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Abstract

The aim of this paper is to establish the uniform convergence of the densities of a sequence of random
variables, which are functionals of an underlying Gaussian process, to a normal density. Precise estimates
for the uniform distance are derived by using the techniques of Malliavin calculus, combined with Stein’s
method for normal approximation. We need to assume some non-degeneracy conditions. First, the study
is focused on random variables in a fixed Wiener chaos, and later, the results are extended to the uniform
convergence of the derivatives of the densities and to the case of random vectors in some fixed chaos, which
are uniformly non-degenerate in the sense of Malliavin calculus. Explicit upper bounds for the uniform
norm are obtained for random variables in the second Wiener chaos, and an application to the convergence of
densities of the least square estimator for the drift parameter in Ornstein—Uhlenbeck processes is discussed.
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1. Introduction

There has been a recent interest in studying normal approximations for sequences of multiple
stochastic integrals. Consider a sequence of multiple stochastic integrals of order g > 2, F,, =
I, (fn), with variance o2 > 0, with respect to an isonormal Gaussian process X = {X (h), h € $)}
associated with a Hilbert space $). It was proved by Nualart and Peccati [24] and Nualart and
Ortiz-Latorre [23] that F), converges in distribution to the normal law N (0, 02) as n — oo if and
only if one of the following three equivalent conditions holds:

(i) lim,— o E[F}] = 30" (convergence of the fourth moments).
(i) Forall 1 <r <q — 1, f, ® f, converges to zero, where ®, denotes the contraction of
order r (see Eq. (2.5)).
(i) ||DF, ||~%j (see definition in Section 2) converges to go 2 in L2(£2) as n tends to infinity.

A new methodology to study normal approximations and to derive quantitative results com-
bining Stein’s method with Malliavin calculus was introduced by Nourdin and Peccati [15] (see
also Nourdin and Peccati [16]). As an illustration of the power of this method, let us mention
the following estimate for the total variation distance between the law L(F) of F = I,(f) and
distribution y = N (0, 0'2), where 02 = E[F?]:

2 2/q —1
dry(L(F),y) < P1/Var(||D1!«“||§§) < v E[F*] —30*. (1.1)
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This inequality can be used to show the above equivalence (i)—(iii). A recent result of Nourdin
and Poly [21] says that the convergence in law for a sequence of multiple stochastic integrals of
order g > 2 is equivalent to the convergence in total variation if the limit is not constant. As a
consequence, for a sequence F;, of nonzero multiple stochastic integrals of order g > 2, the limit
in law to is equivalent to the limit of the densities in L' (R), provided the limit is not constant.
A multivariate extension of this result has been derived in [14].

The aim of this paper is to study the uniform convergence of the densities of a sequence of
random vectors F;, to the normal density using the techniques of Malliavin calculus, combined
with Stein’s method for normal approximation. It is well known that to guarantee that each F),
has a density we need to assume that the norm of the Malliavin derivative of F;, has negative
moments. Thus, a natural assumption to obtain uniform convergence of densities is to assume
uniform boundedness of the negative moments of the corresponding Malliavin derivatives. Our
first result (Theorem 4.1) says that if F is a multiple stochastic integral of order ¢ > 2 such that
E[F}l=c¢%and M := E(||DF||;)6) < 00, we have

sup| fr(x) — p(x)| < C,/ E[F*] = 304, (1.2)

xeR

where fr is the density of F, ¢ is the density of the normal law N (0, 02) and the constant C
depends on g, o and M. We can also replace the expression in the right-hand side of (1.2) by
\/Var(|DF ||%). The main idea to prove this result is to express the density of F using Malliavin
calculus:

fr() = E[Lp=qlIDF |52 F] — E[1{r>x(DF, D(IDFI %)) ]-

Then, one can find an estimate of the form (1.2) for the terms E[|(DF, D(||DF||52))5§ |1 and
Ellgl|DF ||;32 — 02|]. On the other hand, taking into account that

¢(x) =0 2E[1{ny-xN],

it suffices to estimate the difference
E[]-{F>X}F] - E[l{N>x}N]s

which can be done by Stein’s method. The estimate (1.2) leads to the uniform conver-
gence of the densities in the above equivalence of conditions (i) to (iii) if we assume that
sup, E(| DF,[|5%) < oc.

This methodology is extended in the paper in several directions. We consider the uniform
approximation of the mth derivative of the density of F by the corresponding densities ¢,
in the case of random variables in a fixed chaos of order ¢ > 2. In Theorem 4.4 we obtain an
inequality similar to (1.2) assuming that E(||DF||;3’9) < oo for some B > 6m + 6(L%J v 1).
Again the proof is obtained by a combination of Malliavin calculus and the Stein’s method. Here
we need to consider Stein’s equation for functions of the form of /4 (x) = 1,4} p(x), where p is
a polynomial.

For a d dimensional random vector F = (F L . F d) whose components are multi-
ple stochastic integrals of orders qi,...,qq4, gi = 2, we assume non-degeneracy condition
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E[dety;p] < oo for all p > 1, where yr = ((DF,, DF))1;,j<a denotes the Malliavin ma-
trix of F. Then, for any multi-index 8 = (81, ..., Bx), | < Bi < d, we obtain the estimate (see
Theorem 5.2)

xeR4

d
sup |9 fr(x) — 9pgp ()| < C(lV —I? + Z\/E[F;*] - 3(E[Fj2])2), (1.3)
j=1

where V is the covariance matrix of F, ¢ is the standard d dimensional normal density, and

3k

O = g, g,
their derivatives for a sequence of vectors of multiple stochastic integrals, under the assump-
tion sup,, E[det )/F_n P] < oo for all p > 1. A multivariate extension of Stein’s method is required
for noncontinuous functions with polynomial growth (see Proposition 5.10). While univariate
Stein’s equations with non-smooth test functions have been extensively studied, relatively few
results are available for the multivariate case, see [5,4,12,19,26,27], so this result has its own
interest.

We also consider the case of random variables F such that E[F] = 0 and E[F?] = o2, belong-
ing to the Sobolev space D> for some s > 4. In this case, under a non-degeneracy assumption of
the form E[|(DF, —DL_1F>;3 |~"|] < oo for some r > 2, we derive an estimate for the uniform
distance between the density of F and the density of the normal law N (0, 0%).

In a recent paper [20], Nourdin, Peccati and Swan have obtained an upper bound on the
total variation distance between the law of a vector of multiple stochastic integrals and a normal
distribution, using a combination of entropy techniques and Malliavin calculus. Their main result
can be briefly stated as follows. Let F' = (F L . F d) be a d dimensional random vector whose
components are multiple stochastic integrals of orders g1, ..., g4, qi = 2, respectively. Suppose
the covariance of F is the identity matrix and it admits a density fr(x). Denote ¢ (x) the density
of N ~ N(0,1d). Then the relative entropy D(F||N) of F satisfies D(F||N) := E[log fr(F) —
log¢(F)] < CAllog A|, where C > 0 is a constant and A = E[|F|* — |N|*]. This leads to the
bound

As a consequence, we derive the uniform convergence of the densities and

I fF — Il 1ray < V2D(FIIN) < C/Allog Al

This result refines some estimates obtained in [ 14]. In the case d = 1, it is finer than our estimate
(4.12) in the special case p = 1, where by taking « close to % we can only get AT~ with € > 0
arbitrarily small. However, the best such L' estimate is still given by (1.1). It is worth mentioning
that we don’t assume the existence of density and our estimate (4.12) covers the L? norm for all

p=1
Convergence of densities in uniform distance has also been studied using Fisher information
theory via Shimizu’s inequality (see for instance, [29,3,2,8])

Su£|fF(x)—¢(x)’<C I(F|N), (1.4)
xXe

where F is a random variable with density f € C L(R), ¢ is the density of N ~ N(0, 1), and

I(F||N) := fR(ﬁ g; — ﬁ/((;‘)))z f(x)dx is the relative Fisher information. Recently, Bobkov,

Chistyakov and Gotze [3] studied the rate of convergence to 0 of 1 (F, || N) for F,, = ﬁ Yo X,
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where {X;};,>, are ii.d. random variables with mean O and variance 1, assuming that f’ [,ﬂ €
0

L'(R) for some ng. In general, when studying uniform convergence of densities, one is neces-
sarily led to introduce some stringent assumptions on the regularity of the laws of the underlying
random variables. Here we showed that these assumptions can be reduced to requirements about
the finiteness of the negative moments of Malliavin matrices.

The paper is organized as follows. Section 2 introduces some preliminary results of Gaussian
analysis, Malliavin calculus and Stein’s method for normal approximations. Section 3 is devoted
to density formulae with elementary estimates using Malliavin calculus. The density formulae
themselves are well-known results, but we present explicit formulae with useful estimates, such
as the Holder continuity and boundedness estimates in Theorems 3.1 and 3.3. The boundedness
estimates enable us to prove the L? convergence of the densities (see (4.12)). The Holder con-
tinuity estimates can be used to provide a short proof for the convergence of densities based
on a compactness argument, assuming convergence in law (see Theorem 6.5). Section 4 proves
the convergence of densities of random variables in a fixed Wiener chaos, and Section 5 dis-
cusses convergence of densities for random vectors. In Section 6, the convergence of densities
for sequences of general centered square integrable random variables are studied.

The main difficulty in the application of the above results is to verify the existence of negative
moments for the determinant of the Malliavin matrix. We provide explicit sufficient conditions
for this condition for random variables in the second Wiener chaos in Section 7. As an appli-
cation we derive the uniform convergence of the densities and their derivatives to the normal
distribution, as time goes to infinity, for the least squares estimator of the parameter 6 in the
Ornstein—Uhlenbeck process: d X; = —0X;dt + y d B;, where B = {B;, t > 0} is a standard
Brownian motion. Some technical results and proofs are included in Appendix A.

Along this paper, we denote by C (maybe with subindexes) a generic constant that might
depend on quantities such as the order of multiple stochastic integrals g, the order of the deriva-
tives m, the variance o2 or the negative moments of the Malliavin derivative. We denote by || - || »
the norm in the space L7 (£2).

2. Preliminaries

In the first two subsections, we introduce some basic elements of Gaussian analysis and Malli-
avin calculus, for which we refer to [22,16] for further details. In the last subsection, we shall
introduce some basic estimates from the univariate Stein’s method.

2.1. Isonormal Gaussian process and multiple integrals

Let §) be a real separable Hilbert space (with its inner product and norm denoted by (-, ) ¢ and
|| - ||, respectively). For any integer g > 1, let %9 ($©9) be the gth tensor product (symmetric
tensor product) of §. Let X = {X (h), h € $H} be an isonormal Gaussian process associated with
the Hilbert space $), defined on a complete probability space (£2, F, P). That is, X is a centered
Gaussian family of random variables such that E[X (h) X (g)] = (h, g)s for all h, g € $H. We
assume that the o -field F is generated by X.

For every integer g > 0, the gth Wiener chaos (denoted by H,) of X is the closed linear
subspace of L%(£2) generated by the random variables {Hy(X(h)): h€$, |lh|ls =1}, where
H, is the gth Hermite polynomial recursively defined by Hy(x) =1, H;(x) = x and

Hyp1(x) =xHy(x) —qHy—1(x), q=1. 2.1)



Y. Hu et al. / Journal of Functional Analysis 266 (2014) 814-875 819

For every integer ¢ > 1, the mapping I, (h®1) = H, (X (h)), where ||kl = 1, can be extended
to a linear isometry between 9 (equipped with norm /q!|| - | s®q) and H, (equipped with
L?(£2) norm). For ¢ =0, Ho = R, and Iy is the identity map. The mapping I, is called the
multiple stochastic integral of order g.

It is well known (Wiener chaos expansion) that L2(§2) can be decomposed into the infinite
orthogonal sum of the spaces H,. That is, any random variable F € L*($2) has the following
chaos expansion:

F=Y"1,(fy) (2.2)
q=0

where fo = E[F], and f; € Ho4, q > 1, are uniquely determined by F. For every g > 0 we
denote by J,; the orthogonal projection on the gth Wiener chaos H,, so 1,(f,) = J, F.

Let {e;,,n > 1} be a complete orthonormal basis of §). Given f € $H%4 and g€ HOP | for
r=0,..., p Aq the rth contraction of f and g is the element of $®P+7=2") defined by

o0

f®rg= Z (fie, ®---®ei)ger ®(g, e, ® - R®e)ger. (2.3)

I1yeeey ir=1

Notice that f ®, g is not necessarily symmetric. We denote by f&, g its symmetrization. More-
over, f ® g = f ®g, and for p=¢q, f ®; g = (f, g geq. For the product of two multiple
stochastic integrals we have the multiplication formula

PAq
LNl =Y r!(’: ) (Z)1p+q_zr<f ® 8)- (2.4)

r=0

In the particular case ) = L2(A, A, ), where (A, A) is a measurable space and j is a o -finite
and nonatomic measure, one has that $®¢ = L?(A7, A®9, 1®9) and $H® is the space of sym-
metric and square-integrable functions on A?. Moreover, for every f € Ho4, I,(f) coincides
with the gth multiple Wiener—Ito integral of f with respect to X, and (2.3) can be written as

f@rg(tl,--~,tp+q72r)Z/f(tlv~--»tq7r,slv~--vsr) (2'5)
A"

X8 qg—rs s tptrgrsS1s-.oySp)du(sy)...du(sy).
2.2. Malliavin operators

We introduce some basic facts on Malliavin calculus with respect to the Gaussian process X.
Let S denote the class of smooth random variables of the form F = f(X (hy), ..., X (h,)), where
hi,....hparein H,n>1,and f € CZ" (R™), the set of smooth functions f such that f itself
and all its partial derivatives have at most polynomial growth. Given F = f(X (h1), ..., X (hy))
in S, its Malliavin derivative D F is the $-valued random variable given by
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n
of
DF=>" E(X(hl), ey X (ha)) .
i=1 !

