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ABSTRACT

Viscous shocks are a particular type of extreme event in nonlinear multiscale systems, and their representation requires small scales. Model
reduction can thus play an essential role in reducing the computational cost for the prediction of shocks. Yet, reduced models typically aim
to approximate large-scale dominating dynamics, which do not resolve the small scales by design. To resolve this representation barrier,
we introduce a new qualitative characterization of the space–time locations of shocks, named the “shock trace,” via a space–time indicator
function based on an empirical resolution-adaptive threshold. Unlike exact shocks, the shock traces can be captured within the representation
capacity of the large scales, thus facilitating the forecast of the timing and locations of the shocks utilizing reduced models. Within the context
of a viscous stochastic Burgers equation, we show that a data-driven reduced model, in the form of nonlinear autoregression (NAR) time series
models, can accurately predict the random shock traces, with relatively low rates of false predictions. Furthermore, the NAR model, which
includes nonlinear closure terms to approximate the feedback from the small scales, significantly outperforms the corresponding Galerkin
truncated model in the scenario of either noiseless or noisy observations. The results illustrate the importance of the data-driven closure terms
in the NAR model, which account for the effects of the unresolved dynamics brought by nonlinear interactions.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0084955

Viscous shocks are waves with large spatial gradients. They are
commonly encountered in nonlinear multiscale systems arising
in science and engineering applications. However, an accurate
representation of viscous shocks requires resolving a broad range
of spatial scales in the dynamics. To alleviate this representation
barrier, we introduce a new effective and qualitative characteri-
zation of the space–time locations of shocks, named the “shock
trace,” via a space–time indicator function based on an empir-
ical resolution-adaptive threshold. Unlike exact shocks, shock
traces can be captured using only a small number of dominant
large-scale modes. Thus, they facilitate the forecast of the timing
and locations of the shocks utilizing reduced models. Within the
context of a viscous stochastic Burgers equation, we show that
a data-driven reduced model, in the form of nonlinear autore-
gression (NAR) time series models, can accurately predict the
shock traces, with relatively low rates of false predictions. The key

elements for such a success are data-driven closure terms in the
NAR model, which account for the effects of the unresolved
dynamics brought by nonlinear interactions.

I. INTRODUCTION

Extreme events occur in many high-dimensional multiscale
systems in geophysics, engineering, neural science, and material
science.1–8 Their prediction with uncertainty quantification has sig-
nificant scientific and societal impacts. However, it can be computa-
tionally prohibitive to run these systems for the ensemble prediction
that aims to quantify the uncertainty. Reduced models can bring
down the computational cost by orders of magnitude compared with
that for the original system, providing surrogate models that make
the ensemble prediction feasible. In particular, stochastic reduced
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TABLE I. Parameter settings of the full and reduced models.

Full model ν = 0.02 Viscosity constant
N = 128 Number of modes

"t = 0.001 Time step size
K0 = 4 Number of modes in

the stochastic force
σ = 0.2or 1 Strength of stochastic

force
Reduced models K = 8 Number of modes for

the reduced models
δ = "t × 10 Time step size of

reduced models

models have been built to quantify the uncertainty9–13 and have been
applied to forecast extreme events.2,14–17 Many of these reduced mod-
els primarily aim at the statistical forecast of the extreme values, for
example, predicting the probability density functions (PDFs). Other
reduced models are designed for the short-term prediction of inter-
mittent time series from nature that contain extreme events.18,19 In
addition, statistical and machine learning tools have been developed
to predict the onset of extreme events in complex systems; see, e.g.,
Refs. 20 and 23.

Shock (or shock wave) is a special type of extreme event that
is observed in many complex nonlinear systems.24–26 Shocks have
a unique feature that makes them extremely difficult to predict: a
shock is characterized by an abrupt change of the state, with the spa-
tial derivative rather than the state itself reaching an extreme value.
Thus, the exact representation of a shock requires the information
from small or fast scales (see Fig. 1 and discussions in Sec. II C),
which are beyond the reach of a reduced model that models the large
scales. Yet, the large scales contain rich information about the shocks
because they dominate the small scales through the nonlinear inter-
actions. Therefore, it is of particular interest to uncover the relation
between the shocks and the large scales and to investigate the pos-
sibility of predicting partial information of shocks by the reduced
models. As far as we know, despite the importance of predicting the
shocks, this issue has not been addressed yet.

This paper shows that reduced models can predict the tim-
ing and location of random shocks of viscous stochastic Burgers
equations.27,28 The Burgers equation is a prototype for nonlinear
conservation equations that can develop shocks. Here, on top of
the nonlinear deterministic dynamics, external stochastic forces are
added into the Burgers equation. These stochastic forces are smooth
in space and white in time. They play an important role in ran-
domly triggering shocks. An additional small viscous term is further
incorporated into the equation such that the random shocks will be
dissipated before the appearance of a discontinuity. Therefore, these
shocks are known as viscous shocks.29 In addition to the fundamen-
tal mathematical topics such as the existence of the solution and the
invariant measure,27,28,30 the statistics of shocks has been studied for
the Burgers equation in various contexts, either with viscosity or
in the inviscid limit, with or without stochastic forcing, and pos-
sibly subject to additional random initial conditions.29,31–34 Burgers

equation has also frequently served as a testbed for illustrating vari-
ous model reduction techniques, although usually not in the context
of shock tracking; see, e.g., Refs. 35, 38.

To effectively predict the spatiotemporal structures of the
shocks, we introduce a new qualitative characterization via a simple
indicator function that depends on both time and space. It is named
as “shock trace” (see Sec. II C). By prescribing an empirical thresh-
old value, the spatial derivative of the reconstructed spatiotemporal
solution from a reduced model is mapped to this indicator func-
tion. If the spatial derivative of the forecast solution is more negative
than the threshold, then it is mapped to 1, indicating the occur-
rence of a shock. Otherwise, it is mapped to 0, standing for no shock
occurrence at that location. This new characterization has several
desirable features in facilitating the prediction of the shocks. First, it
mitigates the complexity of the shock forecast as it avoids the fore-
cast of the precise values of the solution. Nevertheless, the simplified
representation of the solution via the indicator function preserves
the key spatiotemporal structure of the shocks, providing an effec-
tual characterization of the abrupt and sharp changes in the solution.
Second, the threshold value that maps the model solution to the
indicator function is adaptive to spatial resolutions (i.e., the num-
ber of Fourier modes being adopted). Therefore, the same mapping
criterion is applicable to the solutions of both the full model and
reduced models. Third, the indicator function provides a simple but
effective way to quantitatively count the false predictions, allowing a
quantification of the forecast uncertainty.

