mee Using K means, a error 2 2 =
1 ==== No K means, kernel error / A
==»s No K means, a error 1 1 ;" : 3
. = / \
PN GLLLLLLL LLUL LU LCLL LLLL L UL LU LD 2; o ) \oe | ‘:’& 0 bppoeiieceesesd? /
. -1 — True -1 a
1 \ —s— ALS with K means \\ d
2 ALS without K means -2 bt

P

2 3 | | n T 3 |

0O 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1 2 3 4 5
Iterations r f

log 10 Error

Figure 7: Estimation of two types of kernels: short range and long range. The first panel shows
the error decay with respect to iteration numbers. The algorithm using K-means decays faster
and reaches lower errors than the algorithm without K-means. The right two columns show the
estimation result of the two kernels. The classification is correct for both of the algorithms, and the
one with K-means yields more accurate estimators, particularly for the kernel Type 1.

Model selection. We further test the robustness of the three-fold ALS algorithm for model
selection when the number @ € {1,2} is unknown. We apply the algorithm with both @ € {1,2}
on two datasets that are generated with Qe = 1 and Qyrye = 2 respectively. Table 4 shows that
the three-fold ALS can select the correct model through trajectory prediction errors. It reports the
means and SDs of trajectory prediction using 10 test trajectories, At = 1072 and L = 500 time
steps. Note that the total time length is T' = 5. When Qe = 1, the error of the estimators with
misspecified () = 2 is relatively accurate, because the estimated two types of kernels are both close
to the true kernel, as examined in Figure 8. Thus, the algorithm effectively identifies the correct

model.
Qtrue =1 Qtrue =2
Estimated with Q = 1 1.22 x 1072+ 8.23 x 103 [ 2.06 x 1071 +6.88 x 102
Estimated with Q = 2 1.44 x 1072 +7.40 x 1073 1.12 x 1072 + 2.80 x 1073

Table 4: Model selection: single- v.s. two- types of kernels. The table shows the Mean and SD of
trajectory prediction errors in 10 independent numerical experiments, where the number of kernel
types is unknown. Smaller errors indicate a correct model. The model is correctly identified in both
cases (highlighted in bold).

5 Conclusion

We have proposed a robust estimator for joint inference of networks and interaction kernels in in-
teracting particle systems on networks, implemented with computationally two scalable algorithms:
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Kernel Type 1 Kernel Type 2
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Figure 8: Estimated kernels in a misspecified case: estimating two types of kernel when data is
generated using a single kernel. The algorithm outputs two types of kernels, but both are close to
the true kernel.

ALS and ORALS. We have tested the algorithms on several classes of systems, including determin-
istic and stochastic systems with various types of networks and with single and multi-type kernels.
We have also examined the non-asymptotic and asymptotic performance of the algorithms: the
ALS is robust for small sample sizes and misspecified hypothesis spaces, and both algorithms yield
convergent estimators in the large sample limit.

Our joint inference problem leads to a non-convex optimization problem that resembles those
in compressed sensing and matrix sensing. However, diverging from the conventional framework of
matrix sensing, our data are correlated, our joint estimation is in a constrained parameter space and
a function space, and the Restricted Isometry Property (RIP) condition rarely holds with a small
RIP constant. These differences can lead to an optimization landscape with multiple local minima.

We introduce coercivity conditions that guarantee the identifiability and the well-posedness of
the inverse problem. These conditions also ensure that the ALS and ORALS algorithms have well-
conditioned regression matrices and the asymptotical normality for the ORALS estimator. Also,
we have established connections between the coercivity and RIP conditions, providing insights into
further understanding of the joint estimation problem.

Interacting particle systems on networks offer a wide array of versatile models applicable across
multiple disciplines. These include estimating the Kuramoto model on a network, classifying agent
roles within leader-follower dynamics, and learning systems with multiple types of interaction ker-
nels. Our algorithms are adaptable to various scenarios and applications and amenable to be
extended to more general settings, including models with more general interaction kernels.

We expect further applications of the algorithms for the construction of effective reduced hetero-
geneous models for large multi-scale systems. Also, other future directions include generalizations to
nonparametric joint estimations, further understanding of the convergence and stability of the ALS
algorithm, regularizations enforcing the low-rank structures, and learning from partial observations.

A Theoretical analysis
A.1 Coercivity conditions: connections and examples

First, we present the proof of Proposition 2.3, which states that the rank-2 joint coercivity implies
identifiability.

24



Proof of Proposition 2.3. Notice that

£V (a, @) :—IE[

,00

|

D@ (rij () — ai;®(rij ()]

VS
2
:E[ 3 [a;.'} - péaz-j]cb*(rij(tl)) + ay; [pqs@*(rij(tz)) - ‘I’(rij(tz))] ]
J#i
where
D, P
p@:%, and po®, — ® L O, in K.
P12,

Therefore, from rank-2 joint coercivity condition (2.10) we have
£ (a,8) = cxlal — poas Pl6ul2, + eulai Plpo®s — B2, - (A1)
Hence &1, o(a, @) = >, Eg)oo(a, ®) =0 and ¢y > 0 imply that
laf —ppa.|? =0, and |pe®. — @HiL =0,Yie [N],

since @, # 0 and 0 # a € M. Because a*), a € M, the only choice for la} — ppa;.|?> = 0 is both
pe = 1 and a* = a. Consequently, [[ps®s — @[3, = [®s — @2, =0 yields & = P in L2. m

The next proposition implies that the interaction kernel coercivity is stronger than the joint
coercivity.

Proposition A.1 (Interaction kernel coercivity implies joint coercivity) Assume that for
all i € [N], {ri;(t) = X — Xf};v:m#i are pairwise independent conditional on F;. Then, the kernel
coercivity (2.11) with co g implies that the joint coercivity conditions (2.9) and (2.10) hold with

cay = = ¢! ])VCOH and CQ’H = C'Sz)vcoﬂ, respectively, where CSZ)V = %Zfil Zj# a?j and CzSJ)V =

Ly 12j¢1[|a<”\2+ al? ).

Proof. Without loss of generality, we consider only the case when L = 1. By assumption, the
random variables r;; and r;;; are independent, conditioned on F*, if j # j' and j,j" # i. Then, by
Lemma A.3 with f;(-) = a;;®(-) for each fixed i, we get

2 N 2
1 i
N Z [ Zaijq)(rij) :| = NZ |: ( Zaz] rzg >:|
=1 Ve i=1 J#i

1 ¥ .

> < 2 > aEftr Cov(®(ryy) | F)]

i=1j#i

N 1)

>+ 2 2 anconl @3, = Caneonl @3,

~
Il
—
<.
H+
-~

where the last inequality follows from (2.11). Therefore, by combining the above inequalities, we

obtain that (2.9) holds with the constant ¢; 3 = CSJ)VCO,H' This proves the rank-1 joint coercivity
condition.
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We proceed to prove the rank-2 joint coercivity condition (2.10). It suffices to show that for all
i€ [N],
?

for any vectors az(_l),al(?) € M and any two functions @1, &3 € H with (&1, P9y = 0. As in the rank-1
case, we have by Lemma A.3 that
|

7|
= ) PE[tr Cov(@1(ryy) | F)] + Y. |al? [PE[tr Cov(®@a(ri;) | F')]

2
Dlag @i(ry) + a Ba(ry)] ]>02H[|a Pleu, +laPleaf2, | (A2)

J#i

J#i

J#i J#i
2
—HE[ZaU <I>1r” ]+E[Zam <I>2r2] \P] ]
J#i J#i

+ 2 [Z 2l E[@1(xy) | 71| - Y alVE[®a(ryy) | f]]

J#i oy

o Z |a§;)|2E[tr Cov (®1(ryj) | FOl+ 2 |a§32‘)|2E[tr Cov(®a(rs5) | FH].
J#i =

ThlS conﬁrms (A.2) holds with the coercivity constant cg 7y = C'( ) ~NCo,i Where C 2 =% ZZ 1 2
a2 + |2l w

Remark A.2 (Sufficient but not necessary for identifiability) Combining with Proposition
2.3, we know that interaction kernel coercivity implies identifiability. Also, we shall see that it
s a sufficient condition that we can verify to ensure that the operator regression stage is well-posed.
Clearly, we should not expect it to be necessary for the identifiability of the weight matriz and the
kernel.