The derivative operator D is a closable and unbounded operator on L2(£2) taking values in
Lz(.Q; $). By iteration one can define higher order derivatives DYF € LZ(SZ; .691‘). For any
integer k > 0 and any p > 1 and we denote by D7 the closure of S with respect to the norm
Il llx,p given by:

k
Po_ i || P
171, =2 E(|DTF[[§e).
i=0
For k = 0 we simply write || F|lo,, = || F||,. Forany p > 1 and k > 0, we set D°>? = ﬂk>0 Dk-P,
DA =[5 DEP and D® = (5, Dk
We denote by § (the divergence operator) the adjoint operator of D, which is an unbounded

operator from a domain in L2(£2; $) to L*(£2). Anelement u € L%(£2; H) belongs to the domain
of § if and only if it verifies

|E[(DF,u)g]| < cuy/ E[F?]

for any F € D2, where ¢, is a constant depending only on . In particular, if u € Dom$, then
8(u) is characterized by the following duality relationship

E(8(u)F)=E((DF,u)g) (2.6)

for any F € D'2. This formula extends to the multiple integral 89, that is, for u € Dom 9 and
F € D92 we have

E(37u)F) = E((DTF,u)gs,)-

We can factor out a scalar random variable in the divergence in the following sense. Let
F €D"2 and u € Dom$ such that Fu € LZ(SZ; $). Then Fu € Domé and

8(Fu) = F8(u) — (DF, u)s, @.7)

provided the right-hand side is square integrable. The operators 6 and D have the following
commutation relationship

D8(u) = u + 8(Du) 2.8)

for any u € D22($) (see [22, page 37]).
The following version of Meyer’s inequality (see [22, Proposition 1.5.7]) will be used fre-
quently in this paper. Let V be a real separable Hilbert space. We can also introduce Sobolev
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spaces DK7(V) of V-valued random variables for p > 1 and integer k > 1. Then, for any p > 1
and k > 1, the operator § is continuous from DX?(V ® $) into D¥~1-P (V). That is,

l8a ]y, < Crpllulic.p- (2.9)
The operator L defined on the Wiener chaos expansion as L = Z;o:()(—q)Jq is the infinites-

imal generator of the Ornstein—Uhlenbeck semigroup 7; = Z;o:() e 9" J,. Its domain in L2(R2)
is

o0
DomL=1{FeL*2): Y q*lJgFl3 < oo} =D>2,
q=1

The relation between the operators D, § and L is explained in the following formula (see [22,
Proposition 1.4.3]). For F € L?>(£2), F € Dom L if and only if F € Dom(8 D) (i.e., F € D2 and
DF € DomJd), and in this case

SDF = —LF. (2.10)

For any F € L?(£2), we define L™ F = — P q~'J,(F). The operator L~ is called the
pseudo-inverse of L. Indeed, for any F € L2(.Q), we have that L' F € Dom L, and

LL'F=L"'"LF=F — E[F].

We list here some properties of multiple integrals which will be used in Section 4. Fix g > 1
and let f € H©4. We have I,(f)=4689(f) and DI,(f) =qly—1(f), and hence I,(f) € D2,
The multiple stochastic integral I, (f) satisfies hypercontractivity property:

[7,H], < Capllla(P, forany pe(2,00). 2.11)
This easily implies that I, (f) € D* and forany 1 <k < ¢q and p > 2,
11a(H iy < Catnlla(H],
As a consequence, for any F € EBLI’H,I, we have
I Fllk,p < Cqk,pll Fll2. (2.12)
For any random variable F in the chaos of order ¢ > 2, we have (see [16], Eq. (5.2.7))

1 —1
?Var(HDFH%) < %(E[F“] — (E[Fz])z) < (g — D Var(|DFII3,). (2.13)
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In the case where § is L2(A, A, w), for an integrable random variable F = Z;’;O I,(fy) €
D2, its derivative can be represented as an element in of L?(A x £2) given by

DiF =Y qly(fy(-.1)). teA.

g=1
2.3. Stein’s method of normal approximation

We shall now give a brief account of Stein’s method of univariate normal approximation and
its connection with Malliavin calculus. For a more detailed exposition we refer to [5,16,30].

Let F be an arbitrary random variable and let N be an N (0, 02) distributed random variable,
where o2 > 0. Consider the distance between the law of F and the law of N given by

dy(F,N) = :ug‘E[h(F) —h(N)]| (2.14)

for a class of functions H such that E[h(F)] and E[h(N)] are well-defined for 4 € H. Notice first
the following fact (which is usually referred as Stein’s lemma): a random variable N is N (0, )
distributed if and only if E [0%f (N) — Nf(N)] =0 for all absolutely continuous functions f
such that E[| f(N)|] < oc. This suggests that the distance of E[o? f'(F) — Ff(F)] from zero
may quantify the distance between the law of F and the law of N. To see this, for each function
h such that E[|h(N)|] < oo, Stein [30] introduced the Stein’s equation:

[l = %f(X)=h(X)—E[h(N)] (2.15)

for all x € R. For a random variable F such that E[|h(F)|] < oo, any solution fj to Eq. (2.15)
verifies

1 2 o/
3 E[0” f1(F) = Ffu(F)] = E[h(F) = h(N)]. (2.16)

and the distance defined in (2.14) can be written as
1
dy(F,N)=— sup |E[o? £ (F) — Ffi(F)]|. (2.17)
0~ heH

The unique solution to (2.15) verifying lim,_, 4+ e"‘z/(z"z)f(x) =0is

X

fu(x) =727 / {h(y) — E[R(N)]}e /%" ay. 2.18)

—00

From (2.17) and (2.18), one can get bounds for probability distances like the total variation
distance, where we let H consist of all indicator functions of measurable sets, Kolmogorov dis-
tance, where we consider all the half-line indicator functions and Wasserstein distance, where we
take H to be the set of all Lipschitz-continuous functions with Lipschitz constant equal to 1.
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In the present paper, we shall consider the case when h: R — R is given by h(x) =
1(y~z Hi (x) for any integer k > 1 and z € R, where Hj(x) is the kth Hermite polynomial. More
generally, we have the following lemma whose proof can be found in Appendix A. It should
be pointed out that the univariate Stein’s equations have been extensively studied. For example,
we refer to [5, Section 2.2] and [18, Lemma 8.2] when the test functions have sub-polynomial
growth.

Lemma 2.1. Suppose |h(x)| < a|x|* + b for some integer k > 0 and some nonnegative numbers
a, b. Then, the solution fy, to the Stein’s equation (2.15) given by (2.18) satisfies

k
|| <aC Yo" x| +4b
i=0

for all x e R, where Cy is a constant depending only on k.

Nourdin and Peccati [15,16] combined Stein’s method with Malliavin calculus to estimate
the distance between the distributions of regular functionals of an isonormal Gaussian process
and the normal distribution N (0, 0%). The basic ingredient is the following integration by parts
formula. For F € D'2 with E[F] =0 and any function f € C! such that E[f'(F)|] < o0, using
(2.10) and (2.6) we have

E[Ff(F)]=E[LL'Ff(F)] = E[-8DL™'Ff(F)]
= E[(-DL™'F, Df(F))] = E[f(F)(-DL™'F,DF),].
Then, it follows that
2 2 -1
E[o”f'(F) = Ff(F)] = E[f'(F)(0” = (DF, =DL™'F))]. (2.19)
Combining Eq. (2.19) with (2.16) and Lemma 2.1 we obtain the following result.
Lemma 2.2. Suppose h : R — R verifies |h(x)| < a|x|* + b for some a, b > 0 and some integer

k>0.Let N~ N(O, 02) and let F € DV with || Fll2x < co for some ¢ > 0. Then there exists a
constant Cy . depending only on k and c such that

|E[h(F) — h(N)]| <0 *[aCy co* +4b]|0* — (DF, —DL™'F), | ,.

Proof. From (2.16), (2.19) and Lemma 2.1, it suffices to notice that || Z;‘:O ok=i|F|i|, <
YE G IFI 0% < Creo. O

3. Density formulae

In this section, we present explicit formulae for the density of a random variable and its
derivatives, using the techniques of Malliavin calculus.
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3.1. Density formulae

We shall present two explicit formulae for the density of a random variable, with estimates of

its uniform and Holder norms.

Theorem 3.1. Let F € D*>* such that E[|F|*’] < oo and E[||DF||;32’] < oo for p,r,s > 1

satisfying % + % + % = 1. Denote
w=|DF|[3. u=w"'DF.
Then u € D7 with p = % and F has a density given by
fr(x) = E[L{r>x)d@)].
Furthermore, fr(x) is bounded and Hélder continuous of order %, that is
fr@) < Cpllw | IFll2s (1A (X721 FI13,)).
Cipled 1+1 1
|[fr ) = fED] < Cpllw™ [T IF " 1x = 17
forany x,y € R, where C), is a constant depending only on p.
Proof. Note that
P () -2(n2
Du=w"'D*F —2w *(D*F ® DF) ® DF.
Applying Meyer’s inequality (2.9) and Holder’s inequality we have

|8 @)

o SCpllullypy < Cp(llullp + 1Dull )
< CP(”w_IHDF”fJ ”,;/ + 3““’_1 ”D2F”5®ry

<3C,|w Y, (IDF s + | D2F] ).

»)

3.1)

(3.2)

(3.3)

34)

Then u € D7 and the density formula (3.1) holds (see, for instance, Nualart [22, Proposi-

tion 2.1.1]). From E[8(u)] = 0 and Holder’s inequality it follows that

|E[15-n3@)]| < P(IFI > x])7

8(u)

p/

Then (3.2) follows from (3.5) and (3.4).

Finally, for x < y € R, noticing that 1{g- x} — 1{F-y) = 1{x<Fgy), We have

7 00) = fr)| < (EMpperen]) 7|50

P

Applying (3.2) and (3.4) with the fact that E[1{x<r<y)] = [ fr(z)dz one gets (3.3).

1
|, < (LA (xIP2PIFI3D)?

(3.5)
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With the exact proof of [22, Propositions 2.1.1], one can prove the following slightly more
general result.

Proposntlon 32. Let F e D" and h : 2 — $, and suppose that (DF, h) 5 #0 as. and
(DF DFi5 e DY4($) for some p,q > 1. Then the law of F has a density given by

h
fr(x) = E|:1{F>x}5<m)]- 3.6)

Our next goal is to take 4 to be —DL™!F in formula (3.6) and get a result similar to Theo-
—1

BF BT

some technical estimates on DL~'F and D?>L~! F. Estimates of this type have been obtained

by Nourdin, Peccati and Reinert [17] (see also Nourdin and Peccati’s book [16, Lemma 5.3.8]),

when proving an infinite-dimensional Poincaré inequality. More precisely, by using Mehler’s

formula, they proved that for any p > 1, if F € D>7, then

rem 3.1. First, to get a sufficient condition for e DI?' for some p’' > 1, we need

E[|pL7'F|g] < E[IDFIE]- 3.7)
27 —1p||P - 2 ||P
E[“D L F||0p]<2 PE[”D F“op]’ (38)
where || D*F llop denotes the operator norm of the Hilbert—Schmidt operator from $ to $: f
f ®: D*F. Furthermore, the operator norm | D*F llop satisfies the following “random contrac-
tion inequality”
2 2 2 2
|D F” <|p*F®1 D FHYj®2 | D FH5®2 (3.9)
Sometimes in application, the use of L~! in the integration by parts formula is useful. The
next proposition gives a density formula with estimates similar to Theorem 3.1 with the use of
L' Let
w=(DF,-DL™'F),,  a=-w 'DL7'F.
Proposition 3.3. Let F e ]D)2 S, E[|F|*P] < 00 and suppose that E[|lw|™"] < oo, where p > 1,

r>2,s>3 sansﬁ) + = + 3 = 1. Then i € D7 with p = 1 and the law of F has a density
given by

fr(x) = E[L{r>x)d@)]. (3.10)
Furthermore, fr(x) is bounded and Holder continuous of order % that is
fre) < Ko(1A (|x|—2||F||§,,)), (3.11)

e = Fr| <Ko Pl =yt (3.12)

for any x,y € R, where Ko = C[,||1D_l||r||F||2,S(||12)_1||r||DF||% + 1), and C, depends only
on p.
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Proof. Note that D = —D?F ® DL™'F — DF ®, D>*L~'F. Then, applying (3.7) and (3.8)
we obtain

Dy < (14+27°)]| D*F| |IDF . (3.13)

onls!

From it = —w 'DL™'F we get Dii = —w 'D>L™'F + w™?Dw ® DL™'F. Then, using
(3.7)-(3.9) we have for ¢ > 0 satisfying % = % + %

lally < o~ [ DLTF| o], < @7 | IDF I,
and

Dl < |w~"| DL

o+ @72 IDwls | DL F|

_1FH5®Y3 ip’

<o ', ID*F|, + [@7*], I Dl IDFI;.

Noticing that |D>F||; < ||D*F||s because t < s, and applying Meyer’s inequality (2.9) with
(3.13) and (3.9) we obtain

Key

» S Cplllly p < Ko- (3.14)

Then u € D'?" and the density formula (3.10) holds. As in the proof of Theorem 3.1, (3.11) and
(3.12) follow from (3.14) and

|E[LiF=nd@)]| < P(IF| > IXI)% @]

o <(UA(X2IFEIZ,) 8@,

|7 (0) = Fr)| < (EMperen]) 7|50 0

P’

3.2. Derivatives of the density

Next we present a formula for the derivatives of the density function, under additional condi-
tions. A sequence of recursively defined random variables given by Go = 1 and Gy41 = 6(Gyu)
where u is an $)-valued process, plays an essential role in the formula. The following technical
lemma gives an explicit formula for the sequence Gy, relating it to Hermite polynomials. To
simplify the notation, for an $)-valued random variable u, we denote

Su=08u), D,G = (DG, u)g, D{jG:(D(D’;”G),u)ﬁ. (3.15)

Recall H(x) denotes the kth Hermite polynomial. For A > 0 and x € R, we define the gener-
alized kth Hermite polynomial as

X

Hy (L, x) =k§Hk<ﬁ). (3.16)



Y. Hu et al. / Journal of Functional Analysis 266 (2014) 814-875 827

From the property H] (x) = kHy_1(x) it follows by induction that the kth Hermite polynomials
has the form Hi(x) =3 o<i< k)2 ck.ix¥=2 where we denote by |k/2] the largest integer less
than or equal to k/2. Then (3.16) implies

Hy(\, x) = Z crixk 20 (3.17)
0<i<[k/2)

Lemma 3.4. Fix an integer m > 1 and a number p > m. Suppose u € D™ P (8). We define
recursively a sequence {Gi)i_, by Go = 1 and Gyy1 = 8(Gru). Then, these variables are well-

defined and fork = 1,2, ..., m, Gx e D" %% and

Gy = Hy(Dydy, 8y) + Tk, (3.18)

where we denote by Ty the higher order derivative terms which can be defined recursively as
follows: Ty = T> =0 and for k > 2,

Ti1 = 8uTic — DuTic — 03 He(Dudus 8) Dyrdu- (3.19)
The following lemma is proved in Appendix A.

Lemma 3.5. From (3.19) we can deduce that for k > 3

Ti= > digieic 80 (Dudi) " (D28,)2 - (DE18,) (3.20)

(#05++sik—1)€Jk

where the coefficients a; ;... i,_, are real numbers and Ji is the set of multi-indices (ip, 11, ...,
ix—1) € N* satisfying the following three conditions

k-1 k-1
k—1
' i <k-—1, b) 4 tig =1 S| = |-
(a) ,0+;J,J (b) a4+ Fir—1 (©) ;z, { 5 J

From (b) we see that every term in Ty, contains at least one factor of the form D8, with some
J = 2. We shall show this type of factors will converge to zero. For this reason we call these terms
high order terms.