We consider a data-driven reduced model in the form of a non-
linear autoregression (NAR) model.39,40 The NAR model has three
attractive features as a prototype reduced model. First, it includes
only the time evolution of the large-scale Fourier coefficients with
low wave-numbers, and as a result, it allows a large time step size
since there is no stiffness in these large scales. Therefore, it sig-
nificantly decreases the computational cost, often several orders of
magnitude from an accurate full model. Second, as a closure model,
the NAR model effectively parameterizes the nonlinear feedback
from the unresolved small scales, and its parametric form is derived
from a numerical integrator of the system. Third, its parameters can
be efficiently estimated by least squares regression from the data (see
Sec. III).

Numerical results (see Sec. IV) show that the NAR model can
predict the shock traces accurately with low rates of false predictions,
almost as good as the corresponding projection of the full model
solution. The NAR model significantly outperforms the Galerkin
truncated system in predicting the shock traces, in situations with
both the true initial condition and noisy observations. In the latter
case, an efficient data assimilation scheme is utilized with the NAR
model. These results highlight the importance and effectiveness of
the data-driven closure that captures the effects of unresolved scales.
The key element, the parametric form of these closure terms, is
inspired by a Picard iteration scheme within the context of approx-
imating the discrete-time flow map of the resolved dynamics (see
Sec. III).

The rest of the paper is organized as follows. Following a brief
review of the basic properties of the stochastic Burgers equation
and its numerical integration scheme, we introduce the concept
of shock trace based on the indicator function with a resolution-
adaptive threshold in Sec. II. Section III presents the NAR modeling

Chaos 32, 043109 (2022); doi: 10.1063/5.0084955 32, 043109-2

© Author(s) 2022

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 1. Typical shocks [panels (a) and (b)] and the empirical densities of most negative derivatives [panels (c) and (d)] of the full model solution (denoted by FM), and its
K-mode and 2K-mode projections with K = 8. The full model is simulated with N = 128 Fourier modes and the viscosity is ν = 0.02; see Table I for the value of other
parameters. Note that neither the K-mode nor the 2K-mode projection have sharp gradients as the viscous shocks, but their most negative derivatives occur at the same
locations as those of the full model solution, i.e., capturing the locations of shocks. We applied logarithm (with base 10) to the absolute value of the most negative derivatives
when computing the PDFs for visualization purpose. (a) A typical shock, σ = 0.2. (b) A typical shock, σ = 1. (c) PDF of most negative derivatives, σ = 0.2. (d) PDF of
most negative derivatives, σ = 1.

framework and its parameter inference. The forecast skill of the
reduced model is studied in Sec. IV for cases with both weak and
strong stochastic forces. Conclusion and some final remarks are then
presented in Sec. V.

II. THE VISCOUS STOCHASTIC BURGERS EQUATION
AND SHOCK TRACE

A. The viscous stochastic Burgers equation

The model considered in this article is the following viscous
stochastic Burgers equation posed on (0, 2π) supplemented with
periodic boundary conditions and suitable initial condition:27,28

∂tu = ν∂xxu − u∂xu + f(x, t), 0 < x < 2π , t > 0,

u(0, t) = u(2π , t), ∂xu(0, t) = ∂xu(2π , t), t ≥ 0,

u(x, 0) = u0(x), 0 < x < 2π .

(2.1)

Here, ν > 0 is the viscosity constant and u0 is a given square-
integrable function. The stochastic force f(x, t) is smooth in space
and white in time,41 acting on a few low-frequency (i.e., large-scale)
Fourier modes, which is chosen to be of the form

f(x, t) = σ

K0∑

m=1

(
sin(mx)Ẇm(t) + cos(mx)Ẇ′

m(t)
)
, (2.2)

where σ > 0 represents the strength of the stochastic force,
{Wm, W′

m} are independent Brown motions with {Ẇm, Ẇ′
m} denot-

ing the white noises, and K0 is a fixed positive integer. With the
chosen boundary conditions and the above form of the stochastic

force f, the quantity
∫ 2π

0 u(x, t) dx is conserved for all t ≥ 0. With-
out loss of generality, we assume that the initial condition has mean
zero, which leads to

∫ 2π

0

u(x, t) dx = 0, t ≥ 0. (2.3)

Equation. (2.1) is interpreted as an infinite-dimensional
stochastic differential equation (SDE) for the corresponding Fourier
modes,

d

dt
ûk = −νk2ûk −

ik

2

∞∑

l=−∞

ûl̂uk−l + f̂k(t), (2.4)

where ûk are the Fourier coefficients,

ûk(t) = F[u]k =
1

2π

∫ 2π

0

u(x, t)e−ikxdx,

u(x, t) = F−1[̂u] =

∞∑

k=−∞

ûk(t)e
ikx,
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with F[u] being the Fourier transform of u. Here, f̂k(t) are white
noises consisting of linear combinations of {Ẇk, Ẇ

′
k} in (2.2) for

|k| ≤ K0, and f̂k(t) = 0 for k > K0. Note also that û0(t) ≡ 0 thanks
to (2.3).

The above viscous stochastic Burgers equation driven by the
stochastic force, which is smooth in space and white in time, has
been proven to have an invariant measure in Refs. 27 and 28. We
refer the readers to Ref. 30 for the Burgers equation driven by spa-
tiotemporal white noises. Note that the “one force, one solution”
principle holds: for each realization of the stochastic force, there
exists a unique solution globally and the random attractor con-
sists of a single trajectory, almost surely. For each realization of
the force, the shocks form randomly but dissipate before reaching
a discontinuity due to the viscosity. Thus, they are called viscous
shocks.29

B. Numerical integration scheme of the full system
and parameter regimes

A high-resolution numerical integration scheme is adopted for
the full system (2.1) to generate the true solution. The numerical
scheme utilized here is a Galerkin spectral method.42 More specif-
ically, the function u(x, t) is represented at grid points xj = j"x
with j = 0, . . . , 2N − 1 and "x = 2π

2N
. The Fourier transform F is

replaced by discrete Fourier transform,

ûk(t) = F2N[u]k =

2N−1∑

j=0

u(xj, t)e
−ikxj , k = −N + 1,

−N + 2, . . . , N,

u(xj, t) = F−1
2N [̂u]j =

1

2N

N∑

k=−N+1

ûke
ikxj , j = 0, 1, . . . , 2N − 1.

(2.5)
Since u is real, we have û−k = û∗

k , with the superscript ∗ denoting
the complex conjugate. Recall also that û0 is identically zero thanks
to the mean-zero assumption on the initial data [cf. (2.3)]. Then, by
setting û−N = 0 to simplify the notations, we obtain from (2.4) the
following truncated system:

d

dt
ûk =−νk2ûk −

ik

2

∑

|k−l|≤N,|l|≤N

ûl̂uk−l + f̂k, with

|k| = 1, . . . , N − 1, or k = N. (2.6)

The system (2.6) is solved using the exponential time differencing
fourth-order Runge–Kutta method (ETDRK4) (see Refs. 43 and 44)
with the standard 3/2 zero-padding for dealiasing (see e.g., Ref. 45),

where the force term f̂k is treated as a constant in each time step. Such
a hybrid scheme is of strong order 1, but it has an advantage of pre-
serving both the numerical stability of ETDRK4 and the simplicity
of the Euler–Maruyama scheme.