Heuristic, the proof for Proposition A.2 suggests that the kernel coercivity condition (2.11) is not
only a sufficient condition for rank-1 and rank-2 joint coercivity but may also imply ‘higher rank’
joint coercivity conditions, suggesting that kernel coercivity resembles with a ‘full rank’ version of
the joint coercivity condition.

Lemma A.3 Suppose {XZ L, are Re-valued random variables such that for each i, conditional on
an o-algebra F°, the mndom variables {ri; = X7 — Xt ;V 1ji ore independent. Then, for any

square-integrable functions {f; : R? — R4} | we have

E[ > filriy) 2

J#i
Proof. It suffices to consider the case i = 1 as the proofs for different i’s are the same. That is, we
aim to prove
N
?
j=2

Jj=U

fﬂ] = ZtrCOV (fj(rij) ‘ fz) , Vi€ [N] . (AS)

J#i

2
> firy)

N
|J:1] = Z tr Cov (f;(ry;) | F') .

J=2
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By the conditional independence assumption, we have

E[(fj(r1j), fy(vry)me | F'1 = ELfi(rry) | FLEf(ery) | F D pa-

Using this fact for the second equation below, we have

Y N
E{ 2 i(r1;) } [Z ’f] ry; ‘ P 2<fj(r1]) , Fir(r10)dga ’]_—1]
J#5’
- iE[’fﬂ“ﬂ 7]+ ”Z_QQE ) | FLE ) | F'T),
75’

2

SE E|fi(r1,) | ']

j=2

I
.MZ

Il
N

{E[\fj(rlj)f | }"1]

E|fi(r,) | ']

}

Then, we obtain (A.3) with i = 1 by noticing the fact that tr Cov(f;(ry;) | X!) = [E[|fj(r1j)|2 |
2
= [ELf;(ryy) | F1]] ] =

We now show that the interaction kernel coercivity condition holds in H = LIQ) for radial kernels
when L = 1 and the initial distribution is standard Gaussian.
Proposition A.4 Let L = 1, &(x) = ¢(|a:|)‘ " and the components of (X},...,X{Y) be i.i.d.

standard Gaussian random vectors in R%. The interaction kernel coercivity condition in (2.11)
holds in H = Lg ford=1,23.

’ (A.4)

Proof. We first simplify the interaction kernel coercivity condition by using the symmetry of the
distribution and L = 1. Since {X] }¥, are identically distributed, so are the random variables
{ri;j = X}, —thl}, and we have E[tr Cov(®(r;;) | X{,)] = E[tr Cov(®(r12) | X})] forall 1 <i # j <
N. Additionally, since since L = 1, we have [®|7 = E[|®(r12)[*]. Consequently, the interaction
kernel coercivity condition (2.11) can be written as

17 D Eltr Cov(@(ry) | X7,)] = Eftr Cov(®(ra) | X})] > e,

(N ]#z

for all ® € H. It is equivalent to
2
E[[E[®(r12) | Xi,]]7] < (1 — co)E[|®(r12)[?]

by recalling that E[tr Cov(®(r12) | X{,)] = E[|®(r12)?] — E[|E[®(r12) | thl]ﬁ. Furthermore, since

{X{ }~, are independent and identical, we have E[|E[®(r12) | thl]‘Q] = E[{(®(r12), P(r13))]. Thus,
to verify the interaction kernel coercivity condition, we only need to prove

E[(®(r12), D(r13))] < (1 — co)E[|®(r12)[*].

In particular, when ®(x) = ¢(\x|)ﬁ, the above inequality reduces to

E [¢<|m|>¢<|r13|><m’“"”>] < (1 - com)Elp(r2)P] (4.5)

[r12][r13|
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Next, we prove (A.5) when {X} },—; are ii.d. Gaussian. Recall that if X,V < p(x) =
Wexp(—|x\2/2), then X - Y ~ Wexp(—kc?/él) and | X — Y| ~ p(r) = Cdrd_le_Tl{T>0},

2
where Cy = and I'(:) is the Gamma function. In particular, one has p(r) = e~ 7 1,20} ,

N S
2711 (3)

7‘2 7'2
p(r) = fre” 1 1i>0) and p(r) = ﬁr%ffl{@o} when d =1 ,d = 2 and d = 3, respectively.

Without loss of generality, we only need to consider E[|¢(|ri2])[*] = [¢[3. = 1. By direct
P
computation, the left-hand side of (A.5) is

<r12,r13>} j {u, v> ([l +1v]2 = Cu,0))
E r r U dudv
[o(iroira 200 M (ol \>| e
(r +s )
o(r Gq(r,s)ri™1stdrds  (A.6)
2\[ 3) f J

where the second equality follows from a polar coordinate transformation with

Galro) = | | cme¥emagan. (AT

Sgd—1 Jgd—1

We apply Cauchy-Schwarz inequality to (A.6) and Hng%Q = 1 to obtain that
P

E [¢<|m|>¢<|r13|><m’“3>]

|r12]|r13]

1 o S g1 2
<m fo Jo |6(r)p(s)|%e drds

1

Q0 0 P24 62 2

: [J f |Ga(r, 5)|2€_5<1;)rd_13d_1d7‘d5] i

24 242 3
G U f (G, 5)|2e— 275 pd=1 g 1drds]2 L I(d, Gy . (A8)
7T

Thus, (A.5) holds with 1 —cgy > I1(d, Gq), equivalently, coy < 1—1(d,Gq). We compute I(d,Gq)
when d =1, d = 2 and d = 3 separately below.

By (A.8), it is easy to see the key is the estimation of G4(r,s) such that I(d,G4) < 1. Notice
that Ssd71<£ , 17>e%s<5’77>d§ is invariant with respect to any n € S¥~1. Without loss of generality, we
can select n = e; = (1,0,---,0) € S9! and write (A.7) as

Ga(r,s) = J f (€, e1des &V dedn = |Sd1|f Ere 384
ga-1 Jgi-1 a1

Case d = 1: We have S%! = {~1,1} and |S%"!| = 2. Thus, Gi(r,s) = [ST | (., Ee35dE =
2[es —e™ 3 |. Plugging in d = 1 and G4(r, s)% = 4[6% e —2] into (A.8), we have by symmetry

1
r 5 s s 2
I(d,Gq) = e [J f - 623 te - 2]drds}
s

1
5(7‘ +s ) 2rs 1 5(r +s 2
e T3 drds — f e drds
2 R2

il
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1 /2 6 | 4
= —A/2T — — =] —.
V3w 5 15

Hence, (A.5) holds with the coercivity constant coy < 1 —4/7 ~ 0.4836.
Case d > 2: We can proceed to write

1
a(r,s) =189 HJ f ae?flds:\sd—lrsd‘?rf G(l—&)7 ev8ag
(24, e2=1-¢3} -1

s

=155 [ e - ) e - o

where |S"Y = FQ(Z/Z) is the surface area of a n-dimensional sphere. Thus, we have by Cauchy-
Schwarz inequality

wor-cof[ ]

where the constant

N[

2
51—52 = 635 %E]df e e +5> rd=lgd= ldrds]

Ca1 =

(g) i1y caz  27'T(§) 2r2 2x'T 2/VT
SIS = : =
<2f )¢

We proceed by applying the Cauchy-Schwarz inequality and obtain that
1 da—1 rs rs 2 1 1 rs rs
| ca-@y et < | a-@yiae | R - e T
0 0 0
= 3 2rs

= Cd72[2r8<€2§8 — S_T) — 2:| s (Ag)

with C’d72 = %. Letting
0 = 7‘2 52 TS TS
= J f P [3(623 — e_ZT) — 2}rd_1sd_1drds, (A.10)
0 0 2rs

we can bound I(d, G4) above using the estimate (A.9) as

I(d,Gq) < Caan/CaaJo(d) =: J(d).

One can evaluate the function Jy(2) and Jy(3) in (A.10) directly:

72 216w 784m
Jo(2) = 6arctan(3/4) — %5 Jo(3) = 87 — o5 = 195

Combining the exact values of Cy; and Cy 2, we can evaluate the upper bounds of J(d) when d = 2
and d = 3. We list its approximation in the following

0.1269, d=2;
J(d) ~
0.2661, d=3.