Proof of Lemma 3.4. First, we prove by induction on k that the above sequence Gy is well-
defined and Gy € D"k k. Suppose first that k = 1. Then, Meyer’s inequality implies that
G, =38, e D" 1P Assume now thatfork <m—1, Gy € D"~k £ Then it follows from Meyer’s
and Holder’s inequalities (see [22, Proposition 1.5.6]) that

/
IGk+tlm—k—1, 2y S CmpllGrttlly—e, 2 < Cop pI Gl g Nttllm—k,p < 00
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Let us now show, by induction, the decomposition (3.18). When k = 1 (3.18) is true because
G1 =6, and T1 = 0. Assume now (3.18) holds for k < m — 1. Noticing that oy Hy (A, x) =
kHj_1(x, x) (since H;(x) =kH_1(x)), we get

Dqu(Duauv au) = ka—l (Duaua au)Duau + 8)\Hk(Du5u, SM)D38M'

Hence, applying the operator D, to both sides of (3.18),

DG = kHi—1(Dy8u, 8) Dubu + Trr1,

where

Ti1 = DuTi + 83 Hy (D, 8,) D23, (3:21)

From the definition of G and using (2.7) we obtain

Giy1 =0uGy) = Gidy — D, Gy
= (Squ(Dusuy 314) + 8, Ty — ka—l(Du(suy (Su)DuSu - Tk—H-

Note that Hi41(x) = xHi(x) — kHi—1(x) implies x Hy (A, x) — kAHr_1(X, x) = Hpy+1(X, X).
Hence,

Gi1 = Hi1 (Db, 84) + 84Tk — Tis1.-
The term Ty =6, Tj — ka has the form given in (3.19). This completes the proof. O

Now we are ready to present some formulae for the derivatives of the density function under
certain sufficient conditions on the random variable F. For a random variable F in D' and for
any 8 > 1 we are going to use the notation

My(F) = (E[IDFI/])7. (3.22)

Proposition 3.6. Fix an integer m > 1. Let F be a random variable in D"+2. such that
Mg(F) < oo for some B > 3m + 3(l5] Vv 1). Denote w = ||DF||% and u = %. Then,
u e D"LP(5) for some p > 1, and the random variables {Gk}ng1 introduced in Lemma 3.4
are well-defined. Under these assumptions, F has a density f of class C™ with derivatives given

by

O () = (=DFE[1F22)Grp1] (3.23)

fork=1,...,m.
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Proof. It is enough to show that {Gk}m‘Irl are well-defined, since it follows from [22, Exer-

cise 2.1.4] that the kth derivative of the density of F is given by (3.23). To do this we will show
that Gy defined in (3.18) are in L1(£2) forall k=1, ..., m + 1. From (3.18) we can write

E[|Gk|] < E[|Hk(Dudu, 8)|] + E[1Txl]-

Recall the explicit expression of Hi (A, x) in (3.17). Since 8 > 3(m + 1), we can choose ry <

5.1 < ﬂ such that

k—2i i 3(k—2i) 6i 3k
1> )
ro r B B B

forany 0 <i < |k/2] and 1 < k < m+ 1. Then, applying Holder’s inequality with (3.17), (A.11)
and (A.12) we have

E[|H(Du8u, 8] < Ci Y 18ullly 2 I1Dubullf, < o0

0<iLk/2]

To prove that E[|Ty|] < oo, applying Holder’s inequality to the expression (3.20) and choos-
ing r; > 0 for 0 < j <k — 1 such that

k—1 . . k—1

S L/
rj ,3

r
0 =1

(3j +3i;

=1

~.

we obtain that, (assuming k > 3, otherwise Ty = 0)

E(ITI]<C ) 18l HIID’s |-

(i, ..rik)EJk

Due to (A.11) and (A.12), this expression is finite, provided r; < 3/+3 for0< j<k—1 We

can choose (1,0 < j < k — 1) satisfying the above conditions because 8 > 3(k —1+3 L%J
for all 1 <k < m + 1, and from properties (a) and (c) of J; in Lemma 3.5 we have

. k—1 . . k—1
3o +Z(3J+3)zj k=D 4315t

B g B

j=1
This completes the proof. O

Example 3.7. Consider a random variable in the first Wiener chaos N = I1(h), where € §) with
2]l = o. Then N has the normal distribution N ~ N (0, o2) with density denoted by ¢ (x).
Clearly [DN| s =0,u= 25,8, =% and D,8, = 2. Then Gy = Hi(Z5, %) and from (3.23)
we obtain the formula

1 N
o®(x) = (—D"E[l{NM}HkH (;, p>] (3.24)

which can also be obtained by analytic arguments.
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Remark 3.8. Let g be a function differentiable of order m, and denote u;(g,x) =
supj; <, 18 (1) — g¥)(0)]. Let F be a random variable with E(F) =0, E(F?) =1 and
E{|F|"*u,,(g, F)} < 0o. It is proved in [ 1] that the following expansion holds:

E(Fg(P) ~ E(¢'(F) = 3 P BV (F) R,
j=2

where y; is the jth cumulant of X and |R| < CE{|F|™*u,,(g, F)} for some constant C > 0.
For any function £, let f be the solution of the Stein’s equation (2.15) given by (2.18). Then

E[h(F)] = E[h(N)]| = E[f'(F)] — E[Ff(F)]

__Z V/-H f(])(F)]

Jj=2

This is the so-called Edgeworth expansion (see also [28] and references therein). Eq. (3.23) can
also be used to compute E[ fU)(F)]. We have easily

m
Vi+
E[h(F)] - E[h(N)] ==Y “C=E[f(F)Gi] - (3.25)
= !
where Gy is given in Lemma 3.4. Thus, it is possible to use Malliavin calculus to obtain the full
Edgeworth expansion without assuming the differentiability of f. However, we shall not pursue

this aspect in the present work.

Remark 3.9. The recursive algorithms used in Lemma 3.4 have some similarities with the recur-
sive formula developed by Privault in [25] to compute E(F[5(u)]").

4. Random variables in the gth Wiener chaos

In this section we establish our main results on uniform estimates and uniform convergence
of densities and their derivatives. We shall deal first with the convergence of densities and later
we consider their derivatives.

4.1. Uniform estimates of densities

Let F = 1,(f) for some f € $H®4 and g > 2. To simplify the notation, along this section we
denote

w=|DF|[3, u=w"'DF.
Note that LF = —qg F and using (2.7) and (2.10) we can write

Su=08u)=qFw™! —(Dw‘l,DF)ﬁ. 4.1
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Theorem 4.1. Let F = I,(f), q > 2, for some f € 51 be a random variable in the qth Wiener
chaos with E[F?] = o2. Assume that Me(F) < 0o, where Mg(F) is defined in (3.22). Let ¢ (x)
be the density of N ~ N (0, 02). Then F has a density fr(x) given by (3.1). Furthermore,

sug\fF(x) — ()| < C\/m, (4.2)

where the constant C has the form C = C, (0~ Mg(F)2 + Me(F)? +073) and C, depends only
ongq.

We begin with a lemma giving an estimate for the contraction D F ®1 D'F with k +1 > 3.
Lemma 4.2. Let F = I,(f) be a random variable in the qth Wiener chaos with E[F? ="

Then for any integers k > | > 1 satisfying k +1 > 3, there exists a constant Cy j 4 depending only
onk,l,q such that

| D“F @1 D'F|l, < Crigllgo® = IDFI ], (43)
Proof. Note that DKF =g(g —1)--- (g —k + D1, (f). Applying (2.4), we get

D'F@ D'F=¢*@g—1% - (Gq—1+D*g—=0--(g—k+1
K N (g —1
X ;r(q . )(q . >12qk12r(f<§>r+1f)~

Taking into account the orthogonality of multiple integrals of different orders, we obtain

E[|D'F ® D1F||f5®<k+l—2>]

B (q)*
@ -DRg -k

i q—k 2 q-—1 2 ~
er!2< . )( . )<2q—k—l—2r>!||f®r+1f||;®zq_z_2,. (4.4)
r=0

Applying (4.4) with k =/ = 1, we obtain

E[|DF||§]=E[|DF ® DF|’]

qg—1 4
q—1 2
_ q421’!2< ] ) g —2— 2r)!||f®r+1f||%®2472*2r
r=0

q-2 4
q—1 3
_ q4Zr!2< ; ) g —2— 2r)!||f®r+lf||%®2z172*2r
r=0

+ %41 50 (4.5)
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Taking into account that 0> = E[F?] =q!| f ||25®q, we obtain that for any k& + [ > 3, there exists
a constant Cy ; 4 such that

2
E[| D*F @1 D'F [ owin] < CRy  E[IDFIG — g°0*].
Meanwhile, it follows from E[| DF[|§]=q| f||%®q =go? that
E[IDFI§ —q*0*] = E[IDF|} —2q0* | DF |} +¢*c"]
2
=E[(IDF| —q0?)7]. (4.6)
Combining (4.4), (4.5) and (4.6) we have
k I )2 2 2 2,2
E[|D*F &1 D'F | gow 2] < Ci 1 E[(IDFIG —q0?)7].
which completes the proof. O
Proof of Theorem 4.1. It follows from Theorem 3.1 that F admits a density fr(x) =

E[1{r>x)6(u)]. By (3.24) with k =1 we can write ¢ (x) = ﬁE[l{Nﬂ}N]. Then, using (4.1),
for all x € R we obtain

fr(x) —¢(x) = E[1{p=x)8)] — 0 2E[1{y>x} N1

- E|:1{F>x}<F<% - a_2> —(Dw™, DF)5>]

=+ O'_ZE[FI{F>x} - Nl{N>x}]
=A|+ Aj. 4.7

For the first term A1, Holder’s inequality implies

1Ay = ‘E[I{F>x}<F<% - 0'_2> —(Dw™, DF)J‘;)”

<o 2E[|[Fw™(w —g0?)|] +2E[w 3| D*F @1 DF| ]
<o |w [ 0Fls|w = g0 + 2w 3 || D°F @1 DF| 5.
Note that (2.12) implies
[w=g0?|;<Cllw-q0?,

and || F|j3 < C||F||2 = Co. Combining these estimates with (4.3) we obtain

3
<o w s+ Jw 3) |w - o], “48)

For the second term Aj, applying Lemma 2.2 to the function h(z) = z1{;~}, which satisfies
|h(2)| < |z|, we have
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|Az| = U_2|E[F1{F>x} — Nly-y]|
< Co™3 ||02 — <DF, —DL_IF))5 ||2 < Co™3 ||q02 — w”z. 4.9)

Combining (4.7) with (4.8)—(4.9) we obtain
3
sup| () = ()] < C(o ™" w5+ [w™H 3 +07) Jw —go7]
Xe

Then (4.2) follows from (2.13). This completes the proof. O

Using the estimates shown in Theorem 4.1 we can deduce the following uniform convergence
and convergence in L? of densities for a sequence of random variables in a fixed gth Wiener
chaos.
Corollary 4.3. Let {F,},eN be a sequence of random variables in the qth Wiener chaos
with g > 2. Set 0,% = E[Fnz] and assume that limn_woon2 =02, 0<8< a,% < K for all n,

lim,—, o E[F}] =30* and

M = sup(E[| DF,[15]) " < . (4.10)
n

Let ¢(x) be the density of the law N(0, o). Then, each F, admits a density fr, € C(R) and
there exists a constant C depending only on q, o, and M such that

su£|fpn(x) —¢)| <C(E[F] - 3a,‘,‘|% + low — o). 4.11)
X€E

Furthermore, forany p > 1 and a € (%, D),

p—ot

1 p—«
I fr, = ¢llr@ < C(|E[F)] = 30,/|* +low —0l) 7, (4.12)
where C is a constant depending on q, o, M, p,a and K.

Proof. Let ¢, (x) be the density of N (0, anz). Then Theorem 4.1 implies that
1
sup| £, (X) — ¢u(x)| < C|E[F, ] — 30, |2.
xeR
On the other hand, if N, ~ N (0, (Tn2), it is easy to see that
sup|e, (x) — ¢(x)| < Cloy, — .
xeR

Then (4.11) follows from triangle inequality. To show (4.12), first notice that (3.2) implies

fr, () <C(1AIx|72).
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Therefore, if @ > % the function ( fF, (x) + ¢ (x))“ is integrable. Then, (4.12) follows from (4.11)
and the inequality

| fr, ) = @)|" <|fr, () = @[ (fR,) +0W)". O
4.2. Uniform estimates of derivatives of densities

In this subsection, we establish the uniform convergence for derivatives of densities of random
variables to a normal distribution. We begin with the following theorem which estimates the
uniform distance between the derivatives of the densities of a random variable F in the gth
Wiener chaos and the normal law N (0, E[ F2]).

Theorem 4.4. Let m > 1 be an integer. Let F be a random variable in the qth Wiener chaos,
g =2, with E[F*] =02 and Mg := Mg(F) < oo for some B > 6m + 6(L%J Vv 1) (recall the

definition of Mg(F) in (3.22)). Let ¢ (x) be the density of N ~ N (0, 02). Then F has a density
fr(x) € C™(R) with derivatives given by (3.23). Moreover, foranyk=1,...,m

sup| 72 () — 90 ()] < o+ JE[F4] ~ 302,

xeR

where the constant C depends on q, B, m, o and Mg with polynomial growth in o and Mg.

To prove Theorem 4.4, we need some technical results. Recall the notation we introduced in
(3.15), where we denote 6, = §(u), D,6, = (Dé,,u)g.

Lemma 4.5. Let F be a random variable in the qth Wiener chaos with E[FY| =02 Let w =
IDF|§ andu=w~'DF.

(1) If Mg(F) < oo for some B > 6, then for any 1 <r < %

|8 —o72F|, < Co™ (M} v 1)|q0? —w],. (4.13)

(ii) If Mg(F) < oo for some B > 12, then for any 1 <r < %

”DMSM _0_2Hr < Co_z(Mg \% l)Hqcr2 —w

) (4.14)

where the constant C depends on o.

Proof. Recall that §, =g F w = DppwL. Using Holder’s inequality and (A.3) we can write

|80 =0 2F |, <[lo™? Fu™(go® = w)], + [ Dprw™!|

r

<Cle [ Fut] + (MG v 1)) g0 —w

23
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provided % = %~|— % By the hypercontractivity property (2.11) || F|l, < Cq,y | F||2 forany y > 2.
Thus, by Holder’s inequality, if { = - +
-1 -1 2
[Fw™t < UFly Jw™], < Cqpo My,

Choosing p such that 2p < 8 we get (4.13).
We can compute D, §, as

D8y =quw™' +qFw ' Dprw™ —w ' Dy pw™ —w T (D*F, DF @ Dw™').

Applying Holder’s inequality we obtain
1Duss — 02, < [w'fo(g0” ~w) + g FDprw™ — Dhruw],

<o

g0” = wly +Co[w™ |, (IPprw ™" + [ Dppw™ ),

2
2—r

if % >1y % Then, using (A.3) and (A.4) with k = 2 and assuming that s < % andthat2p < f8
we obtain (4.14). O

Proof of Theorem 4.4. Proposition 3.6 implies that fr(x) € C" (R) and for k =0,1, ...,
m—1,

B x) = (=D Er=r)Grp1,

where Go =1 and Gy = 8(Gyu) = Gd(u) — (DGy, u)g. From (3.24),

¢® () = (=D E[1n=ny Hir1 (072, 0 7N)].
Then, the identity Gyt = Hgt+1(Dydy, 84) + Tr+1 (see formula (3.18)), suggests the following
triangle inequality
#8200 = 0® )| = |E[1F2x)Gip1 = Lwsry Hipr (02,0 2N))]|
< |E[NFox)Girs1 — YpsayHig1 (072, 02 F)]|
HE[1 oy Hir1 (072, 072 F) = Iy Hir (072, 0 N) |
= A1+ A>.