Hereafter, for a given K < N, we call uK(x, t) =
∑

|j|≤K ûj(t)e−ijx

the K-mode projection of the full model solution uN(x, t)
=

∑
|j|≤N ûj(t)e−ijx, where ûj(t) is solved from the above full model

TABLE II. Threshold values in defining shock traces.

Forcing strength τN τ 2K τK

σ = 0.2 −21.26 −26.02 −15.77
σ = 1 −320.41 −98.16 −52.22

The threshold values are computed using (2.7) for the full model
solution (τN), and its 2K-mode (τ 2K) and K-mode projections (τK),
where N = 128 and K = 8. The system parameters are those listed in
Table I.

(2.6) with N-pairs of Fourier modes. The reduced model to be intro-
duced later in Sec. III aims to approximate this K-mode projection
for a suitable K.

The parameters used in the numerical experiments are chosen
as follows. The viscosity is set to be ν = 0.02, which is small enough
to allow shocks to emerge, when subject to the stochastic force that
will be further specified below. Of course, a smaller viscosity con-
stant usually demands a higher spatiotemporal resolution in order
to obtain numerically accurate solutions of (2.1) and hence an accu-
rate description of the emergence of the shocks. For the chosen ν,
we have set N = 128 for the high-dimensional Galerkin system (2.6)
and we used "t = 0.001 as the time step size. Only the first four
pairs of Fourier modes are forced with K0 = 4 in (2.2), and we con-
sider two values for the strength of the stochastic force, σ = 0.2 and
σ = 1, which correspond to two dynamical regimes exhibiting mod-
erate and strong “turbulent” behavior, respectively. For the regime
with larger σ , shocks appear more frequently both in time and space,
and the (spatial) gradients presented in the viscous shock profiles
become sharper as well; cf. Figs. 1 and 2. It is also worth mention-
ing that, for both the forcing scenarios, we checked that the mean
Courant–Friedrichs–Lewy (CFL) number (computed over a suffi-
ciently long solution trajectory) is well below one: it is 0.045 for the
case σ = 0.2 and 0.139 for the case σ = 1. For latter reference, we
summarize the parameters in Table I, in which we also listed the
dimension and time step size used for the reduced models to be
presented in Sec. III below. Here, we set K0 < K, i.e., the stochas-
tic force acts only on the first K0 large-scale resolved modes. In this
setting, the closure model as will be constructed in Sec. III mainly
accounts for the model error due to nonlinear interactions with the
unresolved modes. Thus, it can make meaningful trajectory-wise
predictions. In general, the dimension of the closure model can be
set to be below the stochastic forcing scales when the goal is only
to predict statistical quantities, and it was shown in Ref. 40 that for
the same parameter regimes utilized here, when K0 = 4, a closure
model with K = 2 can already reproduce the associated energy spec-
trum, marginal probability densities, and temporal correlations for
the resolved modes.

C. Trace of the random viscous shocks

A new simple criterion is developed here to qualitatively char-
acterize the occurrence of the random shocks. This criterion is
adaptive to spatial resolutions and is, thus, applicable to reduced
models as well. The procedure of applying this new criterion to trace
the shocks is as follows:

Chaos 32, 043109 (2022); doi: 10.1063/5.0084955 32, 043109-4

© Author(s) 2022

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 2. The full model solution, and its K-mode and 2K-mode projections, in the space–time plot [left column of panels (a) and (b)], and their binary shock traces (right
column). The shock trace indicator function is defined by (2.8), where the involved threshold parameter is given by Table II. The K-model projection already encodes the
shock trace information, providing a basis for using reduced models to predict the shock traces. Here, K = 8 and the full model has N = 128 Fourier modes.

1. Prescribe a statistical threshold value for the spatial derivative
of the process to determine the occurrence of shocks: a shock
occurs at (x, t) if the spatial derivative is more negative than the
threshold value. The threshold value is computed empirically
from a large ensemble of sample trajectories of the process.

2. Define an indicator function that identifies the shock trace: it
has value 1 at (x, t) if a shock occurs according to the criterion
in step 1 above and is 0 otherwise.

This new criterion mitigates the complexity of the shock forecast as
it avoids the forecast of the precise values of the solution. Neverthe-
less, the simplified representation of the solution via the indicator
function preserves the key spatiotemporal structure of the shocks,
providing an effectual indicator of the abrupt and sharp changes in
the solution. Note that the threshold value is adaptive to spatial res-
olutions (i.e., the number of Fourier modes being adopted). There-
fore, the same mapping criterion is applicable to the solutions of
both the full and reduced models. In addition, the indicator function
provides a simple but effective way to quantitatively count the false
predictions, allowing a quantification of the forecast uncertainty, as
will be seen in Sec. IV.

We set the threshold value to be 1 standard deviation above
the mean of the most negative spatial derivatives, which are empir-
ically computed from a large ensemble of trajectories. This crite-
rion applies to processes with different spatial resolutions, e.g., the

k-mode projection uk(x, t) =
∑

|j|≤k ûj(t)eijx of the full model solu-

tion, for any k ≥ 1. More specifically, we compute the empirical
threshold value τ as follows, using this k-mode projection uk as an
example. First, generate a large ensemble of M representative trajec-
tories of the full model whose initial conditions are sampled from
a long trajectory of the full model. Denote the k-mode projection

of these trajectories by {u(m)
k (x, tl), 0 ≤ l ≤ L]}

M

m=1
, where tl = lδ and

L = T
δ

with δ corresponding to the sampling frequency and T the
length of the time interval over which the solution trajectories are
computed. Second, compute the threshold value τk for the k-mode
projection as

τk = Dk + ηk, with Dk =
1

LM

L∑

l=1

M∑

m=1

D(m)
k (tl),

η2
k =

1

LM

L∑

l=1

M∑

m=1

|D(m)
k (tl) − Dk|

2, (2.7)

where D(m)
k (tl) = minx ∂xu

(m)
k (x, tl) denotes the most negative spatial

derivative at t = tl for the mth trajectory of uk. Note that Dk and ηk

are, respectively, the mean and standard deviation of D(m)
k (tl) among

all times and all trajectories.
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Figures 1(a) and 1(b) show typical shocks presented in the
full model solution uN along with their K-mode and 2K-mode pro-
jections, uK and u2K, with K = 8. Note that neither the K-mode
projection nor the 2K-mode projection capture well the sharp gra-
dients presented in the viscous shocks. Figures 1(c) and 1(d) show
the empirical probability distributions of the most negative deriva-

tives D(m)
k (tl) for uN, uK, and u2K. They are computed from M = 200

trajectories with length T = 100. The full model solution’s most neg-
ative derivatives are about a magnitude larger than the other two.
The shocks have derivatives at the scale −103, on the right end of the
distribution of the full model solution, which are out of the reach of
the low-frequency Fourier modes. Thus, the low-frequency Fourier
modes alone cannot represent the shocks. However, the three den-
sity functions have similar tails. Together with observation that the
K-mode and 2K-mode projections have large spatial derivatives at
the locations of shocks in (a) and (b), they suggest a connection
between the most negative derivatives of the full model solution and
those computed from its lower-dimensional projections. Our empir-
ical criterion above exploits this connection to detect the trace of
shocks.