Therefore, we conclude that (A.5) holds with ¢py ~ 1 —0.1269 = 0.8731 when d = 2 and ¢py ~
1—-0.2661 = 0.7339 when d =3. =
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A.2 Coercivity and invertibility of normal matrices

Proof of Proposition 2.6 Part (i): regression matrices in ORALS.
To study the singular value of A;  in (2.3), it suffices to consider the smallest eigenvalue of

the n(fmal matrix A; v 1= 17 lL;]K[mﬂ[Ai]Em[A]lm e RV=UPx(N=Dp gince L02. (A;m) =
We only need to discuss ¢ = 1. Also to simplify notation, we consider only L = 1, i.e., only
the time instance ¢ = ¢1. Let SV=YP = {y = (uj;) € RW-Dp . Z;VZQ - uik = 1} and

fit = 20—  ujrbx € H. Note that

N N p
D, = D0 D whklnl?, =1, vue SWTUP,
j=2

j=2k=1

With these notations, we can write Amin(A; 1) as

M N p 9
(A _ ; T
Amin (A1) = ueéﬁ&{ll)p“ A mu = uESIB\I’nl w M Z ‘ Z Z Uy, KUk ( rlj (t1))
m=1 j=2k=1
= mln ri%(t1) ‘ . A1l
weS(N=1p M Z_I‘JZ;JCJ 1_7 1 ( )

First, we show that the minimal eigenvalue in the large sample limit is bounded from below. In
fact, for each u, by the Law of large numbers and Lemma A.3, we obtain

N
T.AloOU—u E[A; p]u= lim — Z ’Zf]“ rlj (t1) ‘

M—wo M
m=1j

]| 3 sesen])] -e[e[] S s 1 2]

N
E[ D trcov(f;(ry;(tl)) | ]—'tll)] > ) enl 15, = ens

=2 j=2

[\

where the last inequality follows from the interaction kernel coercivity condition (2.11).

Next, we apply a matrix version of Bernstein concentration inequality to obtain the non-
asymptotic bound (e.g., [Trol2, Theorem 6.1]) to obtain (2.12). We write Qar = A1 v — A1.00 =
ﬁ 27]\:{:1["4}:771 Aim — A1) =t 3 21{‘,{:1 Q.m, and notice that {[AEmALm — A1.0]}M_, has zero
mean. Because |Q.,| < pN L3, and the matrix variance of the sum can be bounded as

1 M
V(@u) = 15l D EIQnQRl < 20N I3)/M
m=1
we obtain
= M52/2
P{Qum| = e} < 2pN exp <—2(pNL%)2 +pNL%€/3> : (A.12)
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So, for 0 <e < ey

P{)\min(Al,M) > cy — 6} = P{\)\min(ALM) — Amin(A1,00)| < 6}

= Me?/2
P{|QM| > oy —e} >1—2pNexp (— £/ >

2(pNL3,)? + pNL3/3

where we used |Amin(A1,0) = Amin(A1,00)] < [|Qar]-

Proof of Proposition 2.6 part (ii): matrices in ALS. Recall that here we assume the joint-
coercivity condition (which is weaker than the kernel coercivity condition assumed in part (i)). The
proof is based on the standard concentration argument combined with the lower bound for the large
sample limit for the matrix in the normal equations corresponding to (2.1), which are:

a; = TZMVZ',Mv with

L,M
1 7 m m m m X
- AT = gy X TR, TP = BEDBEDIT e R,
1 LM
Vor = (AKX = g7 X Tl V() = (X)) BT RV

(A.13)
where, for each i, we treat the array B(X}');c € RN>*1xd a5 a matrix in RV*9, and we set a; = 0
so that we are effectively solving a vector in RV~ When E, M is rank-deficient, or even when it
has a large condition number, the inverse may be replaced by the Moore-Penrose pseudoinverse.
Part (a). Let ¢ = (c1, -+ ,¢p)T € RP*! be nonzero and denote ® = Y.F_, cxtby. Recall that

1 LM )
Tinm = 31z 121.m=1 L7 (t) with

_ T T _
P7(1) = BX])ec BXE)T = [ (1), ()|,
Without loss of generality, we assume L = 1. We only need to consider ¢ = 1, and the cases
i=2,---,N are similar. For any a € S¥~!, note that
N 2
’ Z a]¢ I'lj t]_ ‘
1 j=2

_ 1
aTI‘LMa = — Z aTI‘m (t1)a

ﬁM:

Then, the joint coercivity condition (2.9) implies that
_ N 2
a'T) 00 = E[\ > a (e (1)) ] > culal?|0)2, = eulel?,
j=2

where the last equality follows from [al|? = 1 and @12, =125, Ckwk”,%L = |¢|?. Thus,

Amin(T1.00) = mln a'Ty ol = CHHCH (A.14)

aeSN

Next, we show that the lower bound holds for the smallest eigenvalue of the empirical normal
matrix with a high probability based on the matrix Bernstein inequality. The proof closely parallels
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that of (2.12), and we omit some details. Setting ng Tiv—-Tiw =1 Z 7 (1) — Th o],
the matrix Bernstein inequality reveals that

(A.15)

_ A2/
P{HQ%?H > e} <2Nexp <_ &%/ > .

(pL3,)? + pL3,/3
The rest is the same as the proof of (2.12).

Part (b). Fix a € RV with each row normalized, namely, |a;|| = 1 fpr every i € [N]. Let c € RP
with [lc] = 1 and let K = ¥ _, cxtbp. The normal equations for (2.2) and their solution take the
form

c= ZLBM, where

_ ALS ALS _ _ m\\T m pPXDp
Ans = (Agar) TACK = Lz 1% 1A (aB(X3')) aB(X3') e R (A.16)
= (AMETIAX], 0 = MT Z b, b= (aB(X[)TAX] e R,
I=1,m=1

so that ¢TAye = 517 Zl Lm=1 cTA"c € RP*P where

N
T AT = TB(X)) Taa"B(X]") -7 ‘ §: B(ry(4) ‘

Again, without loss of generality, we can assume L = 1, and as the argument before, we get from
the joint coercivity condition (2.11) that

\\Mz

e = E[Ay]e [12% ()| = cy—znazu |12, = e

where the last equality follows from the fact that [a;[* = 1 and |®[2, = [¢|* = 1. Thus,

Amin(Aw) = min ¢t Age > ey . (A.17)

ceeSP

Lastly, same as in the proof of (a), we define QM = Ay —Ap = 37 ZM Af and then obtain a
similar result as in (A.15) switching N and p. So,

_ Me?/2 >
P >\min Az = - = 1—-2 - .
{ (Ainr) = en 6} pexp < (NL2)? + NL2:/3

The proof is completed. ®
A.3 Convergence of the ORALS estimator

Proof of Theorem 2.7. We consider the normal equations associated with the system in (2.3):

~ ——1 _
Zim = A; \Uim, where

L.M L.M
T N 1T 4. B N 1T . (A.18)
Az,M T ML lzlzn;:l[Al]Lm[Al]lvm’ Ui, M = ML lzgnzl[Al]l’m[(AX)l]Lm :
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Rde(N—l)p}M

To prove part (i), recall that for each i fixed, {[A;] € _, are independent identically

distributed for each m, hence by Law of large numbers

L,M
_ 1 ? o
Aivr = VL lzlémzl[Ai]Em[Ai]l’m - A as. asM — 0.

Additionally, by Proposition 2.6, Xi,oo is invertible, with the smallest eigenvalue no smaller than
ey, and A; py is invertible with the smallest eigenvalue larger than cy/2 with high probability,
with Gaussian tails in M. By standard argument employing the Borel-Cantelli lemma, we have
Xl_]t[ —>ﬁi_,olo a.s. as M — 0.

Meanwhile, making use of (2.15) and the notation A; ,(t)z; = (aB(X{')cAt); in (2.3), we have

LM
_ 1 ’ — -
viM = ML lzgn:l[Ai]Em[(AX)i]l,m = Aimzi + Ui m

where ;37 1= oVA ML ZL?/[m 1[«41]Em(AWZL)z Note that v; 3 is a sum of M independent
square integrable samples since the basis functions are uniformly bounded under Assumption 2.5.