We first estimate the term A;. Note that || F|l2x12 < Cy k| Fll2 = Cy ko by the hypercontrac-
tivity property (2.11). Applying Lemma 2.2 with h(z) = 1z} Hx41 (072, 0~ 2z), which satisfies
|h(2)] < Cr(|z]F + o 7*71), we obtain

Ay =|E[h(F) — h(N)]

< Cyxo2|o* + 407 |0? — (DF, —DL_lF)ﬁ I,

< Cyroo g0 —w (4.15)

B

where in the second inequality we used the fact that (DF, —DL~'F) §5= %.
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For the term A1, Lemma 3.4 implies

At < E[|He1 (Dudu, 84) = His1 (072,072 F) ] + E[ 1 Tira]- (4.16)

To proceed with the first term above, applying (3.17) we have

| i1 (Dudu. 84) — Hi1 (02,0 2 F))

_9i ] — k+1-2i _»o;
<Y el DS~ (072 F) T T g
0<i <[ (k+1)/2]

< Z ki

0<i <L (k+1)/2]

x H(S/Ij—i-l—Zi _ (O_—ZF)k+1—2i||Du5u|,' + ’O__QF‘k+1—2i|

(Dyd) —o 2] @17

Using the fact that Ixk — y&| < Crlx — ) Zogjgk—l |x|¥=1=J|y}/ and applying Holder’s in-
equality and the hypercontractivity property (2.11) we obtain

e O B [

<CkE[|8u—azF||Du8uli 3 ISquzij}GzFV}

0 j<k—2i
<C 8, — 0 2F| DS, Syl 2 =i 4.18
< Cyio |8 — 02 F| I Dudull I8ully = o, (4.18)
0 <h—2i
k=2i—j

provided 1 > % + ;— + —
mates (4.13), (A.12) (withk = 1) and (A.11) we need % > %+ %, % > % and L > %, respectively.
These are possible because 8 > 6k + 6. Then we obtain an estimate of the form

, which is implied by 1 > % + ’; + % In order to apply the esti-

E[|s5172% — (072 F)* | 1Dusu ] < Cpoo (M2 v 1) |go? —w],.  4.19)
Similarly,

E[|O‘72F|k+172i

|(Du8u)i - 0‘72’. |]
< Cq,k,aE[|g—2F‘k+1—zi|Du5u _ 0—2‘ Z IDuaulja—z(i—1—j):|
0<j<i—1

< Couoo CV Dy o2, > IDusuI. (4.20)
0<j<i—1

provided 1 > % + % In order to apply the estimates (4.14) and (A.12) (with £ = 1) we need

% > % + % and % > %, respectively. This implies

1,j_6+6j 1

> .
ros B 2
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Notice that 6 46 < 6i < 3k + 3. So, we need 1 > % + 3]%3 The above r, s and p exist because
B > 6k + 6. Thus, we obtain an estimate of the form

E[|o72F [ |(Dy80) — 07(] < Cqtopo C O (MFH V1) |go? —w],. @21

Combining (4.19) and (4.21) we have

E[| Hi1(Dubu, 80) — Hir1 (072,02 F)|]

<Cyropo " (Mgk+3 vi)|go? —w],. (4.22)

Applying Holder’s inequality to the expression (3.20) we obtain (assuming k > 2, otherwise
Ti+1=0)

E[ITis1l] < Cotop D l18ul l_[HD’<S S

@05 ik)EJk+1

where 1 = i—o + Zk: 1 :—’ From property (b) in Lemma 3.5 there is at least one factor of the form
J

||DJ Sulls; w1th Jj = 2. We apply the estimate (A.13) to one of these factors, and the estimate
(A.12) t0 all the remaining factors. We also use the estimate (A.11) to control |||, Notice that

. k. . koo o

io ij 3ip ij3j+3) 1

1=—+E —>—+E —+ -,

ro — }”j ,3 — ,3 2
Jj=l1 j=1

and, on the other hand, using properties (a) and (c) in Lemma 3.5

. k. . k
3 ij(3j+3 1 3k+3[5 1
lO_I_Z j3J )+_< |_2J+_

B B 25 B

j=1
We can choose the r;’s satisfying the above properties because 8 > 6k + 6L§J, and we obtain

k
E\Tist] < Coop(My 2 v 1)[go® = w]),. (4.23)

Combining (4.22) and (4.23) we complete the proof. O

Corollary 4.6. Fix an integer m > 1. Let {F tneN be a sequence of random varlables in the qth
Wiener chaos with q > 2 and E[Fz] = 0 . Assume lim, .00, =0, 0 < 3§ < 0 < K forall n,
lim;, s o0 E[F,‘l‘] =30% and

o=~

M :=sup(E[| DF, [/ ])7 < o0 (4.24)
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for some B > 6(m) + 6(L%J Vv 1). Let ¢(x) be the density of N (0, 02). Then, each F, admits
a probability density function fr, € C™(R) with derivatives given by (3.23) and for any k =
1,...,m,

sup| £ () — #® ()| < € E[F] = 307 + 10w — o),
xeR

where the constant C depends only on g, m, 3, M, o, and K.

Proof. Let ¢, (x) be the density of N (0, cr,%). Then Theorem 4.4 implies that
k
sup| /1) () = ¢ )| < Cq.m pan.o E[F] = 3.
xeR

On the other hand, by the mean value theorem we can write

’

1
6,7 =P | <low—0ol sup 0,870 =5low -0l sup y[g[ TP
y€l%.20] yel%.20]

where ¢, (x) is the density of the law N (0, y2). Then, using the expression

PSP (x) = E[Iyso Hips (v 2y 22)],
where Z ~ N (0, y2) and the explicit form of Hyy3(X, x), we obtain

sup  y[p P (x)| < Cro
yel3.20]

Therefore,
sup|p (x) — ¢® (0)| < Cr o lon — o]
xeR

This completes the proof. O
5. Random vectors in Wiener chaos
5.1. Main result
In this section, we study the multidimensional counterpart of Theorem 4.6. We begin with a
density formula for a smooth random vector.
A random vector F = (F1, ..., F;) in D is called non-degenerate if its Malliavin matrix

?/il: ((DF;, DF})§)1<i,j<a is invertible a.s. and (detyr)~! € ﬂp>1 L?(£2). For any multi-
index

B=B1. B2 .... ) €{l,2,...,d}
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of length k > 1, the symbol 94 stands for the partial derivative ﬁ. For B of length 0 we
10 k

make the convention that dg f = f. We denote by S (R?) the Schwartz space of rapidly decreas-
ing smooth functions, that is, the space of all infinitely differentiable functions f : R — R such
that sup, cga |x|™]9g f (x)| < oo for any nonnegative integer m and for all multi-index . The
following lemma (see Nualart [22, Proposition 2.1.5]) gives an explicit formula for the density
of F.

Lemma 5.1. Let F = (F}, ..., Fy) be a non-degenerate random vector. Then, F has a density

fr € SRY), and fr and its partial derivative 0g fF, for any multi-index 8 = (B1, B2, ..., Br) of
length k > 0, are given by

fr(x)=E[Nr=xyHa2....a0)(F)]. (5.1)

9 fr () = (=D E[NiponyHa 2....d By o p) (P (5.2)

where 1{p~x} = ]_[;izl 1(F,>x;) and the elements Hg(F) are recursively defined by

Hy(F) =1, ifk=0;
- (5.3)
j=1

Fix d natural numbers 1 < g1 < -+ < g4. We will consider a random vector of multiple
stochastic integrals: F' = (F1, ..., Fy) = (I3, (f1), ..., 14,(fa)), where f; € $H®4 . Denote

VZ(E[FlF]])lgl’Jgda deiag(qla-“aqd)
(diagonal matrix of elements g1, ..., gq)- 5.4
Along this section, we denote by N = (Ny, ..., Ng) a standard normal vector given by N; =

I1(h;), where h; € ) are orthonormal. We denote by I the d dimensional identity matrix, and by
| - | the Hilbert—Schmidt norm of a matrix. The following is the main theorem of this section.

Theorem 5.2. Let F = (Fy, ..., Fg) = (4, (f1), ..., 14,(fa)) be non-degenerate and let ¢ be the
density of N. Then for any multi-index B of length k > 0, the density fr of F satisfies

sup |3p fr(x) — g (x)| < C(|V — I+ Z \/E[F;.*] - 3(E[Fj2])2), (5.5)

xeR4 1<j<d
where the constant C depends ond,V, Q, k and || (det )/F)_1 I (k-4)2k+3-

Proof. Note that dg¢p (x) = (—l)kE[l{N>x}H(l,g,wd,,gl,52,,”,,3”(N)]. Then, in order to estimate
the difference between dg fF, and dg¢, it suffices to estimate

E[1{poxyHp(F)] = E[1{n=x} Hp(N)]

for all multi-index 8 of length & for all k > d.
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Fix a multi-index B of length k for some k& > d. For the above standard normal random
vector N, we have yy = I and §(DN;) = N;. We can deduce from the expression (5.3) that
Hg(N) = gg(N), where gg(x) is a polynomial on R4 (see Remark 5.4). Then,

|E[1{p=x)Hp(F)] — E[Lin=xy Hp(N)]|
< |E[NFrongp(F)] — E[Linv>x)8p(N)]| + E[|Hp(F) — gg(F)|]
= A1+ As. (5.6)

The term Ay = |E[1{F>x}88(F) — 1{n>x188(N)]| will be studied in Subsection 5.3 by using the
multivariate Stein’s method. Proposition 5.10 will imply that A; is bounded by the right-hand
side of (5.5).

Consider the term Ay = E[|Hg(F) — gg(F)|]. We introduce an auxiliary term Kg(F), which
is defined similar to Hg(F) with y;l replaced by (V Q)~!. That is, for any multi-index 8 =
(B1, B2, - .., Bx) of length k > 0, we define

Kg(F) =1 if k=0;
. i
Kp(F) = 8(K gy popi 0 (F)((VQ) ' DF) ) ifk> 1. G0
We have
Ay < E[|Hp(F) — Kg(F)|] + E[|Kp(F) — gg(F)|] =: A3 + Aq4. (5.8)

Lemma 5.11 below shows that the term A3 = E[|Hg(F) — Kg(F)|] is bounded by the right-hand
of (5.5).

It remains to estimate A4. For this we need the following lemma which provides an explicit
expression for the term Kg(F). Before stating this lemma we need to introduce some notation.
For any multi-index 8 = (81, B2, ..., Bk), k = 1, denote by ,B:-l ...i,, the multi-index obtained from
B after taking away the elements B;,, B;,, ..., Bi, - For example, //3\14 = (B2, B3, Bs, ..., Br). For
any d dimensional vector G we denote by Gg the product Gg, Gg, - -- Gg, and set Gg = 1 if the
length of g is 0. Denote by (S/T? 0<m< L%J) the following sets

S;t=8)=0o,
gm {(i1,82), -y (2m—1,i2m)} € 41,2, ... k}P™: 6.9
k iy <iygforl<I<mandij#i;ifl#j |’

For each element {(i1, i2), ..., (i2m—1,i2m)} € Si', we emphasize that the m pairs of indices are
unordered. In other words, for m > 1, the set S,Z" can be viewed as the set of all partitions of
{1,2, ..., k} into m pairs and k — 2m singletons.

Denote M = V_l)/FV_lQ_1 for V and Q given in (5.4) and denote M;; the (i, j)th
entry of M. Denote by Dg, the Malliavin derivative in the direction of (V-'Q~'DF)g =
V=10~ DFpg,, that is,

Dy, G=(DG,(V'Q"'DF) (5.10)

Bi )-VJ

for any random variable G € D!2.
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Lemma 5.3. Let F be a non-degenerate random vector. For a multi-index 8 = (B4, ..., Bx) of
length k > 0, Kg(F) defined by (5.7) can be computed as follows:

Kg(F) = Gg(F)+ Tg(F), (5.1
where
Lk/2]
-1
Gp(F) = Z =" Z (V F)Ei]mizm Mﬂilﬁiz ” 'Mﬁiszlﬁz'"’ (5.12)
m=0 {(i1,02),.., (2m—1,i2m) } €S}

and Tg(F) are defined recursively by

Ty(F) = (V™'F), T5,(F) — Dy, T, (F) (5.13)

- Z (V71 F),B\kip,izm D (Mg, gy, -+ Mﬁiszl pon)>

{(i1,02),..., (1.2/11—1![2/11)}65‘]:”,1
fork >22and T1(F) =T,(F)=0.

Proof. For simplicity, we write Kg, Gg and Tg for Kg(F), Gg(F) and Tg(F), respectively. By
using the fact that §((V Q) "' DF)g,) = (V™! F)4, we obtain from (5.7) that

Kg=(V~'F), K3 — D K3,. (5.14)

Bk

If k=1, namely, 8 = (81), then

Kg=(V''F), =Gg.

If k =2, namely, 8 = (81, B2), then

Kg=(V"'F), — Mpp, = Gp.