The empirical threshold values τk are shown in Table II. The
threshold value increases as the resolution increases in the case of a
strong stochastic force. However, in the regime of weak stochastic
forcing, due to the large variation of the most negative derivative of
the full model [see Fig. 1(c)], τ2K turns out to be more negative than
τN.

With the threshold value τk for a k-mode projection uk as
above, we define a shock trace indicator function

1Suk
(x, t) =

{
1, (x, t) ∈ Suk

,
0, (x, t) /∈ Suk

,
with

Suk
= {(y, s) ∈ [0, 2π] × [0, T] : ∂xuk(y, s) < τk}. (2.8)

The binary shock trace indicator function has value 1 in the set
Suk

, a neighborhood where shock occurs, and is 0 otherwise. It is
applicable to both the full model solution and its low-dimensional
projections (see Fig. 2, bottom row), as well as the solutions of
reduced models to be studied in later sections.

Figure 2 shows that our thresholds defined in (2.7) can detect
the trace of the viscous shocks from either the full model solution or
its K-mode and 2K-mode projections. These thresholds, set to be 1
standard deviation above the corresponding mean, are based on an
empirical balance between accuracy of detection and robustness of
tolerating the random perturbations from the stochastic force. Due
to the choice of these thresholds as well as the fact that the projected
shock profiles become less steep and span wider as the number of
modes used in the projection decreases [see again panels (a) and
(b) of Fig. 1], the binary shock traces become wider as the num-
ber of Fourier modes of the truncated solution decreases from 2K
to K (with K = 8 here). A more negative threshold (e.g., one stan-
dard deviation below the mean) can lead to narrower shock traces,
but for the parameter regimes considered, the corresponding shock
traces identified by the K-mode and 2K-mode projections match less
good than those identified from the full model solution.

In our numerical tests in Sec. IV, we will consider reduced
models with K = 8 to show that the proposed closure model is able
to faithfully reproduce the shock traces as revealed by the projection

of the true solution on the first K modes while a standard K-mode
Galerkin truncation fails.

Remark 2.1. Our empirical threshold provides a preliminary
criterion for the detection of shocks for different resolutions. The
threshold values are resolution dependent. Here, we set the threshold
value to be 1 standard deviation above the mean of the most negative
spatial derivatives as in (2.7) for simplicity. One can further refine the
definition by multiplying for instance a resolution-dependent factor
λk to the standard deviation, leading to τk = Dk + λkηk. One could
also set the threshold to be simply the maximal of the correspond-
ing density function such as shown in panels (c) and (d) of Fig. 1.
In general, this empirical threshold should be chosen such that the
shock traces of the k-mode projection of the full model solution can
accurately capture the space–time locations of the shocks. Thus, this
threshold is independent of reduced models. Once calibrated, it is used
in computing the shock traces for reduced models of these k modes.

III. DATA-DRIVEN REDUCED MODEL WITH CLOSURE
MODELING

To reduce the computational cost and facilitate an efficient
ensemble forecast of the shock traces, a data-driven nonlinear
reduced model is developed here that involves the dynamics of only
the leading K Fourier modes. The development of such a reduced
model is based on a nonlinear autoregression (NAR) modeling
framework, which was introduced in Refs. 9, 39, and 40. The key idea
in the construction of the NAR model is a parametric approximation
of the discrete-time flow map of the leading K modes. In addition
to the reduction of the spatial dimension, a much larger numer-
ical integration time step is used in simulating the NAR model,
which enhances the overall computational efficiency. It is important
to note that although the discrete-time flow map is a time-varying
infinite-dimensional functional that depends on the K modes and
the trajectory of the stochastic forces, our inference of the NAR
model does not suffer from the curse of dimensionality because we
make use of the nonlinear structure in the equation to derive an
informative parametric approximation of the flow map, as will be
seen in Sec. III B.

A. Discrete-time flow map and its approximation

We start with the general framework of the model reduction in
terms of flow map approximation, which can be used to construct
the reduced models with suitable closure terms.

To simplify notion, we write the stochastic Burgers Eq. (2.1) in
an operator form as

du

dt
+ Au = B(u) + f, u(0) = u0, (3.1)

where the linear operator A : H1
p → L2 and the nonlinear operator

B : H1
p → L2 are defined by

A = −ν", B(u) = −(u2)x/2,

and f is the stochastic force. Here, H1
p denotes the standard Sobolev

space of periodic functions on [0, 2π] that are square integrable and
whose first-order weak derivatives are also square integrable.
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We first decompose the system into the resolved and the unre-
solved scales (e.g., the low-frequency and high-frequency Fourier
modes). That is, we write the solution in the form

u = Pu + Qu = v + w,

where P and Q = I − P denote the projection operators to the
resolved and unresolved scales, respectively. For example, in terms
of Fourier expansion u =

∑∞
|k|=1 ûk(t)eikx, we set P and Q be the pro-

jections from H1
p to the low and high wavenumber Fourier modes,

with

v =

K∑

|k|=1

ûk(t)e
ikx, w =

∞∑

|k|=K+1

ûk(t)e
ikx. (3.2)

With these notations, we can write the system (3.1) as

dv

dt
= −PAv + PB(v) + Pf + [PB(v + w) − PB(v)], (3.3a)

dw

dt
= −QAw + QB(v + w) + Qf. (3.3b)

Equation (3.3a) for the resolved variables v is not closed since it
depends on w due to the nonlinear coupling brought by the nonlin-
ear operator B. Thus, a closure model for the resolved-scale variables
aims to approximate [PB(v + w) − PB(v)] (see, e.g., Refs. 9, 37, and
46, 48) by a function of v and possible additional noise terms. The
Mori–Zwanzig formalism for deterministic systems39,49–52 shows that
an exact closure model involves memory effects (i.e., the depen-
dence on the history of v) and the uncertainties from the unknown
initial condition of w. Both the memory effects and uncertainties
are difficult to model from physical principles. Therefore, data-
driven approaches, combined with physical insights, have led to
various constructions of closure models by statistical learning of
the discrete-time flow map, either by parametric models9,40,53 or by
nonparametric machine learning representations.54–56 These closure
models can describe the statistical and dynamical properties of the
resolved scales, leading to accurate prediction of v with uncertainty
being quantified.