Thus, by Central Limit Theorem, we have v M7, ps converges in distribution to a N (0, JQAtji,oo)—

distributed Gaussian vector. Hence, together with the above fact that Z; ]{4 — j; 010 a.s. as M — oo,
we have by Slutsky’s theorem that the random vector

—1 ~

Einr = Aiartinr > o LN(0, (012 A; ) (A.19)

where .711-_7 ]t[ is the pseudo-inverse when the matrix is singular. Consequently, the estimator

~ ——1 _
Zivg = A; Ui = zi + &M
is asymptotically normal.

Part (ii) follows from the explicit form of the 1-step and 2-step iteration estimators. Denote
&im € RW=DxP the matrix converted from &M € RW=Dpx1 iy (A.19), ie., & = Vec(&im).
Then, as M — o0, vV M&; yr converges in distribution to the centered Gaussian random matrix &;,
the inverse vectorization of the Gaussian vector §; ., in (A.19).

Starting from co € RP*! with ¢}y # 0, the first step of the deterministic ALS minimizes the
loss function Exr(a, ¢p) with respect to a to obtain, for ¢ € [N],
@) = leol *Zinrco = |eo| *[(cf co)(an)! + & nrco] -
Then, noting that |(as);| = 1, we have
~M,1\T |12 —4/,T 1) 2 —4 1
[EMHTI? = o~ (cFeo) ()T + |2 = leol ™ (cFe0)?(1 +€52))

where we denote

1 - 1 1
Mir = (cheo) " Einrco € RV, el o= 2an )iy + g prl> (A.20)
Hence, the normalized 1-step estimator can be written as
T (1) (1)
a.): +n: a.): +n.
@I = @ = T e
[(ax); + 77i7MH 1+ 6(1)
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Thus, the difference between (a™1)T and (a,)! is

A~ nz,M
@"hF = (ay)] = (1) @l + 5
1+ €i M 1+ €i M
(1) (1)
—e )
_ _ M (a ) (A21)
1+€§71\)4(1+ 1+ 1+e§71\)4

where 77(]\)/[ and 6( 1\)/1 are defined in (A. 20)

By Slutsky’s theorem, we get v Mmn; (1) (c co) "'€;co, and by Lemma A.5 we obtain
_ _ d _
VMel, = 2(cTeo) VM (an)i€insco + (cTeo) 2V M Einrcol* 5 2(cfeo) ™ (as)ikico -
Consequently, the asymptotic normality of (a*/1); follows from

VMIEMT = (@)1 (cfeo) " [6ico — () ibico(a)] ] (A.22)

Note that the limit distribution depends on the initial condition cy. This dependence on ¢y will be
removed in the 2nd-iteration.

Next, by minimizing the loss function £(a*>!, ¢) with respect to ¢, we obtain ¢M-!:
N -1 N
EM’l _ [Z(aM,l)xaM,l)?} 2 ZT Ml (A.Q?))
i=1

Note that 3 (aM1);@"1T = N since |(@1);] = 1. Thus,

=1
N T 1) (1)
1 [(ax); +n M] L
29) [<a*>z AL ] PRSI
i=1 L+e; 1+€2M
_ 1 i _5;1]8/[ 1 i 177@(1]\)/[0*
N4 1+€§1j\)/[(1+1/1+81(»71)) N: 1+5(1)
1
N 1 i EEM(a*ﬁ + éi,an(,]\)/I
N i=1 1+ 5(1) .
= oM
Again, using Lemma A.5 and Slutsky’s theorem, we get the asymptotic normality of ¢M:!
a1 ol
VMM —¢,] 5 N Z & (as)] - (A.25)
i=1
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We remove the dependence of ¢p in the limit distribution in (A.22) by another iteration. That
is, we minimize the loss function &(a,¢™'!) with respect to a to obtain (a’?);. Applying same
argument above for (a?>1);, in which we replace cg in (A.20) by ¢™! obtained in (A.23), we obtain

an update

2 AM 1\ — N
miar 1= (1) e et
2 2 2 AM 1\ — ~ AM .1y — ~
e = 2y + I3 P = 20T T )i a4 (FE) g a2
Note that 771(2]\)/[ and 52(.2]3/[ are well-defined because ¢l ™! # 0 almost surely. The asymptotic nor-

mality (A.25) implies ¢/ converges to ¢, almost surely as M tends to infinity. Hence, combining

VME; v 4 &; with Lemma A.5 and Slutsky’s theorem we get

Therefore, replacing 7]1(1]\)/[ and 551]8/[ by 7]1(2]\)/[ and 552]8/[ in (A.21) respectively, we have the asymptotic

normality

VMI@EYA)T = ()] fea] " [£ice — (as)ibica (@)1, (4.26)
Combining (A.25) and (A.26), we complete the proof of (ii). m

Lemma A.5 Let {&n}37_; be a sequence of square integrable RW=1px1_yqlued random variables

such that v/ ME&y 4, € as M — o0, where £ 4 N(0,%) with a nondegenerate .. Denote &y and
N the random matrices corresponding to &y = Vec(€) and & = Vec(IN), respectively. Also, let
ae RY*N and assume cpr — ¢ almost surely as M — co. Then,

(i) vM w5 Ne and \/MaéMc—d> aN¢;

(ii) vV MEprens 4 Ne and v Mag ey 4 aNc; and
(iii) VMEY & e — 0 and vV M|€pre|? — 0 almost surely.

Proof. Part (i) follows directly from the convergence of £5;. Part (ii) and (iii) can be derived from
the Borel-Cantelli lemma and Slutsky’s theorem. m

A.4 Trajectory prediction error

Proof of Proposition 2.8. Since }A(t and X; have the same initial condition and driving force,

we have .

X, —X; = f [aB(X,)¢ — aB(X,)c] ds.
0

By Jensens’s inequality in the form |1 Sé f(s)ds| < tsg |f(s)|%ds,

t
E|X; — X% < tf E|aB(X,)¢ — aB(X,)c|% ds. (A.27)
0
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Next, we seek a bound for the integrand. With the notations ry/ = X7 — Xt P - X7 )A(;,
B(ry’) = 3P eptop(r?), we can write aB(X,)e = (Z#i aijQ(ré’J))' - RNXd, and similarly
1€

for ﬁB()A(S)E. Hence, applying the Jensen’s inequality | >}, ; Ajl2, < ﬁzj# |A;j|3, and the
triangle inequality, we obtain

. A 2
|AB(X,)é — aB(X,)e|3 = {HZ[a” B(F) — ayd(ri)] d}
=1 ]#z R
ZZ [ai; — ai;|*| @ (r7) H
1= 1];61

H@ (§9) — B (xi) ;] (A.28)

i=17j%#1

We bound the above two terms in the last inequality by |a—a|% and ||¢ — ¢|? using the uniform
boundedness of the basis functions. The first term is bounded by

C,
Z Z |alj az]| H | p OHCHQ Z Z |am — a@]

i=1j#1% i=1j5#1%

2
_ rORlel

< POl a5

where the first inequality follows from the fact that ||<I>(ri’j)H2 =|>r_, ckwk(ri’j)Hg < plle|3C3 for
each (4, J, s) since ||[¢x]0 < Co by assumption.
The second term follows from the assumptions on the basis functions and entry-wise boundedness

- 2
of the weight matrix. We first drive a bound for Hfb(fé] )—®(rs?) H based on the triangle inequality:

A~ C 2 ~ . ~ .2
) st < o0 e )

< plle—¢*C3 +pIICH Cilre? — 2|

where the second inequality follows from the next two inequalities:
a N P ~ a2 2
D) — ()| = | ] [er— anlunel)| < ple - 22,
& midy _ &idyl O ij NI 22 (wind _ ini |2
D)~ b)) = | X aufun(el) —wn@)]| < plePCEe — 7]

for each (i, 7, s) since |[¢Yx]o < Co and |Vibg|w < Cp. Hence, we obtain a bound for the second
term in (A.28) :

2
2|aw‘ H‘I’ ) (ry’)

N
pC A . o
oy S Y [ le — 2l + e — £

1=17j5#1 1=1j#1

]
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2 N

pC, R R N Y

<3 3| (BalPle —2?) + el - 54712]
i=1 j#i

pC . 21
<0 Nle = &P + ANJRIBIX, - X3,

N-1

where the last inequality makes use of the fact that ||a;|? = Dt a; j|*> = 1 for each i and

33 ! — R 2 < AN|X, — X, 3.
Consequently, plugging the above two estimates into (A.28) we obtain a bound

pNCE
N_1

[AB(X,)é - aB(X,)elp < 520 [[elBla— &l + e — & + 4231 X, - X, ]3] .