Hence, the identity (5.11) is true for k = 1, 2. Assume now (5.11) is true for all multi-index of
length less than or equal to k. Let 8 = (B1, ..., Bk+1)- Then, (5.14) implies

—1
Kg=(V F)ﬁk+l (G, + T35, ) — Dp (G, + T3, ) (5.15)

Noticing that

-1 _ -1
Dﬁk-H (V F),é’i\(k+])[1.“[2m - ) Z ) (V F)E(k"'l)j"l‘“[Zm M'Bjﬁk‘*'l’



842 Y. Hu et al. / Journal of Functional Analysis 266 (2014) 814-875

we have
Dlgk+l GB\k-H
Lk/2]
—1
=Bg+ Z (=n" Z (V F)/§(k+l)i1~~i2,,l Dgyy, (Mﬁilﬁiz "'MﬂiZm,lﬂzm)v
m=0 {G1,02), o0, G2m—1,i2m) ) ESY!
(5.16)
where we let
Lk/2]
— —_ m _1 -~ DY
Bg = Z( D Z (V F)ﬂj(kﬂ),-l__izm Mﬂjﬁk+1Mﬁi1ﬁi2 M,Bizm_|/3i2m'
m=0 {(1,02), s i2m—1,02m)} €S,

JE{L K\ {insiom)

Substituting the expression (5.16) for Dg, | G/gk“ into (5.15) and using (5.13) we obtain
Kg=(V7'F), Gz  —Bg+T,
p i1 Bt T PB T LB
To arrive at (5.11) it remains to verify

Gg=(V'F) — Bg. (5.17)

Bi+1 Birt
Introduce the following notation

cro = {61 i2), .. lam=3. izm—2), Gk + D} {1, i2), ., (i2m—3, izm—2) } € S 7'}
(5.18)

forl<m< L%J. Then, S,Z"Jrl can be decomposed as follows
S,’C”Jr] =S/ U C,’C”Jr]. (5.19)

We consider first the case when k is even. In this case, noticing that for any element in

k
{(G1,12), ..., (lom—1,0l2m)} € SkLZJ, {1,...,kN\{i1,...,i2m} = @. For any collection of indices
i1,...,l0m C{1,2,...,k}, we set

-1
¢i1 o = (V F)A Mﬁil Biz e Mﬂizm_l ﬂizm N

Then, we have

L4]-1
~Bg= ) (=" > D (k+1)i .o
m=0 {G1,02), o0, G2m—1,i2m)}ESY s

JE{L ki iom }
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14
=) (=" Z D (k-+1)iy...izm—2
m=1 {(1,2)s e G2m—3,i2m—2)} €SP,
Jell, . kN\{i1,....i2n—2}
L&
=) D" > P+ Do (5.20)
m=1 {(il,iz),---,(isza;niszz),(J'»k‘f‘])}

€Cih

where in the last equality we used (5.18) and the fact that ng = L%J since k is even. Taking

into account that (V! F)gii (vl F)B\(kJrl)ilmiz = (V*1 F)E,lmi2 , we obtain from (5.12) that

—1 e
(V7 F) g, Gy
Lk/2]
-1
= Z (_1)m Z (V F)Eir--izm M/g,.] Bip ©*" M'BiZm—l Bi * (5.21)
m=0 {G1,02), s G2m—1,02m) }ESY

Now combining (5.20) and (5.21) with (5.19) and using again |5 | = | *} | we obtain

L(k+1)/2]
(V F)/Sk+1 GlBk+1 - Bﬂ - Z (_1) Z (pll-ulZm
m=0 {G1,02)0s Gi2m—1,i2m)} €S
L(k+1)/2]

+ Y (=" > Piy.izy
m=1 {G1,02),.., (l2m—3,10m—2), (J.k+D}eC
L(k+1)/2]
= > D" > Piy.in,,
m=0 {Gi1.02), s (i2n1—lsi2m)}€S]:n+|

as desired. This verifies (5.17) for the case k is even. The case when k is odd can be verified
similarly. Thus, we have proved (5.11) by induction. O

Remark 5.4. For the random vector N ~ N (0, I), we have yy =V Q =1, s0 Hg(N) = Kg(N).
Then, it follows from Lemma 5.3 that Hg(N) = Kg(N) = gg(N) with the function gg(x) :
R? — R given by

Lk/2]
gp(x) = Z (—1)™ Z By BB Ba (5.22)
m=0

{G1,02), s G2m—1.02m) } €Y

where we used §;; to denote the Kronecker symbol (without confusion with the divergence oper-
ator). Notice that



844 Y. Hu et al. / Journal of Functional Analysis 266 (2014) 814-875
d
gp(x) =] [ Hi, (i),
i=1

where Hj, is the k;th Hermite polynomial and for eachi =1, ..., d, k; is the number of compo-
nents of § equal to i.

Let us return to the proof of Theorem 5.2 of estimating the term A4. From (5.11) we can write

Ay=E[|Kg(F) — gp(F)|] < E[|Gp(F) — g (F)|] + E[|Ts(F)|]. (5.23)

Observe from the expression (5.13) that Tg(F) is the sum of terms of the following form

)
—1
(V7'F)g, o, Db Doy - D (H Mg, ﬂ) (5.24)
i

for some {iy,...,i5, k1,.... ke, 1,01, jrs by C{1,2,...,k} and t > 1. Applying Lemma 5.5
with (2.11) and (2.12) we obtain

E[|Ts|]<C Y7 [IDFIG - aE[FP]];- (5.25)
1<I<d

In order to compare gg(F) with Gg(F), from (5.22) we can write gg(F) as

Lk/2]
gg(F)= Y (=" > gy i 86181y Siy_ Bon-
m=0 {G1,02),s (i2m—1 7i2)}l)}€S]t>n

Then, it follows from hypercontractivity property (2.11) that
E[|Gp(F) —gp(F)|[] <C(IV™' = 1|+ 1M = I]2),
where the constant C depends on k, V and Q. From Vv l_1=v-lU=V)wehave |V 1 —1|<

C|V —I|, where C dependson V. Wealsohave M — I =V ' (yp —VQ)VIQ 1+ V-1 — .
Then, Lemma 5.5 implies that

IM =12 < C(llyr = VQla+ |V =1|)

<Cl > IDEIG —aEF,+1V — 1|),
1<i<d

where the constant C depends on k, V and Q. Therefore

1
E[|G,3(F>—g,s<F>|]<C<|V—I|+ > ||||DFz||f§—611EF12||22)~ (5.26)
1<I<d
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Combining it with (5.25) we obtain from (5.23) that

1
Ay <C<|V —11+ Y [IDFI% —quFfH%)
1<I<d

where the constant C depends on d, V, Q. This completes the estimation of the term A4. O

5.2. Sobolev norms of yF_l

In this subsection we estimate the Sobolev norms of y ! the inverse of the Malliavin matrix
yr for a random variable F of multiple stochastic integrals. We begin with the following esti-
mate on the variance and Sobolev norms of (yr);; = (DF;, DFj)g, 1 <i, j <d, following the
approach of [13,16,19].

Lemma 5.5. Let F = I,(f) and G = 1,(g) with f € H°P and g € 5 for p,q > 1. Then for
all k > 0 there exists a constant Cp, 4 . such that

| DX((DF, DG) s, — VPGEIFGI)|,
1 1
<Cpgk(IFI3+IGIZ)([IDFIE = pE[F?]|; + [IDGIG — pE[G?]]5). (5.27)

Proof. Without lost of generality, we assume p < g. Applying (2.4) with the fact that DI,(f) =
plp—1(f) we have

(DF. DG)g = pa(l,—1(f). Ig-1());, (5.28)
s —1\/q—1
=pq§r!<” ) )(qr )Ip+q22r(f®r+1g)

‘ -1\ (q-1 ~
=pg) (- 1)!(f _ 1)(‘;’ _ l)lm_zr(f@rg).
r=I1

Note that E[FG]=0if p <q and E[FG] = (f, g)ser = f®,g if p=gq. Then

a —1\[q—1 ~
(DF. DG)g — /PGE(FG) = pg y (1 = 85)(r — 1)!(’: B 1) (f - 1>1p+q_2r(f®rg>,

r=1

where §,, is again the Kronecker symbol. It follows that
2
E[(DF,DG)g — \/pgE[FG]] (5.29)

P 2 2
p—1 q—1 ~
=p’q" Y (1 =8, — 1)!2(V ~ 1) (r ~ 1) P+ =20 &gl §epq-am-

r=1
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Note that if » < p < ¢, then (see also [16, (6.2.7)])
1&gl 00rg-2 < ®r 8lgepg20 = (f ®pr 8 ©g—r &) gorr
1 2 2
X E(Hf Qp—r f||_6®2r +llg ®g—r g||~6®2r)a (5.30)
andifr=p <gq,

1/ &pelienn <If ®p glieqpn < I I5erlg ®—p gllge- (5.31)

From (4.5) and (4.6) it follows that

lDFI3, - pE[F]]; = 4Z<r )'2( )(2p 20 f & f1heeram- (532)

Combining (5.29)—(5.32) we obtain
E[(DF, DG)s, — VPEIFGI]’
<Cpq([IDFIE = pE[FA] |5+ I FI3[IDGIE — pE[G?]],)-

Then (5.27) with k = 0 follows from ||||DF||55 pE[F3|, < C ||F||2, which is implied by
(2.12). From (5.28) we deduce

DY(DF, DG)s,
pAl(p+g—k)/2]
p=N\(a-1\_ptqg—2r —
= — 1! _ptg-2 .
rq ; (r )<r—1><r—1>p+q—k—2r prq—k—2r ([ ®rg)

Then it follows from (5.30)—(5.32) that

E|D*(DF.DG)s| e
pAL(p+q9—K)/2]

N’ (g—1\> (p+q-207
_ .22 2 2
=pPq E (r—1! ( _ 1) (r— 1> (p—l—q—k—2r)!”f®rg”'6®(p+q_2r>

r=I1
Cpa(IDFIG = pE[F][3 + I FIS[IDGIG - pE[G?]],).
This completes the proof. O

The following lemma gives estimates on the Sobolev norms of the entries of y, I

Lemma 5.6. Let F = (Fy, ..., Fy) = (I5;(f1), ..., 14,(fa)) be non-degenerate and let yr =
((DF;, DF})s)1<i,j<a- Set V. = (E[F; Fj])1<i, j<da- Then for any real number p > 1,

lve'll, < Clldetym)"],, (5.33)
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where the constant C depends on qi, ...,qq4,d, p and V. Moreover, for any integer k > 1 and
any real number p > 1

d
17 1., < Clldetyr) G0, SNIDENR = 4 E[F]],, (5.34)

where the constant C depends on q1,...,q4,d, p,kand V.

Proof. Let y;: be the adjugate matrix of yr. Note that Holder inequality and (2.12) imply
[(DF;. DFj)s , <IDFil2pl DFjll2p < Cv.p

for all 1 <i,j <d, p>1. Applying Holder’s inequality we obtain that the p norm of yF is

also bounded by a constant. A further application of Holder’s inequality to yF = (detyr)~! Y
yields

lve'l, < l@etym ™ |, | vill,, < Cv.pll@etym) ™", (535)

which implies (5.33).
Since F is non-degenerate, then (see [22, Lemma 2.1.6]) (yp_l)ij belongs to D for all i, j
and

d
—1 -1 —1
D" == 2 i )i i)y DGR (5.36)
m,n=1
Then, applying Holder’s inequality we obtain

DG, < v 15,107 l3p

d
<Cvp|detyr) g, SIIDFN}, — 4 E[F]
i=1

2°

where in the second inequality we used (5.33) and

d

IDyFl3p < CvpllDyrlla < Cvp Y | IDFiIIG — g E[F]|,
i=1

for all p > 1, which follows from (2.12) and (5.27). This implies (5.34) with k£ = 1. For higher
order derivatives, (5.34) follows from repeating the use of (5.36), (2.12) and (5.27). O

The following lemma estimates the difference y5 I_y-lp-1
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Lemma 5.7. Let F = (I, ..., Fy) = (U4, (f1), ..., 14,(fa)) be a non-degenerate random vector
with 1 < q1 < --- < qq and f; € H°9. Let yr be the Malliavin matrix of F. Recall the notation
of V and Q in (5.4). Then, for every integer k > 1 and any real number p > 1 we have

1
lye' =v=o ™, , <Cldetym) s, > DA —aE[FRl3. (537)
1<I<d

where the constant C depends ond,V, Q, p and k.

Proof. In view of Lemma 5.6, we only need to consider the case when k = 0 because V and Q
are deterministic matrices. Note that

yi'l=vio =yt vo -y vl

Then, applying Holder’s inequality we have

lve' =v7'o, <Cvolyr Ve = vl

Note that (2.12) and (5.27) with k = 0 imply

VO —yrl2p < Cv.opllVO—yrl2 < CVQ,]ZHHDFnﬁ qlE[Fz]H.
i=1

Then, applying (5.35) we obtain

d

1
lve' =v='e™ ', < Cav.op Y IIDFIG — @i E[F7]]3 (5.38)
i=1

as desired. O

5.3. Technical estimates

In this subsection, we study the terms A; = |E[h(F)] — E[h(N)]| in Eq. (5.6) and A3 =
E[|Hg(F) — Kg(F)|] in (5.8). For A, we shall use the multivariate Stein’s method to give an
estimate for a large class of non-smooth test functions 4.

Lemma 5.8. Let i : R? — R be an almost everywhere continuous function such that |h(x)| <
c(|x|™ 4+ 1) for some m,c > 0. Let F = (Fy,..., Fy) be non-degenerate with E[F;] = 0,
1 <i<d and denote N ~ N(0, I). Then there exists a constant Cy, . depending on m and c
such that

[E[h()] = E[hM]| < Con e (1F 13, + Z (45 (v ) j D),
ZJk 1

(5.39)
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where y;l is the inverse of the Malliavin matrix of F and
Aij =8 —(DF;,—DL™'Fi),. (5.40)
Proof. For ¢ > 0, let
o) = (e = [ 1, h)pee = )y,
R4

where p; is the standard mollifier. That is, pg(x) = 8%,,0(%), where p(x) = Cly <1 exp(mz%l)

and the constant C is such that f]Rd p(x)dx = 1. Then h, is Lipschitz continuous. Hence, the
solution f; to the following Stein’s equation:

Afe(x) = {x, V fe(X))pa = he(x) — E[he(N)] (5.41)
exists and its derivative has the following expression [16, page 82]
1

3 fe(x) = %/%E[hg(ﬁx+«/1 —tN)]dt

1

0
1
= / E[he(Vtx + \/EN)Ni]ﬁ dt. (5.42)
0
It follows directly from the polynomial growth of / that
|he ()] < Crix|™ + C2 (5:43)

for all ¢ < 1, where Cy, C> > 0 are two constants depending on ¢ and m. Then, from (5.41) we
can write

|9; fe (0)] < Cilx|™ + Ca,
with two possibly different constants C, and C». Hence,
|oi fo (F)||, < CillFll5,, 4 Ca. (5.44)
Meanwhile, note that for 1 <i <d,
E[F;d; fe(F)] = E[LL™'F;9; f:(F)]

= E[(~DL™'F;, D3 fo(F))]

d
=Y E[-DL7'F. 8 f.(F)DF;)].
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Then, replacing x by F and taking expectation in Eq. (5.41) yields

d

|E[he(F)] = E[he(N)]| = (5.45)

oF e (F)Aij]|-

Notice that

d d
(DF;, DO fo(F)) = <DFi, Za?jfg(F>DF,-> =Y 9} f-(F)(DF;, DFj)g
5]

j=1 j=1
for all 1 < i, k < d, which implies

d

0ij fe (F) =Y (v ) (D Fi, Do fo(F))

k=1

and hence

d d d
> E[9] (P Aij] = Z [ ij<Z(y;‘),kDFk,Daifa(F>> ]
i 9

= = k=1

Xd_: |:8,-fg(F)8<A,-jg(yF_l)jkDFk>:|.