The NAR reduced model we adopted here aims to approximate
the flow map of v. More precisely, let tn = nδ for n = 1, 2, . . ., with δ
being one time step. The flow map of v, according to (3.3), takes the
form

v(tn) = G(v(tn−1), w(tn−1), f(s)s∈[tn−1,tn)), (3.4)

where G is a functional forwarding the flow of the resolved vari-
able v from time tn−1 to tn, which depends on the current state
[v(tn−1), w(tn−1)] and the trajectory of the stochastic forcing on the
time interval [tn−1, tn). We seek a parametric function F to approxi-
mate the flow map G that is independent of the unresolved variable
w but, instead, is dependent on the history of the resolved variable
v and the stochastic force. For this purpose, we denote by v1:n−1 the
discrete-time trajectory of v at t1, . . . , tn−1, and by f1:n the discrete-
time trajectory of f at t1, . . . , tn. Denote also vn = v(tn). We aim to
construct F such that

vn ≈ F(θ , v1:n−1, f1:n) + gn, (3.5)

where θ is a multivariate parameter to be estimated from data and
the precise form of F is inspired by a Picard approximation of the

unresolved variable w as detailed in Sec. III B. The additional process
{gn} aims to represent the residual G(v(tn−1), w(tn−1), f(s)s∈[tn−1,tn))

− F(θ , v1:n−1, f1:n). In this paper, gn is set to be Gaussian for simplic-
ity, but other forms are also possible, taking the moving average9,57

or stochastic Stuart–Landau oscillators58 as examples.

B. The parametric reduced model with closure
modeling terms

The construction of a closure model for v of the form (3.5)
is through a statistical learning from data, which was originally
introduced in Ref. 40. The construction consists of three steps:

1. Deriving a family of parametric functions from the Picard
approximation of the high-frequency modes,

2. Estimating the parameters by maximizing the likelihood of the
data, and

3. Selecting the model that best fits the data.

1. Derivation of the parametric model

We first derive the parametric function F(θ , v1:n−1, f1:n) in (3.5)
from numerical integrators of the full model. In view of Eq. (3.3a),
a closure model has to represent the residual PB(v + w) − PB(v) in
terms of v and its history. Note that w(t) is a functional of the history
of v by integrating (3.3b),

w(t) = e−QArw(t − r) +

∫ t

t−r

e−QA(t−s)[QB(v(s) + w(s)) + Qf(s)]ds,

(3.6)
where r ∈ [0, t]. Given w(t − r) and a trajectory [v(s), Qf(s), s ∈ [t −
r, t]], the Picard iteration provides us an explicit approximation of
w(t) as a functional of the trajectory of v. That is, the sequence of
functions {w(l)}, defined by

w(l+1)(t) = e−QArw(l)(t − r)

+

∫ t

t−r

e−QA(t−s)[QB(v(s) + w(l)(s)) + Qf(s)]ds, (3.7)

with w(0)(s) = 0 for s ∈ [t − r, t], converges under suitable condi-
tions to the function [w(s), s ∈ [t − r, t]] as l → ∞. In particular, the
first Picard iteration provides a closed representation

w(1)(t) =

∫ t

t−r

e−QA(t−s)[QB(v(s)) + Qf(s)]ds. (3.8)

While a rigorous convergence analysis of the above Picard iteration
is beyond the scope of the current paper, we will show below that the
NAR model built from the first iteration (3.8) can already provide
good performances. Note that integrals of the form (3.8) also arise
naturally in the approximation of center manifolds as mentioned in
Remark 3.1.

Now, substituting w in (3.3a) by w(1), we obtain an approxi-
mate closed integro-differential equation for v. We then discretize
this integro-differential equation in a parametric way to obtain a
parametric function that aims to approximate the discrete-time flow
map of v. For this purpose, let δ = tn − tn−1 denote the time step
size and let r = pδ in (3.8). By parameterizing a Riemann sum
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approximation of the above integral (3.8) for w(1)(t), we get w(1)(tn)
≈

∑p
j=0 cje−QAjδ[QB(v(tn−j)) + Qf(tn−j)]. We denote

w(1),n =

p∑

j=0

cje
−QAjδ[QB(vn−j) + Qfn−j], (3.9)

where cj ∈ R are parameters to be estimated from data. Further-
more, to keep linear dependence on the parameters, we approximate
the term PB(v + w) − PB(v) in (3.3a) as follows by ignoring the
nonlinear self-interaction term Pw∂xw:

PB(v + w(1)) − PB(v) ≈ −P(∂xvw(1) + v∂xw
(1)).

Then, by parameterizing a numerical integrator of (3.3a), we obtain

vn = vn−1 + δ[Rδ(vn−1) + Pfn−1 + +n−1] + gn, (3.10a)

+n−1 = ∂xv
n−1w(1),n−1 + vn−1∂xw

(1),n−1

+

p∑

j=1

[cv
j v

n−j + cR
j Rδ(vn−j) + c

f
jPfn−j], (3.10b)

where the nonlinear function Rδ(·) comes from a numerical integra-
tion of the deterministic truncated Galerkin equation dv

dt
≈ −PAv +

PB(v) at time tn−1 and with time step size δ. Here, the extra param-

eterized terms [cR
j Rδ(vn−j) + c

f
jPfn−j] aim to further account for the

memory. Note that the high frequency component Qf of the noise
does not enter the closure of the low modes because PQf = 0 in the
linear approximation.

Next, we rewrite (3.10a) and (3.10b) in terms of Fourier modes,
and we further parameterize the modes component-wise to account
for the different dynamics between modes. Denote v̂n = (̂vn

k , |k| ≤
K) ∈ C2K, the low modes in the reduced model that approximates
the original low modes (̂uk(tn), |k| ≤ K). The reduced model is in
the form of a nonlinear autoregression (NAR) model, which reads

v̂n
k = v̂n−1

k + δ[̂Rδ
k(̂v

n−1) + f̂n−1
k + +n−1

k ] + ĝn
k , 1 ≤ k ≤ K, (3.11a)

+n−1
k =

p∑

j=1



cv
k,ĵv

n−j
k + cR

k,jR̂
δ
k(̂v

n−j) + c
f
k,ĵ f

n−j
k + cw

k,j

∑

|k−l|≤K,K<|l|≤2K
or |l|≤K,K<|k−l|≤2K

ṽn−1
l ṽ

n−j
k−l



 , (3.11b)

where R̂δ comes from the ETDRK4 integrator of the K-mode

truncated system, f̂nk and ĝn
k denote the kth mode coefficient in the

Fourier transform of, respectively, fn and gn, and the notation ṽ
n−j
l is

defined by

ṽ
n−j
k =

{
v̂

n−j
k , 1 ≤ k ≤ K;

ik
2
e−νk2 jδ

∑
|l|≤K,|k−l|≤K v̂

n−j
k−l̂ v

n−j
l , K < k ≤ 2K.

(3.12)

We set v̂n
−k = (̂vn

k)
∗. Here, the coefficients vary component-wise to

allow more flexibility in fitting data.
Equation (3.11) defines a nonlinear autoregression type model

when the residual term {gn} is modeled by independent Gaus-
sian noise. One may further improve the model in two directions:
(1) include more nonlinear terms by parameterizing higher order
Picard iteration than the first iteration; (2) consider spatial corre-
lation between the components of g or by using moving average
models.9,57 We assume for simplicity that the g has independent
components, so that the coefficients can be estimated by the least
squares fitting.