Combining the above inequality with (A.27), we conclude that

pPNC3
N—1

t
E[IX, — X, < [T2<||c§|a—a% + o —clf)+ 2ol | B[IX, —xs|2]ds}

t
<C {TZ(Cgla A o 202Tf E[IX, - xﬁ]ds}
0

with C1 = 2pCZg and Cy = [¢]3 + ||c|3. Then, (2.16) follows from Gronwall’s inequality. m
A.5 Connection with the classical coercivity condition

We discuss the relation between the joint and the interaction kernel coercivity conditions in Defini-
tions 2.2-2.4 and the classical coercivity condition for homogeneous system see e.g., [LLM ™21, Def-
inition 1.2] or [LZTM19, Definition 3.1].

To make the connection, we consider only a homogeneous multi-agent system in the form
1

dX! =
tTN -1

Y O(X] - X})dt + odWy, ie[N], (A.29)
J#

where X} € R? is the state of the i-th agents, and W} is an R%valued standard Brownian motion.
Suppose that the initial distribution of (X{,..., X{") is exchangeable (i.e., the joint distributions
of {X{¢}ier and {X{}iez, are identical, where Z and Z, are two sets of indices with the same size).

In other words, such a system has a weight matrix with all entries being the same. Note that
the normalizing factor is N — 1, since each agent interacts with all other agents. Note that the
distribution of X; = (X}, ..., X}V) is exchangeable for each ¢ > 0 since the interaction is symmetric
between all pairs of agents. This exchangeability plays a key role in simplifying the coercivity
conditions below. The exchangeability leads to the following appealing properties:

(P1) The exploration measure pz, in (2.8) is the average of the distributions of {X} — X2}:

1

L
pr(A) = = > P(X} — X7 € A), VAe R,
=1

ol

and it has a continuous density supported on a bounded set, denoted by supp(p).
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P2) Let r;;(t;) = X! — X7 for any ¢ # j. Then, for each {t;,
J t; t;

E[|®(ria(t)[], Vi # j;

E[|®(ri; ()] ] |
E[{®(r12), ®(r13))pnd], Vi # j, i # k,j # k.

E[(®(r;(tr)), ®(rir(ti)))rnal

We first extend the classical coercivity condition, which was defined for radial interaction kernels
in the form ®(x) = ¢(|x|)ﬁ, to the case of general non-radial interaction kernels. The extension is a

straightforward reformulation of the definitions in [LLM™21, Definition 1.2] or [LZTM19, Definition
3.1], with minor changes taking into account the normalizing factor 1/(N — 1) and the non-radial
kernel.

Definition A.6 (Classical coercivity condition for homogeneous systems) The homogeneous
system (A.29) sastifies the coercivity condition on a set H L% if

1 N &
N(N—l)Qi;L;E[

where ¢ > 0 is a constant and py, is the exploration measure defined in (2.8).

> ®(rij(tr))

J#i

PL?

2
] > CHH@H%%, VP e L (A.30)

Kernel Rank 1-Joint Classical

coercivity coercivity coercivity

Figure 9: The relation between coercivity conditions for homogenous systems.

We show next that the three coercivity conditions (the joint and the interaction kernel coercivity
conditions in Definitions 2.2-2.4 and the above classical coercivity condition) are related as follows.

e The joint coercivity condition is equivalent to the classical coercivity.

e The kernel coercivity (2.11) requires a stronger condition than the classical coercivity. It
yields a suboptimal coercivity constant % with ¢ 7 € (0,1) (see Proposition A.1), which is
smaller than cy = ﬁ for the classical coercivity.

Without loss of generality, we set L = 1 and drop the time index t; hereafter. Hence, we can
write |®[2 = E[|®(r12)[?].
By Property (P2), we can simplify Eq.(A.30) in the above classical coercivity condition to

1 N
(N — 1)2E [ j;q)(rlj)

This is exactly the joint coercivity condition after considering Property (P2). Hence, the joint
and the classical coercivity are equivalent for homogeneous systems with an exchangeable initial
distribution.

2
] > enE[|®(riz) ).
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On the other hand, the kernel coercivity (2.11) is stronger than the classical coercivity. By

Proposition A.1, it yields a suboptimal coercivity constant ]c\?j{l This constant is smaller than the

optimal constant ¢y = ﬁ in the classical coercivity condition in [LLM™21].

Interestingly, while both the interaction kernel coercivity condition and the classical coercivity
condition lead to the joint coercivity, they approach it from different directions. Specifically, the
classical coercivity condition seeks the infimum inf‘PELﬁL:H‘PHLgLﬂ E[{®(r12), ®(r13))] = 0 to obtain

cy = ﬁ as in [LLM*21]. Under the assumption that rio and ri3 are independent conditional on
F!, which implies E[(®(r12), ®(r13))] = E[|E[®(r12) | F']|?], the above infimum is equivalent to

inf E[|E[®(r12) | F']] = 0.

2 —
vel, |l =1

In contrast, the kernel coercivity, reducing to E[tr Cov(®(r12) | F1)] = E[|®(r12)|?] after taking
into account exchangeability, is equivalent to

inf E[|E[®(r12) | F']?] < (1 —9).

deL2 D], =1
2ol HLgL

Hence, the classical coercivity sets a lower bound for the term E[|E[®(r12) | F']|?], whereas the
kernel coercivity sets an upper bound for this term so that the loss of dropping this terms (in (A.4))
is controlled. In general, it is easier to prove the upper bound than the lower bound.

B Details and additional numerical results
B.1 Computational costs

The detailed breakdown of the computational costs, leading to the overall costs in table 2, is as
follows. For both algorithms, the data processing involves M LdN?p flops on evaluating {1y, (Xgl’m —

le’m), 1<4,5< N}izné\lfw, where these computations can be done in parallel in M, L or N.

The ALS computation consists of two additional parts: solving the least square problems to
estimate a and ® and iterating. In each iteration, when solving the least squares for the rows of
the weight matrix via the M Ld x N matrices, it takes O(M LdNpN,q,) to assemble the regression
matrices and O((M LdAN? A (M Ld)>N)Npqa,) to solve the least squares problems; when solving the
coefficient ¢ via the M LdN? x p matrix, it takes O(M LdN Npq,p) flops to assemble the regression
matrix and O(MLdN?p* n (M LdN?)?p) to solve the least squares problem. Here Ny, means that
the computation can be done trivially in parallel. Lastly, the number of iterations is often below, say,
20, independent of M, N, p, albeit we do not have any theoretical guarantees for this phenomenon.
Thus, the total computational cost of ALS is of order O(M LdN?(Npqr + p?)), in the natural regime
M > N? +p.

The ORALS computation consists of three parts: data extraction, solving the least squares, and
matrix factorization. The data extraction involves M LdN?p flops, and the matrix factorization for
the Z;’s takes a negligible cost of O((N? + pQ)Npm«) flops. The major cost takes place in solving the
least squares. The long-matrix approach takes about O(M Ld(Np)?Npq,) flops to solve all the Z;’s,
in which assembling the M Ld x Np regression matrix does not take extra time since it is simply
reading the extracted array. The normal equation approach would require O((M LN )pqrdN 2p? +
(Np)3Npar) flops, which consists of O((M LN )pa-dN?p?) flops to assemble the normal matrices and
O((Np)?) Npar) flops to solve the equations. Therefore, the total computational cost for ORALS is
of order O(M Ld(Np)*Npqy) for the long-matrix approach and O((M LN )pardN?p? + (Np)3 Npgyr) for
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Figure 10: Computation time for the construction of the ALS and ORALS estimators, as a function
of M (left) and of N (right). In both plots, the other parameters are set as: L =2, d =1, n = 8§,
in the first plot N = 16, and in the second plot M = 1024; the interaction kernel is the inverse
Fourier transform of a random vector with decaying coefficients, and no regularization is imposed.
The scaling of ORALS as N? in the figure on the right, instead of the expected N4, as the term
MLAN? overcomes N4 for the values of the parameters we have here; we could not perform runs
with larger N due to the significant memory that would have been required. Tests are run on a
machine with 2 processors with 12 cores each, and 448GB of RAM.

the normal matrix approach. When ML > N? + p, the normal equation approach is more efficient
since the computation can be in parallel in M L.