Substituting this expression in (5.45) and using (5.44) we obtain

d
|E[he(F)] = E[he(N)]| = Y E[0i fo(F)8(Aij(vi ') ;y DFY)]

i,j,k=1

d
Z |3 fe (P [, ]|8 (A (v ) DFk)”z

i,j.k=1

<(CIIFL, +C2) Z [8(A; (v ") j DF) -
i,j,k=1

Then, we can conclude the proof by observing that

81135|E[h8(F)] — E[he(N)]| = |E[R(F)] — E[h(N)]],
which follows from (5.43) and the fact that 1, — h almost everywhere. O

The next lemma gives an estimate for [|6(A;; (y5 1) kD F) |2 when F is a vector of multiple
stochastic integrals.
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LemmaS$.9.Let F = (Fy, ..., Fg) = (I, (f0), ..., 1g;(fa)), where f; € $H®4, be non-degenerate
and denote N ~ N (0, I). Recall the notation of V and Q in (5.4) and A;; in (5.40). Then, for all
1<, j,k<dwe have

||5(Ai1' (VF_l)jkDFk) ”2

d 1
< C| (detyp)~! ||fz( V=114 >_|IDF|} — g: E[F?] ||§), (5.46)

i=1
where the constant C depends ond, V, Q.
Proof. Applying Meyer’s inequality (2.9) we have
”‘S(Aij(V;l)jkDFk)Hz S ”Aij(VF_l)jkDFk I, + HD(AI'J'(V;])jkDFk)Hz'
Applying Holder’s inequality and (2.12) we have
45 (v ) e DFelly < NAGIRI (v ) s LD Fela < Cav. ol il | (v ) el
Similarly, Holder’s inequality and (2.12) imply
HD(Aij(y;])jkDFk)H2
<Cav.o[IDAG Il (7 ") il + 1A IIPEY il + 1A 12 (7 ) jilla].
Combining the above inequalities we obtain
[8(Aij (i) PF) I, < CavolAih 2l (76 ) el o
Note that
1
Aij=8ij = (DFj, =DL™'F;)y =8ij — Vij + Vij — o \DE-=DFE)s.
v

Then, it follows from Lemma 5.5 that
d 1
1Aijlh.2 < Cav.o <|v — 11+ Y _|IDFII — ¢:E[F] ||§>.
i=1
Then, the lemma follows by taking into account of (5.34) withk=1. O

As a consequence of the above two lemmas, we have the following result.
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Proposition 5.10. Let i : R? — R be an almost everywhere continuous function such that
[h(x)] < c(|x]™ + 1) for some m,c > 0. Let F = (Fy, ..., Fg) = (I3 (f1), ..., 13,(fa)), where
f; € 994 be non-degenerate and denote N ~ N (0, I). Recall the notation of V and Q in (5.4).
Then

|E[h(F)] — E[h(N)]|
d 1
< C| detyp)™! H?z(w — 11+ Y _|IDFIIE — ¢ E[F}] H§>, (5.47)
i=1
where the constant C depends ond,V, Q,m, c.

In the following, we estimate the term A3z = E[|Hg(F) — Kg(F)|]in (5.8), where Hg(F) and
Kg(F) are defined in (5.3) and (5.7), respectively.

Lemma 5.11. Let F = (Fy,..., Fy) = (I4,(f1),...,14,(fs)) be non-degenerate. Let =
(B1, .., Br) be a multi-index of length k > 1. Let Hg(F) and Kg(F) be defined by (5.3) and
(5.7), respectively. Then there exists a constant C depending on d, V, Q, k such that

E[|Hp(F) — Kp(F)|]

d 1
< C||etyr) ™ (s SIDENE — g E[F]|5- (5.48)
i=1

Proof. To simplify notation, we write Hg and Kg for Hg(F) and Kg(F), respectively. From
(5.3) and (5.7) we see that

(-1 = -1
Hﬂ_KﬂZS(Hﬁk(VF DF)ﬁk_Kﬂk((VQ) DF)ﬂk)’
where B\k =(B1,..., Bx—1). Forany s > 0, p > 1, using Meyer’s inequality (2.9) we obtain

IHp — Kglls.p < Cs.p| Hz (v ' DF), — Kz (VO 'DF)y ||,
< Copl(Hz = Kg) (VO T'DF), | 1y,

+ Cs,p”HB\k((y;l - (VQ)_I)DF)ﬂk ||s+1,p'

Then, Holder’s inequality yields

IHp — Kplls.p < I1Hg, — K 5125 [ (VO T'DF), | 415,

HIHg 120 (v7 ' = (VOT)DF) |41 2

Note that (2.12) implies ||((VQ)’1DF);;,( ls+1,2p < Ca,v,0.s,p- Also note that (2.12), Holder’s
inequality and (5.37) indicate

I (()/1;1 - (VQ)_I)DF),gk ”s+1,2p <Cav,0s5pA] (detyp)™! Hi:i)sp’
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where we denote

1
A=Y |IDEIE - aE[F)3
1<I<d

to simplify notation. Thus we obtain

IHp — Kglls.p < Ca.v.0.5.p H, — K, 51,2

—1|s+2
+ Cav.0.ep Al Hg lss1.2p | (detyr) 152 (5.49)
Similarly, from Meyer’s inequality (2.9), Holder’s inequality and (2.12) we obtain by iteration

”HﬁHS,[? < CS,p” HEk (VI‘TlDF)ﬂk ||s+1,p

—1s+2
< Cav,0..pI Hz lls+1.2p] @etyr) ™[5 s,

—111k(s+k)
< Cav,0.5pkdetyr) ™ (e, (5.50)

Applying (5.50) into (5.49) and by iteration we can obtain

—111k@s+k+2
IHp = Kglls.p < Cav.0.5pk | (@etyr) ™ o ris s, A

Now (5.48) follows by taking s =0, p =2 in the above inequality. O
6. Uniform estimates for densities of general random variables

In this section, we study the uniform convergence of densities for general random variables.
We first characterize the convergence of densities with quantitative bounds for a sequence of
centered random variables, using the density formula (3.10). In the second part of this section, a
short proof of the uniform convergence of densities (without quantitative bounds) is given, using
a compactness argument based on the assumption that the sequence converges in law.

6.1. Convergence of densities with quantitative bounds

In this subsection, we estimate the rate of uniform convergence for densities of general random
variables. The idea is to use the density formula (3.10).
We use the following notations throughout this section:

w=(DF,-DL™'F),,  a=-w"'DL”'F.

The following technical lemma is useful.
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Lemma 6.1. Let F € D> with s > 4 such that E[F] =0 and E[F*] = c>. Let m be the largest
even integer less than or equal to % Then there is a positive constant Cy, such that for any t < m,

|w—o?|, <[®—0?|,, < Cull DBl < Cull DBl 2 (6.1)

Proof. It suffices to show the above second inequality. From the integration by parts formula in
Malliavin calculus it follows

o® = E[F?] = E[(DF, -DL™'F) ] = E[w].

Note that from (3.9) and (3.13) we have w € D! 3. Then the lemma follows from the following
infinite-dimensional Poincaré inequality [16, Lemma 5.3.8]:

E[(G - EIG])"] < (m — )"E[IDG|3],
for any even integer m and G e D', O

The next theorem gives a bound for the uniform distance between the density of a random
variable F' and the normal density.

Theorem 6.2. Let F € D> with s > 8 such that E[F] =0, E[F*] = 0. Suppose M" :=

E[|lw|™"] < oo, where w = (DF, —DL_1F>5:J and r > 2. Assume % + ;—‘ = 1. Then F admits
a density fr(x) and there is a constant C, 5 5.y depending onr,s,o and M such that

6.2)

su£|fF(x> W[ < CrsomlFITNID?F,, 1o,
Xe

where ¢ (x) is the density of N ~ N (0, 0%) and ||D2F||0p indicates the operator norm of D*F
introduced in (3.9).

Proof. It follows from Proposition 3.3 that F* admits a density given by fr(x) = E[1{F>}6()].
Then

sup | fr(x) — )| = suﬂg|E[1{F>x}8<ﬁ)] — o 2E[1nsxN1|. (6.3)

Note that, from (2.7)
8(it)y =8(-DL™'Fo "y =Fu ' +(Dw~ ', DL7'F),.
Then

|E[0%1p>x)8@0)] — E(lin>xN]|
<E[|[Fu!(o? —w)[]+oE[|(Dw~", DL™'F)|]
+ |E[F1{p=x) — Nlin=y]]. (6.4)
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Note that for t = (% + %)_1, we have % —t > 2, so there exists an even integer m € [¢, %]. Also,
we have % + % + % = 1. Then, we can apply Holder’s inequality and (6.1) to obtain

E[[Fa~! (@ - o) ] <IFIs o~ o —o?],

< Crsl Flls |~ 1Dw]s 2. (6.5)

Meanwhile, applying Holder’s inequality and (3.7) we have

E[[o(Dw, DL F)g[] < @~ 1Dwils | DLT'F
< o2 IDd | IDF . (6.6)
Also, applying Lemma 2.2 for h(y) = y1{y>x) and (6.1) we have
|E[F1p-x — Nlysx1| < Co||0® — 0], < Co | D |52 (6.7)
Applying the estimates (6.5)—(6.7) to (6.4) we have
|E[0*15-x8(i)] — E[ln>xN1| < Crsom || Fll1s 1 D5 2. (6.8)

Combining (6.3), (6.8) and (3.13) one gets

sup| fr () = (0| < Creoml FI (| | D?F ], |-

xeR

This completes the proof. O

Corollary 6.3. Let {F,,},en C D% with s > 8 such that E[F,] = 0 and lim,_ E[Fnz] =2
Assume E[Fnz] > 6§ > 0 foralln. Forr > 2 such that % + % =1, assume

(i) My =sup, [|Fall1,s < 00.
(i) My =sup, E(DF,,—DL™'F,)¢|™" < o0.
(iii) E|D?Fy|5, — 0asn— oo.

Then each F, admits a density fF,(x) and
sup| fr, (¥) =9 )| < (|| D*Ful, |+ |E[Fy] = o7]). (6.9)
XE

where the constant C depends on o, M|, M> and §. Moreover; if M3 = sup,, || F,|l2s < 0o, then
foranyk > 1and o € (%, k),

k—a
k

15, = Slisey < CUID ] |+ | E[F2] - 02)) T

where the constant C depends on o, M1, M>, M3, o and §.
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Remark 6.4. By the “random contraction inequality” (3.9), a sufficient condition for (iii) is
¢ /2 .
E|D2F, ® D*F,|}/2, = 0 or E|D?F, % o, — 0.

Proof of Corollary 6.3. It follows from Theorem 6.2 and Proposition 3.3 with an argument
similar to Corollary 4.3. O

6.2. Compactness argument

In general, convergence in law does not imply convergence of the corresponding densities
even if they exist. The following theorem specifies some additional conditions which ensure that
convergence in law will imply convergence of densities.

Theorem 6.5. Let {F,},cn be a sequence of random variables in D** satisfying any one of the
following two conditions:

SUp || Fll2.s + sup [| Full2p + sup || I DF, 157, < o0 (6.10)
n n n
. . 1 1 1
for some p,r,s > 1 satisfying s rrts= 1, or
_ —1
sup || Fy 12, + sup|||[(DF,, —DL an)ﬁ| |, <oo 6.11)
n n

for some r, s > 1 satisfying % + % =1
Suppose in addition that F,, — N ~ N(O, o2) in law. Then each F, admits a density fr, €
C(R) given by either (3.1) or (3.10), and

sup| fr, (x) — ¢ (x)| > 0
xeR

as n — oo, where ¢ is the density of N.

Proof. We assume (6.10). The other condition can be treated identically. From Theorem 3.1 it
follows that the density formula (3.1) holds for each n and for all x, y € R,

|fr, 0| < C(1AxT?),
| i, (0) — fr, ()] < Clx — y|7.

Hence the sequence { fF,} C C(R) is uniformly bounded and equi-continuous. Then applying
Azela—Ascoli theorem, we obtain a subsequence { f F"k} which converges uniformly to a contin-

uous function f on R such that 0 < f(x) < C(1 A x~2). Then fF, — fin LY(R) as k — o0
with || fll 1 ) = limg ||ank 21wy = 1. This implies that f is a density function. Then f must
be ¢ because F, converges to N in law. Since the limit is unique for any subsequence, we get

the uniform convergence of fr, to¢. O

Corollary 6.6. Let { F,},en be a sequence of centered random variables in D** with the follow-
ing Wiener chaos expansions: F,, = Z;o:] Jy Fy. Suppose that
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(i) limg o0 limsup,,_, o ZZO o+1 EllJg Fy 121=0.

(i1) foreveryq 1 lim, - o0 E[(JqF) ]_a

(iii) Zq 1Uq =02

(iv) forallqg >1, (D(Jan), D(JyFy)) s —> qo2, in L?(2) as n — oo.
(V) sup,, || Full2.4 + sup, E[| DFyll %] < oo.

Then each F, admits a density fr,(x) and

w@ﬁﬂm—¢uﬂ+0

as n — oo, where ¢ is the density of N(0, o2).

Proof. It has been proved by Nualart and Ortiz-Latorre in [23, Theorem 8] that under conditions
(1)—(iv), F, converges to N ~ N(0, 02) in law. The condition (v) implies (6.10) with s = 4,
p =2, r =4. Then we can conclude from Theorem 6.5. 0O

7. Applications

The main difficulty in applying Theorem 4.1 or Theorem 5.2 is the verification of the
non-degeneracy condition of the Malliavin matrix: sup, E[||DF, ||;3p ] < o© or
sup,, E[|detyr, |~P] < oo, respectively. In this section we consider the particular case of random
variables in the second Wiener chaos and we find sufficient conditions for
sup, E[||DF, ||5_§p ] < co. As an application we consider the problem of estimating the drift pa-
rameter in an Ornstein—Uhlenbeck process.

A general approach to verify E[G~?] < oo for some positive random variable and for some
p = 11is to obtain a small ball probability estimate of the form

P(G <¢&) < Ce* forsomea > p and forall ¢ € (0, &), (7.1)

where g > 0 and C > 0 is a constant that may depend on &y and . We refer to the paper by
Li and Shao [10] for a survey on this topic. However, finding upper bounds of this type is a
challenging topic, and the application of small ball probabilities to Malliavin calculus is still an
under-explored domain.

7.1. Random variables in the second Wiener chaos

A random variable F in the second Wiener chaos can always be written as F' = I(f) where
f € $H92. Without loss of generality we can assume that

f=) hiei®ei, (7.2)

where {A;,i > 1} verifying |A1| = |Az2| = -+ = |Ay] = -+ - are the eigenvalues of the Hilbert—
Schmidt operator corresponding to f and {e;, i > 1} are the corresponding eigenvectors forming
an orthonormal basis of §). Then, we have F = I,(f) = Z?i] A (1 (e))* — 1),
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o
DF =2 Zm] (e1)e; (7.3)
i=1

and

oo
IDFIIg =4 A71i(e)*. (7.4)
i=1

For random variables of the form in (7.4), i.e., G = (Z?il A?Xiz)%, Hoffmann-Jgrgensen,
Shepp and Dudley [6] used the volume of the small ball B, (0, ) (the R" ball centered at 0 with
radius ¢) to control P(G < ¢) as

n n
P(G<e) < P(ZA%XI-Z < e2> < (2m)" 26" B, (0, 1) ]’[A;l. (7.5)
i=1

i=1

They proved that P(G < ¢) converges to zero at the rate O (e") for all n as ¢ — 0, under some
implicit conditions on {X;,i > 1}. This idea can be used here to prove inequality (7.6) in the
following lemma. However, our case is much simpler, and we shall use the Gamma function to
give an alternative proof which leads to a necessary and sufficient condition for E[G™?] < oo.