Remark 3.1. The parameterization of the unresolved variable
w given by (3.8) is closely related to the Lyapunov–Perron integrals
arising from the approximation of center manifolds,59–61 in which
the parameter r is pushed to infinite and the true dynamics of v
involved in the integral (3.8) is replaced by solutions from a linearized
equation; see e.g., Theorem 1 in Ref. 46 and Theorem 6.1 in 59. Treat-
ing r in (3.8) as a free parameter to be optimized using solution data
leads to deformations of the manifold that aims to approximate the

unresolved dynamics in an optimal way. Such a data-driven opti-
mization is the key of the parameterizing manifold approach proposed
in Refs. 46 and 59 for dimension reduction of stochastic and chaotic
systems. The difference here is that we only utilize the functional form
of the parameterization but optimize all of the associated coefficients
using the data.

2. Parameter estimation

The coefficients in (3.11) are estimated by maximizing the like-
lihood of data. The data can be either a long trajectory or many
independent short trajectories. We denote the data consisting of M
independent trajectories by

Data: {̂v1:Nt ,m ,̂ f1:Nt ,m}
M

m=1 = {(̂u(m)
k (t1:Nt)),

(̂f(m)
k (t1:Nt)), k = 1, . . . , K}M

m=1, (3.13)

where m indexes the trajectories and Nt denotes the number of steps
for each trajectory.

The maximal likelihood estimator (MLE) of the coefficients
is computed by least squares since the model depends linearly on
them.40 To be precise, let us write (3.11b) as

+n
k(θ k) =

4p∑

j=1

θ k,j"
n
k,j,
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with θ k = (cv
k,j, c

R
k,j, c

f
k,j, c

w
k,j, j = 1, . . . , p) ∈ R4p denoting the involved

parameters and "
n
k = (̂v

n−j
k , R̂δ

k(̂v
n−j),̂ f

n−j
k ,

∑
l̃v

n−1
l ṽ

n−j
k−l , j = 1, . . . , p)

∈ C4p denoting the parametric terms. Note that the summation over
l in "

n
k is subject to the same constraints as in (3.11b). We compute

the MLE as

θ̂ k = (Ak)
−1bk, 1 ≤ k ≤ K,

σ̂
g
k =

1

M(Nt − 1)

Nt ,M∑

n,m=1

‖̂vn,m
k −

(
v̂n−1,m

k + δR̂δ
k(̂v

n−1,m
k )

+ δ̂fn−1,m
k + δ"n−1,m

k (̂θ)
)
‖2, (3.14)

where the normal matrix Ak and vector bk are defined by

Ak(j
′, j) =

δ

M(Nt − 1)

Nt ,M∑

n,m=1

〈"n−1,m
k,j′ , "n−1,m

k,j 〉, 1 ≤ j′, j ≤ 4p,

bk(j) =
1

M(Nt − 1)

Nt ,M∑

n,m=1

〈̂vn,m
k −

(
v̂n−1,m

k

+ δR̂δ
k(̂v

n−1,m
k ) + δ̂fn−1,m

k

)
, "n−1,m

k,j 〉. (3.15)

In practice, we use pseudo-inverse or regularization to solve the
least squares problem in (3.14) when Ak is ill-conditioned. By fitting
parameters to the data of true solution, we obtain the optimal func-
tion in the parametric family, correcting the numerical error and
model error.

3. Model selection

The model selection step aims to determine the time lag p and
remove the redundant terms in the model in (3.11b). We select the
simplest model that fits the data the best in the sense that (i) it
reproduces the statistics such as the energy spectrum, the marginal
invariant densities, and temporal correlations; and (ii) the estimator
converges as the data size increases.

For the settings in Table I, we take p = 1 to yield the simplest
models, i.e., our reduced models are Markovian. Non-Markovian
models can improve the results and we refer to Ref. 40 for fur-
ther discussions on the memory length and parameter convergence.
With p = 1, the model selection step suggests that we estimate the

parameters (cv
k,1, cR

k,1, c
f
k,1, cw

k,1) for 1 ≤ k ≤ K, along with the vari-
ance of the residuals of the K modes. The estimators converge fast as
the data size increases, either in the number of trajectories or in the
length of a trajectory.

The estimators are shown in Tables V and VI in Appendix B,
utilizing data consisting of 512 trajectories, each with length 160
time units and with an initial condition downsampled from a long
trajectory. All the estimators depend on the strength of the stochastic
force, but they have the following common features. The estima-
tors (̂cv

k,1, k = 1, . . . , K) are all negative and are more negative as
k increases, so that the corresponding linear terms all dissipate
energy. The estimator (̂cR

k,1, k = 1, . . . , K) are around 1. These two

estimators, together with the estimators (̂c
f
k,1, k = 1, . . . , K), which

are small, act as a calibration of the Euler–Maruyama type approx-
imation in (3.11). At last, the estimator (̂cw

k,1, k = 1, . . . , K) are at a

smaller magnitude, but they are important for the NAR model to
account for the effects of the unresolved scales.

These estimated parameters specify our NAR model to predict
the shock trace in Sec. IV.

IV. SHOCK TRACE PREDICTION BY THE REDUCED
MODEL

In this section, we demonstrate the skill of the constructed NAR
reduced model (3.11) for predicting the binary shock trace in the
spatiotemporal solution fields of the stochastic Burgers Eq. (2.1).
The accuracy is quantified by computing the rate of false positive
(FP) and false negative (FN) events as detailed in Sec. IV A. We
consider two prediction scenarios, one with noise-free initial data
(Sec. IV B) and the other with noisy data, for which we use data
assimilation techniques to estimate the state and make ensemble
prediction to quantify the uncertainty (Sec. IV C).

Our choice of the reference shock traces is based on the assess-
ments carried out in Sec. II C. It was shown there that the binary
shock traces computed from the eight-mode projection of the true
solution already provide decent indication of the timing and loca-
tions for the occurrence of shocks in the true solution for both of the
two forcing regimes σ = 0.2 and σ = 1 within the parameter setup
given by Table I; see the second row in Fig. 2. For this reason, we
take the binary shock traces computed from the eight-mode projec-
tion of the true solution as the ground truth; and we set the first
eight Fourier modes as the resolved modes for the NAR reduced
model. A truncated Galerkin system of (2.6) for the same resolved
modes and the same time step size, referred to as the truncated sys-
tem below, is used as a comparison. A truncated system with more
modes would require a smaller time step size to be stable and a dif-
ferent threshold for shock trace. Thus, in this study, both the NAR
model and the truncated system are in exactly the same setting, and
the only difference between them is the closure terms. Hence, the
NAR’s superior performance demonstrates the importance of the
closure terms. As will be shown in Secs. IV B and IV C, the NAR
reduced model consistently outperforms the truncated system for
both the weak noise forcing regime (σ = 0.2) and the strong noise
forcing regime (σ = 1).