We corroborate the computational complexity of ALS and ORALS discussed in section 2.3.2
and reported in table 2 with the measurements in wall-clock runtime, reported in figure 10.

B.2 Regularization

Regularization is helpful to produce stable solutions when the matrix in the least squares of ALS
or ORALS is ill-conditioned, and the data is noisy. We have tested five methods to solve the ill-
posed linear equations: direct backslash (denoted by “NONE”), pseudo-inverse, minimal norm least
squares (denoted by “lsqmininorm”), the Tikhonov regularization with Euclidean norm (denoted by
“ID”), and the data-adaptive RKHS Tikhonov regularization (denoted by “RKHS”).

The data-adaptive RKHS Tikhonov regularization uses the norm of an RKHS adaptive to data
and the basis functions of the kernel. In estimating the kernel coefficients in ALS, in addition to
the regression matrix and vector, it uses the basis matrix B with entries

L-1 M

1 . .
By = (N DNLM D3 D) i  Res e = X7 — X7 (B.1)
120 m=1j7i

where {¢/;.}}_, are the basis functions in the parametric form and recall that 37, ; := >N Z;y:Lj#.
In ORALS for the estimation of Z; yr in (2.3), we supply the DARTR with basis matrix Iy ® By, €
RNPXNP with By, in (B.1), where ® denotes the Kronecker product of matrices.

Figure 11 shows the errors of regularized estimators in 10 simulations of the Lennard-Jones
model. The model parameters are N = 20, p = 3, L = 5 and d = 2. Here, the sample size M = 64
is relatively small, so the regression matrices in ORALS tend to be deficient-ranked; in contrast,
the regression matrices in ALS are well-conditioned. The results show that the minimal norm least
squares and DARTR lead to more robust and accurate estimators than the other methods for the
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ORALS, but all methods perform similarly for ALS. Additional numerical tests show that as the
sample size increases, the regression matrices for both ORALS and ALS become well-posed, and
the direct backslash and the pseudo-inversion lead to accurate solutions robust to noise.

In short, regularization is helpful when the regression matrices are ill-conditioned and the data
is noisy; otherwise, either the direct backslash or the pseudo-inversion is adequate. In the para-
metric estimation of the kernel, the regression matrices are often well-conditioned. However, in
nonparametric estimation, the regression matrices are often ill-conditioned and even rank-deficient
in the process of selecting an optimal dimension for the hypothesis space to achieve the bias-variance

tradeofl.

ORALS: kernel error

Figure 11: Errors of estimators in 10 simulations for different regularization methods.
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Here the

regression matrices are deficient-ranked due to a small sample size M = 64. The other parameters
are N =20,p=3,L=5and d=2.

Another type of regularization, different from those above that regularize the least squares in
ALS or ORALS, is to enforce the low-rank property. Such regularizers include minimizing the
nuclear norm [RFP10] or adding a term maintaining the norm-preserving property of the Hessian of
the loss function [GJZ17]. They could be beneficial to the operation regression stage of the ORALS
algorithm. We leave further exploration of these regularizers in future work.

B.3 Dependence on noise level and stochastic force

To examine robustness to stochastic force and observation noise, we test the error decay in the scale
of the stochastic force and the noise level.

Figure 12 shows that for both ALS and ORALS estimators, the error decays linearly in the
stochastic force level ¢ in 100 simulations. In each simulation, we set observation noise with o5 =
1077, the sample size M = 1000. In particular, to see the effects of the stochastic force, we use long
trajectories with time length 7" = 100.

Similarly, Figure 13 shows that for both ALS and ORALS estimators, the error decays linearly
in the noise level g, in 100 simulations. In each simulation, we take ¢ = 0, M = 1000, and T = 1.

B.4 Additional tests on a directed graph on a circle

We also provide an example with a very simple graph in our admissible set M, i.e., a directed circle
graph. We present the graph, kernel estimation, and true trajectory in Figure 14; the rest of the
results are very similar to the previous settings and are hence omitted.
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Figure 13: Decay of estimation error as the observation noise level decreases.

B.5 Additional details for identifying the leader-follower model

We examine a Leader-follower system where leaders have significant impacts on others; see the left
panel of Figure 15. In the Impact-Influence coordinate, as shown in the middle panel of Figure
15, one can observe that the leaders A1 and A6 stand out from the rest. As the sample size M
increases, both the estimated graph a and the estimated interaction kernel ® in the top of (6)
become more precise. It becomes evident that a more accurate estimator a contributes to more
precise identifications of leaders and their followers. The Leader-follower network estimated with
M = 100 almost recovers the true network (the left one in Figure 15). Thus, the clustering result of
M = 100 shown in the last row of the right panel in Figure 15 aligns with the ground truth depicted
in the first row. Nevertheless, it’s noteworthy that identifying leaders and properly classifying
followers remain feasible even when the estimator a is not highly precise.

C Connection with matrix sensing and RIP

In this section, we connect our joint inference problem with matrix sensing (see |GJZ17,ZSL19,
RFP10| for example) and study the restricted isometry property (RIP) of the joint inference.

Matrix sensing and RIP. The matrix sensing problem aims to find a low-rank matrix Z* €
R™>"2 from data by, = (Ap, Z*)F, where Ay, -+, Apr € R™*"™2 are sensing matrices. To find Z*
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estimates with sample sizes M € {15,30,100}. The graph errors (in Frobenius norm) are 0.1254,
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with rank r < ny A ns, one solves the following non-convex optimization problem

M M
' _1 e b T g |2
pegm i F(2) = MmZ:1I<Am,Z>F b = MmZ::1|Tr(AmZ) bun?. (C.1)

It is well-known that the constrained optimization problem (C.1) is NP-hard. A common method of
factorization is introduced by Burer and Monteiro [BM03,BM05] to treat (C.1). Namely, we express
Z = UVT where U € R"*" and V € R™*". Then (C.1) can be transformed to an unconstraint
problem

min FU, V)=

UeRP1 X7 VeRn2XT ’<Am’ UVT>F - bm’2 (CQ)

1

Sis
D=

3
I

I
S
M=

M
1
| TH(ARUVT) = b* = 2 30 [ TH(UT AR V) — b
1 m=1

3
I
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To simplify the notations, let us define a linear sensing operator &7 : R"*"2 — RM by

A (Z) = <\/1M<A17Z>F,"' ,\/1M<AM,Z>F> . (C.3)

Definition C.1 (Restricted isometry property (RIP)) The linear map </ satisfy the (r,d,)-
RIP condition with the RIP constant § = 0, € [0,1) if there is a (strictly) positive constant C

1

a1zl < Lo - L
(1= 9)121% < S 19D = 57

M
D Am, Dp < (146) |27 (C.4)
m=1

holds for all Z with rank at most r. We also simply say that o7 satisfies the rank-r RIP condition
without specifying the RIP constant ¢, € [0,1).

Remark C.2 The normalization factor C in the condition (C.4) was introduced in [RT11]. It
enables the application of RIP to a larger class of sensing matrices that can be scaled to near
isometry. In particular, in our setting, the sensing matrices are mostly far from an isometry.

Restricted isometry property and the restricted isometry constant are powerful tools in the
theory of matrix sensing [RFP10], a generalization of compressed sensing [CT05]. For example, it
can characterize the identifiability of matrix sensing problems.

Theorem C.3 (Theorem 3.2 in [RFP10]) Suppose that da, < 1 for some integer r =1, i.e., of
satisfy the rank-2r RIP condition for r = 1. Then Z* is the only matriz of rank at most r satisfying
A (Z)=b=][b, - ,by]T.

This article establishes a connection between the rank-1 and rank-2 Restricted Isometry Property
(RIP) conditions and their counterparts in joint coercivity conditions.