Lemma 7.1. Let G = (Z;’il)»%Xiz)%, where {A;}i>1 satisfies |Ai| = |Aiy1| for all i > 1 and
{X;}i>1 arei.i.d standard normal. Fix an a > 1. Then, E[G™2] < 00 if and only if there exists
an integer N > 2« such that |Ay| > 0 and in this case there exists a constant Cy depending only
on a such that

E[G™*] < CaN~*|ay|"2. (7.6)
: —o _ _1 o0y a1 —tX?9_ 1 :
Proof. Notice A% = ) fo e y*=ldy and E[e7 %] = T for all ¢ > 0. If there exists

N > 2a such that [Ay]| > 0, then

N —u o0
—2a 2y2 _ 1 f D IEPYS IS
E[G ]<E[<§MXI-) :|_1"(oz)E VAEXE ya g

0
1 N |
=—— |y T +222y) 2 ay. 7.7
F(a)ofy i|:|1( 7y) 2dy (71.7)

Since A% is non-increasing in i and N > 2«, using the change of variables 1 + 2)»%, y =z we have
o N o0
N
/y“f—ll_[1+zx2 /y (1+22%y) 2 dy
0 0

i=1

o
=(@3)™ /(z R
1
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o T (5 -
I'(N/2)
which implies (7.6).
On the other hand, if |A;| = 0 for all i > 2«, let N < 2« be the largest nonnegative integer

such that |Ax| > 0. Then, the inequality in (7.7) becomes an equality. Using again that {)»1.2},'21
is a decreasing sequence we have

00 N 1 00

N

/y 1_[ —}—ZAZ 2dy +2A2 _7</y°‘ ldy—}—/ 2dy):oo,
0 i=1 0 1

and we conclude that E[G 2] = oc. This completes the proof. [

The following theorem describes the distance between the densities of F = I>(f) and
N(0, E[F2]).

Theorem 7.2. Let F = L (f) with f € 2 given in (7.2). Assume that there exists N > 6m +
6(|_%J Vv 1), for some integer m > 0, such that Ly # 0. Then F admits an m times continuously

differentiable density fr. Furthermore, if ¢(x) denotes the density of N(0, E[F?]), then for
k=0,1,...,m,

sup|f(k)(x) p® ()] < c(Zx“) < C(E[F*]-3(E[F?))? )7

i=1

where the constant C depends on N and Ay.

Proof. Taking into account of (7.4), we have

o0 2 o0
Var(|DF|I5) = E[4) 27 (ILi(e)* —1)| =32) . (71.8)
i=1 i=1
From (7.4) and Lemma 7.1 it follows that
E[IDFIIS"] < CopnN PP lanI P, (7.9)

for all B < N. Then, the theorem follows from Theorem 4.4, taking into account (7.8). O
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Now we are ready to prove convergence of densities of random variables in the second Wiener
chaos. Consider a sequence F,, = I>(f,) with f, € $©2, which can be written as

o0
fo= dnieni®en, (7.10)
i=1

where {A, ;,i > 1} verifies |A, ;| = |An.i4+1]| forall i > 1 and {e, ;, i > 1} are the corresponding
eigenvectors.

Theorem 7.3. Let F,, = I>( f,) with f, € $HO? given by (7.10). Assume that {Ay i}n.ieN Satisfies

() o2 :=2lim,_ oo Zl ])Lnl > 0;
(i) limy—oo Y oy )Ln ;=05
(iii) inf, (supi>6m+6(ijl) [An.i |\/lT) > 0 for some integer m = 0.

Then, each F, admits a density function fr, € C™(R). Furthermore, fork =0,1,...,m and
if ¢ denotes the density of the law N (0, o?), the derivatives of f g’:) converge uniformly to the

derivatives of ¢ with a rate given by
1
o
sup| £ (x) — ¢ ()] < CKZAL) 22An P - }
xeR i=1

where C is a constant depending only on m and the infimum appearing in condition (iii).

Proof of Theorem 7.3. Note that E[(}(e,,1)*> — 1)(I1(en, j)* — 1)] = 25;;. Thus,

o]

1
> i = fallfer = S E[F7]-

i=1
Then, the result follows from (7.8), (7.9) and Corollary 4.6. O

Condition (iii) in Theorem 7.3 means that there exist a positive constant § > 0 such that for
each n we can find an index i (n) > 6m + 6(L%J Vv 1) with A ;) |v/i(n) 2> 6.

Remark 7.4. It is interesting to compare Theorem 7.3 with the case when

Ani=1 V1

{L if 1 <i <nmy
0 ifi>n+1,

which corresponds to classical case of sum of independent and identically distributed random
variables. In this case all the conditions of Theorem 7.3 are satisfied with o> = 2. Moreover
we have ) 22 Api = % and Y 2, kﬁ ; = 1. Then we obtain a Berry—Essen type bound for the
derivatives of the density. Namely, we have sup,.p | f gj) x) —p® ()] < C for sufficiently
large n, which provides the right rate of convergence.
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7.2. Parameter estimation in Ornstein—Uhlenbeck processes
Consider the following Ornstein—Uhlenbeck process

t

X, =—9/Xsds+th,
0

where 6 > 0 is an unknown parameter, y > 0 is known and B = {B;, 0 <t < oo} is a standard
Brownian motion. Assume that the process X = {X;, 0 < < T} can be observed continuously in
the time interval [0, T']. Then the least squares estimator (or the maximum likelihood estimator)
fT X, dX,
f) X2 ar
or converges to 6 almost surely and

of 0 is given by §T = . It is known (see for example, [11,9]) that, as T tends to infinity,

. TF
VT @r —0) = ———— £ N(0,20), (7.11)
fo X?dt
where
T T
FT=12(fT)=//fT(f,S)dest, (7.12)
00
with
y? flr—s|
t,s) = ——e V=Sl 7.13
fr(,s) 2T (7.13)

Recently, Hu and Nualart [7] extended this result to the case where B is a fractional Brownian
motion with Hurst parameter H € [%, %), which includes the standard Brownian motion case.

Since % fOT th dt — %yzé_l almost surely as 7' tends to infinity, the main effort in proving

4
(7.11) is to show the convergence in law of Fr to the normal law N (O, ’2/—9). We shall prove
that the density of Fr converges as T tends to infinity to the density of the normal distribution

4
N, %)

Theorem 7.5. Let Fr be given by (7.13) and let ¢ be the density of the law N (0, o?), where

o2 = ’2/—;. Then for each T > 0, Fr has a smooth probability density fr, and for any k > 0,

k _1
sup| £ (x) — ¢ (v)| < €T 2,
xeR

where the constant C depends on k, y and 6.
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Before proving the theorem, let us first analyze the asymptotic behavior of the eigenvalues
of fr. The Hilbert space corresponding to Brownian motion B is $ = L%([0, T]). Let Qr :
L?([0, T]) — L?([0, T]) be the Hilbert-Schmidt operator associated to fr, that is,

(QT¢)(I)=ffT(t»S)¢(S)dS (7.14)
0

for ¢ € LZ[O, T]. The operator Q7 has eigenvalues Ar,1 > Ar2 > --- >0 and Z Tl < 0.
The following lemma provides upper and lower bounds for these eigenvalues

Lemma 7.6. Fix T > 0. Let fr be given by (7.13) and Qt be given by (7.14). The eigenvalues
At of Ot (except maybe one) satisfy the following estimates

y?0 y?0
I D <ATG < — (7.15)
VT 02+ (5F2)?) VT (6% +( TZ)?)

Proof. Consider the eigenvalue problem Q¢ = A, that is,

T t T

2
/fﬂt,s)rp(s)ds: 2”7</e—9<f—%(s)ds+/e—9<‘—”¢(s)ds) =xp(1). (7.16)

0 0 t

Then, ¢ is differentiable and

v’ | 0= (s ds—i—fT 6=y (s ds) =g/ (t 7.17
2J_< / @(s) , o(s) @ (1) (7.17)
Differentiating again we have
ﬁ(—2¢(l)+9/€60s)fp(s)dS-i-@/Tee(St)(p(s)ds) — g (1)
2T J )

Comparing this expression with (7.16), we obtain

2
(92— y—) 1) = ¢ (0). (7.18)

Also, from (7.16) and (7.17) it follows that

9(0) =0¢'(0), @(T) =—0¢'(T). (7.19)
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Egs. (7.18) and (7.19) form a Sturm-Liouville system. Its general solution is of the form

@(t) = Cysinut + Cpcos ut,

where C and C, are constants, and p > 0 is an eigenvalue of the Sturm-Liouville system. By
eliminating the constants C| and C> from (7.18) and (7.19) we obtain

(7.20)

Then, the desired estimates on the eigenvalues of Q7¢ = A¢ will follow form estimates on p.
Note that the Neumann condition (7.19) yields

(;1,202 — 1) sinuT =2ubcosuT.
If we write x = 16 > 0 (since u, 6 > 0), the above equation becomes

(¥ —1)sin =T =2xcos = T.
0 0

The solution x = 1 corresponds to the eigenvalue p = %. If x # 1, then cos 57 # 0 and

2x
x2-1

X
tan—-T = (7.21)
0

For any i € Z, there is exactly one solution x; to (7.21) such that %T € (imr — %, im + %).
Corresponding to each x; is an eigenvalue pu; = % of the Sturm-Liouville system, satisfying
in—% in+%
—= <y <

satisfies the estimate (7.15). O

. The corresponding eigenvalue A; of Q7 obtained from Eq. (7.20)

Proof of Theorem 7.5. For each T, let us compute the second moment of Fr,

T

T
E[F] =151l = [ [ fre.9? dsar
0

0

4 T ¢t
_r / f e=200=5) g gt
4T
00
— jal V_4(1 — 72T
20 80T '

Also, noticing that Fy = I (fr) = 8%(fr) and

DyD,F} =3Ff fr(t,s) + 6Fr L (f(.0) ® L (£ (-, 5)),
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and using the duality between § and D, we can write

E[F]=E[{fr, D*F})ge]
=3E[F}{fr. fr)ge] + 6E[Fr(frt.s). h(fr(.0) @ h(fr(.9))ge]

—3(E[F))" +64.

where

A=E[Fr{fr@,s), hi(fr(.0) @ h(fr(.s)))ge]
= {fr@,v), (fr,s), fr, 0 ® frv,))ge)ge

8TTTT
_ Y ////KMmewwﬂwmwmmw.
1672
0000

Because the integrand is symmetric, we have

T u v K

8
A:—L—m/du/dvfdﬂ/MeJM“0<CTq.
1672

0 0 0 0
Then, in order to complete the proof by applying Corollary 4.6, we only need to verify that con-

dition (iii) of Theorem 7.3 holds for any integer m > 1, which implies the uniform boundedness
of the negative moments

sup E[||DFT||5’3] <00
T>0

for any g > 0. Fix 8 > 0, and for each T, leti(T) = |8 + 1] + [T . Then, the lower bound in
(7.15) yields

Oa

i > ViDy? /o NIye y?/0 .
sl = : = . =
VT4 (B2 ™ YT+ (HP)2425) ~ maxpio)-1<<18()

where in the last inequality we made the substitution r—! = @ and set

2
g(r):= ﬁ(l +r24g—2>.

This implies condition (iii) and the proof of the theorem is complete. O
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7.3. Multidimensional case

Now we give an example for random vectors. Let X = {X (h), h € $} be an isonormal Gaus-
sian process associated with the Hilbert space ). Suppose that {e;;,1 <i <d,j>1}is a
sequence of orthonormal elements in $). Set ex = (e1x, ..., eqr) for any k > 1. Let A, be a
sequence of d x d invertible matrices such that A, — I as n — oo. For any k > 1 define

Elnk ek
Enk = = Ap
Eank ek

and, forany j =1,...,d set

/"_Z)”/”kh jnk Z)‘jnk jnk — ||$/nk||]
k=1

where éjnk = 11(&juk) = X(&juk) and A i are real numbers which will be specified later. We
plan to use Theorem 5.2 to study the convergence of the random vectors F,, = (Fi,, ... Fg4,). For
this we can follow the approach of Section 7.1, the main extra work being to prove the existence
of a uniform bound for the negative moments of the Malliavin covariance matrices. We have

00
Dan =2 Z Ajnkéjnké:jnk-
k=1

Thus

o0
(DFiy, DFjp) g =4Z)»ink)»jnk§mk§jnkaijn, (7.22)
k=1

where «;j, is the (7, j)th entry of the matrix o, = A,,AZ. Consider the matrix S, :=
(Bijn)1<i,j<a given by

o
Bijn =4 Z Nink jnkEinké jnk-
k=1
Then from (7.22), we see that (D F;,, DFy,) = ((DFin, DFj;)5)1<i, j<d 1s the Hadamard product
of the nonnegative definite matrices «,, and §,. By the Oppenheim’s inequality for Hadamard

product, and taking into account that det(w;,) converges to one, there exists a constant ¢ > 0 such
that

d d
det(<DFn, DFn)) = det(arn) 1_[ ﬁjjn =c l_[ IBjjn,
j=1 j=1

for all n. Note B, = 42,?; A?nk(éjnk)z and &j,x — ejr. Thus we can follow Section 7.1 to
verify the conditions that allow us to apply Theorem 5.2. We will write down the theorem and



866 Y. Hu et al. / Journal of Functional Analysis 266 (2014) 814-875

omit the details. In the following we denote by ¢, the density of the law N (0, diag(olz, ey aj))
and g, - -+ O, f(x) = %f(x) with |a| = o) + -+ + ag.
dx| ' 0xy

Theorem 7.7. Let A, be a sequence of d x d invertible matrices such that A, — I and let

Fy = (Fin, ..., Fqn) be defined as above. We assume the A i satisfy the following conditions
forany 1 < j <d.

@) O'2 =1limy, o Z](:o 1 )“%nk > 0;
(ii) hmn_)OO hyad 1)‘ ar =05
(iii) lnfj,n(supk>6m+6(|_%Jvl) |)»j,1k|«/%) > 0 for some integer m > Q.

Then, each F, admits a density function fr, € C™ (RY). Furthermore, for any o =
(@1, ..., 0q), with |a| < m, the derivatives of 3y, - - - 04, fF, converge uniformly to the derivatives
of 0y, - -+ 09, P With a rate given by

1
2j|
>

where C is a constant depending only on m and the infimum appearing in condition (iii).

jnk

d 00
Sup|aal Oy JF, (X) — Og "'aad(ba(x)’ < CZ[(Z)‘]nk)

xeR
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Appendix A

In this section, we present the omitted proofs and some technical results.

Proof of Lemma 2.1. Since [ {h(y) — E[h(N)]}e™>"/27") dy = 0, we have

X

[ {ho = )12 dy = = [ (o) = E[pn ]/ dy.