Besides visual comparison of the binary shock trace plots, we
provide below a more quantitative way of assessing the perfor-
mance, which offers statistics that reveals the robustness of the good
performance achieved by the proposed NAR reduction framework.

A. Quantification of shock trace prediction skills by
false positive/negative rate

We define in this section the false positive and false negative
rates in predicting the binary shock traces for a reduced model. For
this purpose, we take the binary shock traces computed from a K-
mode projection of the true solution as the ground truth (with K = 8
here). We get a false negative from a reduced model at a space–time
location (x, t) when its predicted value is 0 while the truth is 1, and
similarly a false positive occurs when its predicted value is 1 while
the truth is 0. The false negative rate (or false positive rate) is the
ratio between the number of false negatives (or false positives) and
the number of true ones.
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FIG. 3. Spatiotemporal fields and the corresponding binary traces of viscous shocks from the NAR reduced model (middle row) and the truncated system (bottom row), in
comparison with those from the true K-mode projection of the full model solution with K = 8 (top row). The results are from a typical simulation, with a realization of the
stochastic force when either σ = 0.2 or σ = 1. The rates of false predictions of the binary shock traces are shown in Table III.

More precisely, denote by uK(x, t) =
∑

|k|≤K ûk(t)eikx the K-
mode projection of the true solution, and by v the prediction from
a reduced model subject to the same realization of the stochas-
tic force used in the full model. Let τK be the binary shock
trace threshold associated with uK defined by (2.7). Following the
definition of the binary shock trace in (2.8), we denote the sets
SuK = {(x, t) ∈ [0, 2π] × [0, T] : ∂xuK(x, t) < τK} and Sv = {(x, t) ∈
[0, 2π] × [0, T] : ∂xv(x, t) < τK}. Then, the false negative rate and
false positive rate for the prediction v are defined to be

RFN =
|SuK \ (Sv ∩ SuK)|

|SuK |
, RFP =

|Sv \ (Sv ∩ SuK)|

|SuK |
, (4.1)

where | · | denotes the area of a given set. When these rates are
computed numerically, the involved sets and the related areas are

approximated through the discrete space–time mesh used for the
simulation of the reduced model.

The false negative (FN) rate RFN simply quantifies the percent-
age of shock traces in uK that is missed by the reduced model; and
the false positive (FP) rate RFP quantifies the relative number of fake
shock traces predicted by the reduced model with respect to the total
number of shock traces in uK. Apparently, an accurate prediction
would lead to low rates for both false positives and false negatives.
Note that these rates depend on the realization of the stochastic

force f used as well as the additional stochastic closure terms (if

any) in the reduced model. To account for the uncertainty from the
randomness, we will compute these rates from many simu-
lations and present them using box charts in Secs. IV B
and IV C.

TABLE III. Rates of false predictions.

Weak forcing σ = 0.2 Strong forcing σ = 1

Rate False positive False negative False positive False negative

NAR model 0.08 0.17 0.11 0.24
Truncated system 1.06 0.31 2.71 0.55

The reported rates are computed according to (4.1) for the parameter regimes listed in Table I in a typical simulation. See Fig. 3 for the
corresponding binary shock trace plots.
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FIG. 4. Rate of false positive and false negative predictions of shocks in box plots. We compare the NAR model and the truncated model with the eight-mode projection of
the true solution. The rates are out of 200 simulations. In each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually in circle marker symbol.

B. Prediction from noiseless observations

In this section, we examine the performance of the NAR
reduced model in predicting the shock traces when noiseless obser-
vations are used as initial data for the prediction. The case with noisy
observation data will be dealt with in Sec. IV C.

The numerical setup is as follows. The parameter regimes are
those given by Table I. Both the NAR model and the Galerkin trun-
cated system aim to model the dynamics of the first eight Fourier
modes, and the time step δ is set to be ten times that for the full
model. These reduced models’ initial conditions are projections of
the full model’s initial conditions, and their stochastic forces are
the same as those used for the full model after coarsening to the
larger time step δ. Thus, each reduced model produces an approxi-
mation to the flow map (3.4) for the first eight Fourier modes, with
time step δ.

The NAR model is of the form (3.11), with the involved param-
eters trained according to the procedure described in Sec. III B 2. We
have also set p = 1 in (3.11). Thus, no memory terms are involved
here (see Sec. III B 3 for further discussions). The additional noise
term gn in (3.11) is modeled simply by a Gaussian fitting to the resid-
ual. In terms of computational cost, aside from the offline training
stage for inferring the involved parameters, the online simulation

TABLE IV. Fraction of energy in the unresolved modes. These numbers are com-
puted based on a typical realization of the full model solution over a 400 time-unit
window. The fraction of energy in the unresolved modes at each time t is computed via
‖u(·, t) − uK(·, t)‖

2/‖u(·, t)‖2 × 100%, where ‖ · ‖ denotes the (spatial) L2-norm
and K = 8.

Forcing strength Mean Standard deviation Outliers

σ = 0.2 3.26% 2.04% Above 10%
σ = 1 6.09% 3.00% Above 20%

time used by the NAR model is only slightly longer than that of the
truncated model due to the additional closure terms that are absent
in the truncated system, but the NAR model’s computational cost
remains orders of magnitude smaller than the full model due to its
lower space dimension and larger time step size.

Figure 3 shows the prediction results in a typical simulation.
We present the spatiotemporal fields obtained from the two reduced
models and compare them with the eight-mode projection of the
true solution field. Also shown are their binary shock traces com-
puted according to (2.8) with uk therein taken to be the spatiotem-
poral field from either the eight-mode projection of u (top row) or
the NAR reduced model (middle row) or the truncated model (bot-
tom row). The threshold τk in (2.8) is taken here to be the τK given by
Table II. We also report in Table III at a more quantitative level the
visual results given in Fig. 3, using the false negative/positive rates
defined in Sec. IV A.

For both the weak force regime (σ = 0.2) and the strong force
regime (σ = 1), the spatiotemporal field and the binary shock traces
of the projected true dynamics are very well reproduced by the NAR
model. In contrast, the truncated system already performs visibly
less good for the weak force regime, and its predictive skill dramati-
cally decreases in the strong forcing regime. The poor performance
of the truncated system is because it does not include any clo-
sure term to account for the impact from the unresolved modes.
Such closure terms become increasingly important as the forcing
strengthens. Indeed, for both forcing regimes considered, the unre-
solved modes still retain a significant amount of energy, especially
for the strong force regime; see Table IV.