Joint inference of a and ¢ as matrix sensing problems. In our setting (1.1), the estimator
(a,¢) is the minimizer of the following loss function

L—1,M ) N
Er,m(ac) = UT Z |AX — aB(X?})cAtHF = 2 S(Lzy)M(ai.,c)
[=0,m=1 i=1
' | LM ,
where &), (a.,¢) = 7 2 [AXE)—a B At (C.5)
1=0,m=1

If we minimize the loss function &£r ar(a,c) row by row, i.e., by minimizing the loss functions
EI(i)M(aZ:,c) for ¢ = 1 to N, each minimization is a rank-one matrix sensing problems (C.2) by
substituting U = a;., V = ¢, by, = (AX}'); and A, = B(X}}); for each row 4. To illustrate the
idea, consider d = 1, L = 1, and At = 1. Thus we set the rank-one decomposition Z = UVT where
U=a.eRV"land V = ceRP. Also, we define the sensing operator o : RV-1xr s RM with
the sensing matrices

s m=1, M, (C.6)
1<k<p

A = BOXR): = | (X" = X")
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where X;, = (X},---, X}) is the initial condition and {¢}’_, represents the basis functions.
0 to to k=1
['herefore,

a, B(X[")ic = (A, Zyp = Tr(AL,UVT).

In Section 4.3, we introduce a model (4.4) with @ types of interaction kernels. We shall take
) = 2 as an example to explain the connection with higher-rank matrix sensing problems. Namely,
k(i) = 1 or 2 indicating the type of kernel for agent i, and the coefficients are

e fa), k) =1
T % T ct? k(i) =2
k .

Without loss of generality, we still set d = 1, L = 1, and consider i-th row. Thus, the interacting
part in the system (4.5) can be rewritten to be

p .
aiB(X{")ics = Y ai; Y, vn(X{™ — x7m)ertd

JE k=1
) v : oy (D), @) o : m (2)
= Z a;; Z Ye(XP™ = Xy ey + Z a;; Z Ye (X = X"y, (C.7)
jEi k=1 =2 k=1

where al(»jl-) = ay; if k(i) = 1, agjl-) = 0 if k(i) = 2 and ag) is defined similarly. So, selecting a

rank-two decomposition Z = UVT with

U=1[a",a?]eRV1Dx2 and V= [V, ?]eRrr~?

we get (C.7) can be repressed as
a; B(X™);c; = (Ap, Z)p = Tr(ALUVT).

Here, A, is the same sensing matrix defined in (C.9). Also, for another multitype kernel model
where the type of interacting kernel depends on agent j

p
a; B(X[")ic,; = Y ay Y. vn(X{™ = X,
j#i k=1

we have the same expression with agjl») and 35]2-) adapted accordingly.
In the classical matrix sensing problem (refer to, for example, [BM03, RFP10,1.523]), the entries
of the sensing matrix are i.i.d. standard Gaussian random variables. However, it is noteworthy
that the entries of A,, in (C.6) exhibit high correlation. This characteristic presents a challenge,
preventing us from employing the “leave-one-out” tool, as successfully applied in [LS23, CLP22], to

prove the convergence of the alternating least square algorithm.

RIP and joint coercivity conditions. The lower bound of RIP is closely related to the joint
coercivity conditions in Definition 2.2. In the following, we illustrate that rank-1 and rank-2 RIP
conditions lead to the rank-1 and rank-2 joint coercivity conditions, respectively, when H is finite-
dimensional.
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Proposition C.4 Let H = span{¢y},_, with {¢},_; being orthonormal in L?)L forp = 1. Let
of; : RN=Dxp . RM pe (row-wise) linear sensing operators in (C.3) with sensing matrices in
(C.6). Letr e {1,2}. Suppose < satisfies the rank-r RIP condition with a constant & for all i € [N]
uniform for all M — oo. Then, the rank-r joint coercivity condition holds.

Proof. Without loss of generality, we set i = 1 and L = 1 and abbreviate & as /. We consider
the rank-1 case first. For all rank-1 matrices Z = uv™, it is equivalent to consider any u = a;. € M
(defined in (1.2)) and any v = ¢ € RP. Then, substituting (C.6) into (C.4) and sending M to infinity,
we get the lower bound by the Law of large numbers that
N 4 2
| (2)13 = B | 3 w0 - x| |
j=2

>0(1=6) |2l = C(1—O)lar*[el?
= C(1=0)larP|2[}

for any ® = >, cpthr, € H. Thus, the coercivity constant in (2.9) is ¢y = C(1 — 0) for a finite-
dimensional hypothesis space, where C is the normalization constant in the RIP condition when
the kernel is represented on an orthonormal basis.

Next, we consider the rank-2 case. Recall that lower bound in rank-2 RIP condition implies that
|.7(Z)|3 = C(1 - 6) | Z|3 for all matrices with rank equal or less than two, i.e., Z = ujvl + ugvy

for all uy, us € R¥~! and vy, vy € RP. We aim to show that

D

with ¢y = C(1 — 6) for all ®;,®y € H being orthogonal and for all weight matrices a(l), a(® e M.
For any ®1 = >, c1 5 € H and ®2 = >, c2 9, € H being orthogonal to each other, we have

2
c1 L ¢y and Hag)clT +a§?)02TH = |ag)|2|01|2 + |af)|2|02|2. Thus, with u; = a%), ug = ag?) and

|

(C.8)

2
1 2
} > enllal2J@112, + 2D P22, ]

1 2 I+1
Z ale (X — X))+ all ea(X) — X))

V] = ¢1, U2 = c9, the lower bound of rank-2 RIP amounts to

N
O (X - X1) +al ea(X) T — X1

|7 (213 - {

2
> C(1-6)]2)% = C(1 - 6) ]a?)clT + ag2>chF

= c(1-8)[aPlerf? + [af? |2|02|2]
1
= (1 —o)[alP1®112, + [aP?|Pa]2, 1.

So, we get (C.8) and finish the proof. m

Large RIP constants and local minima in our setting. The RIP constant § plays a crucial
role in characterizing the presence of spurious local minima and the convergence of search algorithms;
see for example, [BR17, GJZ17,1.523, CLP22|. Notably, when the rank r = 1 and in the symmetric
setting U = V in equation (C.2), a precise RIP threshold of § = % serves to establish both necessary
and sufficient conditions for the exact recovery of U = V in the matrix sensing problem (C.2). For
example, readers can find the interesting result in [ZSL19].
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Theorem C.5 (Theorem 3 in [ZSL19]) Let the sensing operator < satisfy (2,9)-RIP condition
and the loss function F(U) = |/ (UUT — Z%)|%.

(a) If 6 < 1/2, then F has no spurious local minima.
(b) If § = 1/2, then there exists a counterexample admitting a spurious local minima.

However, the non-symmetric case introduces additional complexity, and achieving exact recovery
with a sharp threshold for the RIP constant remains an open challenge. Noisy case is another open
question, as mentioned in |ZSL19].

Our joint inference problem is in a noisy, non-symmetric setting. Thus, the sharp results on
d in [ZSL19| for the symmetric noiseless setting do not apply. Nevertheless, the RIP constant &
provides insights into our problem, specifically regarding the existence of local minima and the
convergence of the ALS algorithm.

As an example, we consider an interacting particle system with N = 3 particles in R? with
d=1and L = 1. We consider Gaussian i.i.d. initial conditions Xy, = (X1, X2, X3) s N(0, I3).
To make it easy to present the results, we only consider two basis functions {¢;(x),2(z)}. Thus,
giving M samples, the sensing matrices {A4,,}M_; (C.6) are

(C.9)

Ay = [wk (xo+Lm Xl,m)] Pr (X2m — X1 gy (X B — lem)] ’

= [w (X3 — XEm) gy (X — X )

and the sensing operator &7 is defined as in (C.3) correspondingly. Verifying Restricted Isometry
Property (C.4) and finding the RIP constant ¢ for the operator o7 are NP-hard problems in general.

We shall numerically estimate the RIP constant ¢ for rank r = 1 as follows. First, compute the
RIP ratios:

|7 D 1 &
Re= e = a7 20 [T Amd] €= 2000,
0\Y%/ " o m=1

where {uf, vé}?iolo are unit vectors randomly sampled in R2. Next, normalize the RIP ratios to be

in [0,2]. We choose C' = max({R"});min({Rl}) in (C.4) so that By = R € [0,2] and the RIP constant
is given by

_ max({R}) — min({Ry})
max({Rs}) + min({Ry})

€ (0,1).