—o0
Hence

X

/ {h() — E[R(N)]}e ™"/ dy

—0o0

o
< /[ayk +b+ E[h(N)|]e™"/C) gy,

x|

By using the representation (2.18) of f;, and Stein’s equation (2.15) we have

X

/ [h() — E[R(N)]}e ™"/ ay

—0o0

| fr ()] < [h(x) — E[R(N)]| + |U| ¥2/(20?)
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1 9]
2 2 2 2
<alx[F+b+ E[R(N)| + ¢ /@0 )/y[ayk +b+ E|h(N)|]e™ /7 dy

|x]

1
=alx|*+ (b + E|h(1v)|)<1 + psl(x)) + %skﬂ(x), (A.])

where we let s;(x) = ex'/o) ./\zT yke_yz/(Zaz) dy for any integer k > 0.
Note that E|h(N)| <aE|NK +b < Crack + b and

e¢]
2

A
Sl(x):ex2/(2<72)/ye 252 dy=c72

X
for all x € R. Using integration by parts, we see by induction that for any integer k > 1,

o
Sea1 (x) = /20D / Yt gmy2/@oh) 4y
x|

o0
_ g2et 0 / Vd(—e 1)
[

= 62[|x|k +k sk_l(x)].

Then if k > 1 is even, we have

k
st+1(0) < Cro?[[x 40?24 0F 25 ()] < Cro? Y okl
i=0
If Kk > 1 is odd, we have
k
sip1 () < Ceo? [l + o2 x4 o (1) 4 50(0) ] < Co? Yot
i=0

where we used the fact that so(x) < so(0) = \/go for all x € R (indeed, when x > 0 we have

2
g _
s(’)(x) — %eﬂ/(zzﬂ) fxoo e_yz/(2a2)dy -1« ex2/(2g2) fxoo Gy_ze 202 dy — 1 = 0; similarly when

x <0, s(/)(x) > 0). Putting the above estimates into (A.1) we complete the proof. O

Proof of Lemma 3.5. We shall prove these properties by induction. From 77 = 7> =0, (3.17)
and (3.19) we know that T3 = D26, with J3 = {(0,0, 1)}; and Ty = 8, D28, + D28, with Jy =
{(1,0,1,0), (0,0,0, 1)}. Now suppose the statement is true for all 7; with [ <k — 1 for k > 5.
We want to prove the multi-indices of T} satisfy (a)—(c). This will be done by studying the three
operations, 8, Ti—1, D, Tx—1 and 9, Hx—1(D, 4, Su)D,%SM, in expression (3.19).
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For the term 9y Hy—1 (D4, SM)DL%S,,, we observe from (3.17) that

R Hi1(Dubu, 8)D38, =Dy Y icko1i8y T T (Dudy)
I<iSLk=1)/2]

whose terms have multi-indices (k — 1 —2i,i — 1, 1,0,...,0) € N* for 1 <i < [%5}]. Then, it
is straightforward to check that these multi-indices satisfy (a), (b) and (c).

The term &, T shifts the multi-index (ig, iy, ..., ix—2) € Jy—1 to (ip+1,i1,...,ix—2,0) € Nk,
which obviously satisfies (a), (b) and (c), due to the induction hypothesis.
The third term D, Tj;_; shifts the multi-index (ig,iy,...,ix—2) € Jr_1 to either o =

(o—1,i1+1,...,ix—2,0)eNFifig>1,orto

(0,01, nijyg— Lijoe1 +1,...,ik—2,0), forl < jo<k—3;
A Govityenijg— 1,1, for jo=k — 2,

if ij, > 1. Itis easy to check that 8 satisfies properties (a), (b) and (c) and « satisfies properties
(b) and (c). We are left to verify that « satisfies property (c). That is, we want to show that

k=2 k—1
1 < —— |. A2
rZe 5] w2

If k is odd, say k = 2m + 1 for some m > 2, (A 2) is true because (ig, i1, ..., ix—2) € Jyr—1, which
implies by induction hypothesis that Z _1 [ < Lk 2| =m —1.If k is even, say k =2m + 2,

(A.2) is true because the following claim asserts that if ip > 1, then Zk 2 1ij < L%J =m
Claim. For (io. i1, ....ioam) € Jym1 withm > 1, if Y72 i; = m then ig = 0.

Indeed, suppose (ig, i1, ..., i2m) € J2m+1, Z] (ij =m and ip > 1. We are going to show

that leads to a contradiction. First notice that i; > 1, otherwise i; = 0 and Z = ij =m, which
is not possible because

2m
io+2m <io+ Y ji; <2m.
j=1

Also, we must have iy, = 0, because otherwise property (a) implies iy, = 1 and ip =i =

=iy3n—1 = 0. Now we trace back to its parent multi-indices in J»,, by reversing the three
operations. Of the three operations, we can exclude 9, Hy,, (D,4,, 8M)D38u and 6, T5,,, because
oy Hopm (D, 6y, 8y )D 8, generates 2m — 2j,j —1,1,0,...,0) with 1 < j < m, where j must
be m; and 6, Ty, traces it back to (ig — 1,i1,...,iun—1) € Jom, Where i1 + -+ +ipp_1 =m >
Lzm i ]. Therefore, its parent multi-index in J>,, must come from the operation D, T2m and hence
mustbe (ig+1,i1 — 1,...,i3n—1) € Jomm. Note that for this multi-index, i; — 1 4+ -+ ipp_1 =
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m — 1. Repeating the above process we will end up at (ig +i1,0,i2...,i2m—i;) € Jans1-i; With

i + -+ +i2n—i; =m — i1, which contradicts the property (b) of J2,,4+1—;, because
2m—ij
io+2m—ii<ig+ir+ Y jij<2m—ii. O
j=2

Recall that we denote Dprw~! = (Dw™!, DF)g and DDFw (D(DDF w1, DF)g
for any k > 2. The following lemma estimates the L”(£2) norms of D DFW -1

Lemma A.l. Let F = 1,(f) with q > 2 satisfying E [F2] = o2. For any B > 1 we define and
Mp = (E|IDF|[)"/P. Setw = | DF 3.

(i) If Mg < oo for some B > 6, then for any 1 <r < %
[Dorw], < CM}q0” ~ w], (A3
(i) Ifk =2 and Mg < oo for some B > 2k + 4, then for any 1 < r < ﬁ+22§+4
[0, < o™ v ) (MEP v 1) g0® ~ w],, (A%
(iii) Ifk > 1 and Mp < 0o for any B > k +2, then for any 1 <r < £
Db, < Clo™ v 1) (M v 1), (A5
Proof. Note that Dprw ™! = (Dw™!, DF)s = —2w™?(D*F ®| DF, DF). Then

|Dprw!| <2w™3|D?F ® DF| .

Applying Holder’s inequality with % = % + % yields

[Dorw!], <2(E@w¥))7 |2

which implies (A.3) by choosing p < B/3 and taking into account (4.3). Notice that we need

B+6
123> 54+5="57

Cons1der now the case k > 2. From the pattern indicated by the first three terms,

Dprw™' =(Dw™', DF),

Dppw™' =(D*w™!, (DF)®?)q, + (Dw™' ® DF, D*F)

‘6®27

Dppw = (Dw ! (DF)®) s +3(D*w™" ® DF, D’F ® DF)

f)®3

+(Dw™' ® D’F, D’F ® DF)¢ o3 + (Dw™' ® (DF)®*, D*F) o5,



870 Y. Hu et al. / Journal of Functional Analysis 266 (2014) 814-875

we can prove by induction that

k
|DDFw-1|<c2||wa-lr|ﬁ®;nDFni~,( 3 nanFnﬁ@,)
>

i=1 yij=k—iJ 1

By (2.12), forany p > 1, || D/ F||, < C||F |2 = Co. Applying Holder’s inequality and assuming
that s > r, we have,

k

|Dprw™ ], <C Y|P w™ g IDFIG | 0" (A6)
i=1

We are going to see that | DF ||i6 will contribute to compensate the singularity of || D'w ™! || 8-
First by induction one can prove that for 1 <i < m, D'w™! has the following expression

Z( 1)l Z w—(l+l)® D“/F(X)] D/S]F) (A7)

(o, B)eliy
where 1;; = {(o, B) e N? :ot; + B; > 3, le=1(05j + Bj) =i +2l}. In fact, fori =1,

Dw !'=—-2w?D?*F ®, DF,

which is of the above form because /1 1 = {(1, 2), (2, 1)}. Suppose that (A.7) holds for some
i <m —1.Then,

i 1
Dyt =32+ Y w P (D?F® DF)Q)(D* F @1 DPIF)

=1 (. B)eliy Jj=1

i l
+Z(_1)l Z w—(l+1) Z(Dﬂlj-‘rlF ®1 D'S]F+Da/F ®1 D/Sj+lF)
=1 (.B)el;y h=1
l
x ) (D*F® DFIF),

j=L,j#h
which is equal to
i+1 I
S Y wth@mare i)
=1 (e, B)elit1.1 Jj=1
From (A.7) forany i =1, ...,k we can write

i 4 I
| D'w g IDFI <Y w0 Fs 3 T DY F @ DI F| jeujp2, (A8)
I=1 (w.p)eliy j=1
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where I;; = {(o, ) e N! x N o + B > 3, Z’J.:l(aj + B;) =i + 21}. Note that by (2.12),
|D% F & DﬂfF||p <C|F|}=Co?

forall p > 1and all &, B;. This inequality will be applied to all but one of the contraction terms
in the product ]_[ljzl || D% F Q1 DI F ”ﬁ®aj +j—2. We decompose the sum in (A.8) into two parts.
If the index [ satisfies [ < ’5 — 1, then the exponent of w is nonnegative, and the p norm of w can
be estimated by a constant times %, while for lz — 1 <[ this exponent is negative. Then, using
Holder’s inequality and assuming that % = % + %, we obtain

127w geil DF I |

< C<1{i>2}0i_2 + 3wt

L—1<igi

)0 E e DL (a)

Notethatforlgi<k,l+l—%<§+1.Theref0re,f0r%—1<l<i,

Jw =D+ I, = ;f;zljé)p <ML, <M, v 1
Therefore, using (4.3) we obtain
10w |l DFI [, < (02 v 1) (155, v )lgo> ~wl, (A0

Combining (A.10) and (A.6) and choosing p such that (k + 2) p < B we get (A.4). Note that we
need

1 k42 1 B+2%+4
1>—>—+—:—’
r B 2 2B

which holds if 1 < r < %. The proof of part (iii) is similar and omitted. O
The next lemma gives estimates on D’,j 8, fork > 0.

Lemma A.2. Let F = I,(f) with q > 2 satisfying E[F?) =02 Forany B > 1 we define Mg =
(EIDF| )P and denote w = | DF|2,.

(i) If Mg < oo for some B > 3, then for any 1 < s < %
18ulls < C(o? v 1) (Mj v 1). (A.11)
(i) Ifk =1 and Mg < oo for some B > 3k + 3, then forany 1 <s < #

| Dsu |l < Co (M5 v 1). (A.12)
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(iii) Ifk > 2 and Mg < oo for some B > 6k + 6, then for any 1 <s < /3+6€+6’

| DEsu ||, < Co (MF v 1) [go® —w,. (A.13)
Proof. Recall that 8, =g Fw™' — Dprw™!. Then for any r > s,

18ulls < C(o|w™"| + | Dprw™],)-

Then, |w~!||, = M3 and the result follows by applying Lemma A.1(iii) with k = 1 and by

: B
choosing r < 5.

To show (ii) and (iii) we need to find a useful expression for ijsu. Consider the operator
D, = w~'Dpr. We claim that for any k > 1 the iterated operator D,’; can be expressed as

ZW" Zb-[l_[D } S (A.14)

iel; x

where b; > 0 are real numbers and
k—I
Lg=i=(o,it,...,i: ip=1,i; >0Vj=1,...,1, Zi,:k}.
Jj=0

In fact, this is clearly true for k = 1. Assume (A.14) holds for a given k. Then

k+1 _ . —1 k
D, =w  DprD"u

k

=Y lw ' Dprw™ 12b|:l_[D }

=1 iel] k

k—1
+Z -I= IZb.[ZD”'“ T Dng_1:|Df8F

i€l k Jj=1,j#h

2wt ] [0y o
=1 iel;
Shifting the indexes, this can be written as

DK+ = le 'Dprw™! ZbI[HD }

iel;

k+1 k+1—1 k-1
+y w? Y b [ > DIty " 11 Dng_l:|D’L‘;F
=2

iel_1x h=1 j=1,j#h
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k+1 k+1-1
1
£t X ol T1 o' ob
=2 i€l j=l1
It easy to check that this coincides with
k+1 k+1-1
Yt 3 | [T oho o
=1 i€l] k41

1

Also, note that §,, = qu_1 + Dprpw™" and

Dprdu=q+qFDprw™ ' + D pw™!
By induction we can show that for any ip > 1
io—1
1- - 1
DS ey =qdiig+q Y ci Dy JwDhw ! +gFDYwT + DY W (AL5)
j=1
where §1;, is the Kronecker symbol. Combining (A.14) and (A.15) we obtain

Dks, = Zw_l > b |:l_[DDFw }

i€l

ig—1
x |:q81i0+chi,Oj IISFI ]wD] +qFDDFw_l—i-Dl°Jrl _1:|.
=1

Next we shall apply Holder’s inequality to estimate || D’;Su |ls- Notice that for [ =k, ip =k > 2.
Therefore,

Dk, <G 3 Y [l nnDDle (810 _max [ Dfw”],)

I=11iel
+Co|w™], lgr,glg;;ﬂw Dprw'],
=B + By,

assuming that for/ =1,...,k—1, —>—+Z —and >—+— and where C, denotes a

function of o of the form C (1 4+ ™).

Let us consider first the term Bj. Note that if ig = 1 there is at least one factor of the form
|D) DFW ]||r]. in the above product, because Z’;;’l ij =k—12>1. Then, we will apply the
inequality (A.4) to one of these factors and the inequality (A.5) to the remaining ones. The
estimate (A.5) requires % > ’+2 for j=1,...,k—1[ and % > % On the other hand, the
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estimate (A.4) requires % > % + % forj=1,...,k—1and % > % + % Then, choosing p

such that 2pl < B, and taking into account that ZI;;{) ij =k we obtain the inequalities

k=1 . .
1 1 ij+2 ip+3 1 3k+3 1
—>—+E + + 5> +=.
sTp=m B B 2 B2

. 28 .
Hence, if s < FTokTe We can write

k=1 k=l _
Bi<Co Y MIT](My v )(Mp ™ v 1)|go® — w7,
=1 j=1

<C, (Mgk+3 \YJ 1) ”q02 —w! ”2
For the term B, we use the estimate (A.4) assuming 2pk < B and

1 1+k+3+1 3k+3+1

->—4+— 4= > —.

s p B 2 B 2
This leads to the same estimate and the proof of (A.13) is complete. To show the estimate (A.12)
we proceed as before but using the inequality (A.5) for all the factors. In this case the summand
% does not appear and we obtain (A.12). O
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