To highlight the effects of the basis functions on the RIP constant, we choose three sets of basis
functions listed in Table 5.

Figure 16 shows the distributions of the normalized RIP ratios for these three basis functions
when M = 2000. As a reference, we also present numerical tests of the RIP ratios for the classical
Gaussian sensing operator, where the entries of A,, are i.i.d. standard Gaussian random variables.
For the case of the Gaussian sensing operator, the normalized RIP ratios are clustered in the interval
[1— 0,1+ 6] with the computed values for § being 0.0461, 0.0399, and 0.0534; these values agree
with the well-established result in [RFP10,L523| that 6 — 0 when M turns to infinity. In contrast,
the normalized RIP ratios for the IPS spread widely in [0, 2] for all three sets of basis functions,
and their RIP constants are 0.4151, 0.8937, and 0.9462, which are relatively large.
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Figure 16: Distributions of the RIP ratios of the interacting particle system (IPS) in red color. The
basis functions and the estimated RIP constants are in Table 5. The wide spread of the ratios in an
interval [1 — 4,1 — §] indicates a large RIP constant ¢, particularly in the middle and right figures.
As a reference, we also present distributions of the RIP ratios for the Gaussian sensing operator in
blue color, for which the RIP constants, from left to right, are 0.0418, 0.0456, and 0.0474.

Left Middle Right
Y1(x) | sin(x) 2t — 627 +3 21075, 400]
Po(z) | cos(z) 2° — 1023 + 152 9:_31[0.25#00]

RIP constant | 0.4151 0.8937 0.9462

Table 5: The basis functions and the testing RIP constants in Figure 16. Left: Fourier basis; middle:
Hermite polynomials basis; right: as in Section 3 for the Lennard-Jones interaction kernel.

A large RIP value indicates that the matrix sensing problem may involve local minima, as
highlighted by Theorem C.5 and supported by findings in nonsymmetric scenarios in [BR17,GJZ17|.
Therefore, local minima may exist in the joint inference, and we provide explicit examples. Let
U=ay = (ug,uz) € R? and V = ¢ = (v1, v2) € R? be unit vectors. We then have

(u1,u2) = (cos(61),sin(61)), (vi,v2) = (cos(b2),sin(f2)), 61,02 € [0,27),

and the ground truth (U*,V*) with U* = (u},uj) = (cos(67),sin(67)) and V* = (vf,v5) =
(cos(#),sin(#3)). The loss function denoted by Ex(U, V') depends on 6; and 6s:

M
Eni(01,02) = Exr (U, V) = % ST A,V - UT AL V] (C.10)
m=1

where the sensing matrices {4,,} are defined in (C.9) with basis functions listed in Table 5. It is
clear that (—=U™*, —V*) forms another global minimum pair, resulting in the loss function £y; being
zero. The corresponding angles are referred to as (NT, 9~§ ).

In Figure 17, the red and blue dots locate the ground truths (07, 65) and (GNT, 55‘), respectively.
Text boxes label the local minima. The basis functions are set as Hermite polynomials basis in the
middle panel Figure 17 and are set as basis for the Lennard-Jones interaction kernel in the right
panel of Figure 17. The corresponding error functions Eys(61,02) are plotted with M = 100 samples
and random choices of ground truth. Upon conducting a limited number of tests, the presence
of local minima is not rare to be observed, even posing normalization constraints on U and V.
This observation is expected, given that both scenarios exhibit high RIP constants, as illustrated in
Table 5. However, we never witness the existence of local minima with the selection of Fourier basis
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Figure 17: Contour plots of the loss functions for the three sets of basis functions. Local minima
are present in the right two plots.

{t1(z) = sin(x),P2(x) = cos(x)}; see an example of the error function with M = 200 samples in
the left panel of Figure 17. This is kind of surprising, as conventional wisdom suggests that the RIP
value of the nonsymmetric case should be half that of the symmetric case to ensure the absence of
spurious local minima phenomena, as discussed in, for instance, [GJZ17]. The disappearance of local
minima of the error function Ey/(61,02) = Ex(U, V) may be due to the constraints that U and V
are unit vectors. Investigating the sharpness of the Restricted Isometry Property (RIP), exploring
the non-existence of local minima, and understanding the convergence of the ALS algorithm for the
joint inference in interacting particle systems on graphs are key subjects for future research.

D Algorithm: Three-fold ALS
The three-fold ALS algorithm finds the minimizers of the loss function:

(a,u,v) = arg min Erm(a,u,v), with
(a,u,v)eM xRP*Q@ xRNV *Q
vTV=IQ
Y (D.1)
2
ELm(auv)i= o > [AXE —aB(X[)uvt At
I=1,m=1

with an additional condition that ¢ = uv' has only @ distinct columns.

Notice that the loss function (D.1) is quadratic in each of the unknowns a,u,v if we fix the
other two. Thus, we can apply ALS to alternatively solve for each of the unknowns while fixing the
other two, and we call this algorithm three-fold ALS. In each iteration, this algorithm proceeds with
the following three steps. To ensure that ¢ has only @ distinct columns, we add an optional step of
K-means.

Step 1: Inference of the weight matrix a. Given a coeflicient matrix u and a type matrix v, we
estimate the weight matrix a from data by least squares. For every i € [N], with u, v fixed we
obtain the minimizer of the loss function &, ps(a,u,v) in (4.8) by solving Va, &r a(a,u,v) = 0,
which is a linear equation in a;.:

4, A% = A ((BXD)ilimuvy) = [(AXy)ilim/At (D.2)

u,v,M,i

using least squares with nonnegative constraints. The solution is then row-normalized to obtain an
estimator a;. in the admissible set.
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Step 2: Inference of the coefficient matriz u. Next, we estimate the coefficient matrix u by
minimizing the loss function &, ps(a, u,v) in (4.8) with the (estimated) weight matrix a and a type
matrix v. The minimizer is a solution to

a;. [B(Xy')ili mav; [Ath]l’m/At, i€ [N]. (D.3)
Noting that for each i € [N],
(Aaviis Wr = (@i [BXP)ill, ® Vi, Wp = ai [B(X])ilimtvi,
we can write a linear equation for U using Frobenius inner product:
Aavot = (AR W), = [AXy Jim/At. (D.4)

Step 3: Inference of the type matriz v. At last, we estimate the type matrix v by minimizing the
loss function & pr(a,u,v) in (4.8) with the (estimated) weight matrix a and coefficient matrix u.
Firstly we solve the linear equation,

Anina Vi = (@ [BX[ilmw)¥i = [(AXy)ilim/At, i€ [N] (D.5)

with the result denoted as ¥'. Then, we apply a final normalization step to ensure the orthogonality
at the end. Namely, we find an orthogonal matrix v such that

vV =argmin |v— \A//HF . (D.6)
viv=Ig

The above problem is known as the orthogonal Procrustes problem [GD04]|, and the solution is given
by normalizing the singular values of ¥, namely,

v = UxVT — v =0UVvT. (D.7)

Step 4 (optional): apply K-means to the estimated v. To enforce the coefficient matrix ¢ to have
Q distinct columns, we cluster the rows of v by K-means.
Algorithm 3 summarizes the above iterative procedure.

procedure THREE-FOLD ALS({Xt0 a M ARy 1 € Pmaiter)

Construct the arrays {B(X}')}i,» and {AX}"} in (1.5) for each trajectory.

Randomly pick initial conditions Uy and vj.

for 7 =1,...,pmagiter do
Estimate the weight matrix a, by solving (D.2) with u = G,_; and v = V,_1, with nonnegative
least squares followed by a row normalization.
Estimate the coefficient matrix U, by solving (D.4) with a = a, and v = v,_; by least squares.
Estimate the type matrix v, by solving (D.5) with a = a, and u = 4, by least squares followed
by normalization in singular values as in (D.7) and an optional step clubtering the rows of v.
Exit loop if |[&, — &, _1]| < el[ar1]], [[ir — Gr1| < ellr1] and [[9r — ¥, _1]| < | [Fr_1].

return a,, u,,v,.

Algorithm 3: Three-fold ALS
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