The robust superior performance of the NAR model is further
confirmed by the statistics of the false negative and false posi-
tive rates in multiple simulations. For this purpose, we run the
above simulation of the full model and the reduced models for 200
different realizations of the solution of the full model, where the ini-
tial conditions are sampled from a long trajectory of the full model.
Figure 4 presents the box plots of the false positive and false negative
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FIG. 5. Ensemble trajectories of the real part of the eighth Fourier mode in the assimilation stage (t ∈ [0, 5]) and the prediction stage (t ∈ (5, 10]) compared with the
corresponding true dynamics. In both stages and in both cases of weak (σ = 0.2) and strong (σ = 1) stochastic forces, the NAR model has ensemble trajectories closer to
the true signal (left column) than the truncated system (middle column), leading to smaller errors in the ensemble mean estimator shown in the right column.

rates associated with these predictions. The NAR reduced model has
significantly smaller false rates than the truncated system for both
forcing regimes, and the variation of these rates is also significantly
smaller; see the caption of Fig. 4 for more details.

C. Data assimilation and prediction from noisy
observations

Noisy observations are commonly seen in practice due to
either measurement or sampling errors presented in the data
collection process. When the observations are noisy, the shock trace

prediction consists of two stages: a data assimilation stage to esti-
mate the initial conditions by filtering and a prediction stage that
advances forward in time from the estimated initial conditions. In
the data assimilation stage, we filter out the noise in the observations
by the ensemble Kalman filter (EnKF)62,63 (see Appendix A for a brief
review), with the NAR reduced model and the truncated system as
the forecast model, respectively.

1. Test settings

For each realization of the true solution, the corresponding
shock trace prediction experiment consists of first performing data
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FIG. 6. Rate of false positive (FP) and false negative (FN) in the prediction of the binary shock traces obtained from the NAR model and the truncated system. These rates
are computed from the prediction for 200 realizations of the true solution. In each prediction experiment, the spatiotemporal fields for the NAR model and the truncated
system used in computing the false rates are taken to be the corresponding ensemble mean of the EnKF with 100 particles. See also the caption of Fig. 4 for the meaning
of each element in the box plots.

assimilation using a reduced model (either the NAR model or the
truncated system) in the time interval [0, 5], and then carrying out
prediction using the same reduced model over the time interval
(5, 10]. Thus, we have 500 time steps in both stages since the time
step is set to be δ = 0.01 for the reduced model.

To generate noisy observations for the data assimilation, we
add independent Gaussian noise to the first eight Fourier modes’
real and imaginary parts with a standard deviation of 0.01 and mean
of 0 (while preserving that û−k = û∗

k). These noisy perturbations are
relatively large, with the ratio between this standard deviation 0.01
and the mean absolute values of the first to the eighth mode of the

true dynamics ranging from about 7% to 40% for the weak stochastic
force regime (σ = 0.2) and from 2% to 14% for the strong stochas-
tic force regime (σ = 1). This ratio increases as the wave number
k increases because the mean absolute value of the Fourier mode
decreases as k increases.

In the data assimilation stage, the forecast model of the EnKF
(either the NAR model or the truncated system) is initialized from
an ensemble of 100 initial conditions randomly sampled from a
Gaussian distribution centered at the noisy observation at time t = 0
with standard deviation 0.025, which is slightly larger than the stan-
dard deviation of the observation noise. In the prediction stage, we

Chaos 32, 043109 (2022); doi: 10.1063/5.0084955 32, 043109-13

© Author(s) 2022

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

simply simulate the forecast model with the end point from each of
the assimilation ensemble as the initial condition. Throughout this
section, the NAR model is the same as the one used in Sec. IV B, i.e.,
the NAR model is trained offline from noiseless data.

2. Performance comparison for a typical prediction

As in Sec. IV B, we first compare the performance for a typ-
ical realization of the true solution. For this purpose, we show the
ensemble trajectories in the data assimilation and the prediction
stages. The results are presented in Fig. 5 for the real part of the
mode with wave number k = 8, in the settings of a weak stochas-
tic force (top row, σ = 0.2) and a strong stochastic force (bottom
row, σ = 1).

At the data assimilation stage (t ∈ [0, 5]), the EnKF ensembles
of the NAR model are much closer to the true trajectory than the
truncated system’s. Also, the NAR model’s ensemble mean estima-
tors have errors less than the observation noise’s standard deviation
after a short time period, whereas the truncated system’s ensembles
deviate far away from the truth; see the right column of Fig. 5. The
NAR model’s prediction ensembles continue to be spread around
the true trajectory, whereas those of the truncated system struggle to
make a reasonable prediction for both σ = 0.2 and σ = 1.

Similar superior performances are observed for the NAR model
in the ensemble prediction of other modes with wave number k
less than 8 at both the data assimilation stage and the prediction
stage. The truncated system’s prediction skill gradually improves as
k decreases, because the signal to noise ratio improves as k decreases,
but the skill remains inferior to that of the NAR model.

Finally, it is worth pointing out that we set the prediction inter-
val to be (5, 10] here just for illustration purpose. Since the full model
is not chaotic, and the same realization of the stochastic force f is
used in both the full model and the reduce systems, one can expect
that the good prediction skill of the NAR model shown here to still
hold for even longer prediction intervals.

3. Performance comparison in multiple simulations

To assess the robustness of the NAR model, we repeat the above
simulation for 200 different realizations of the true solution and
present the performance using again box plots for the rates of false
predictions in Fig. 6. The procedure of computing the false positive
and false negative rates is the same as before but now carried out
separately for the assimilation stage and the prediction stage. For
each realization of the true solution, the spatiotemporal fields for the
NAR model and the truncated system used in computing these rates
are taken to be the corresponding ensemble mean from simulations
with 100 different initial conditions, which are sampled in the same
way adopted to produce Fig. 5.

The NAR model has significantly smaller rates of false predic-
tions than the truncated system in both stages and for both regimes
of the stochastic forces (see Fig. 6). In particular, the improvement is
significant in the prediction stage, reducing the median rates of false
positive from 0.61 to 0.05 in the weak forcing case and from about
2.41 to less than 0.10 in the strong forcing case. In the assimilation
stage, the improvement is less significant, reducing the median rates
of false positive from 0.15 to 0.02 in the weak forcing case and from
0.39 to 0.06 in the strong forcing case. The assimilation stage has

smaller rates than the prediction stage because of the information
supplied by the observation data.

We have, thus, illustrated that the NAR model is able to predict
accurately the pathwise behavior, i.e., the timing and location, of the
shocks with uncertainty quantification. This contrasts to predicting
only the long-term statistics of the fat-tailed PDFs, which is often the
focus of forecasting many other extreme events using reduced mod-
els. While the same realizations (after coarsening) of the stochastic
force as the full model were applied to the reduced models for diag-
nostic purpose, the accurate pathwise performance offered by the
NAR model presented above shows that even when the stochastic
force is unknown in practice, the prediction provided by the K-mode
NAR model would be comparable with those obtained from the K-
mode projection of the prediction computed from the full model
itself.

V. DISCUSSION AND CONCLUSIONS

To summarize, this work shows that a reduced model with sys-
tematic closure terms, namely, a nonlinear autoregression (NAR)
model, can accurately predict the timing and locations of random
shocks for the viscous stochastic Burgers equation, even though the
reduced model cannot represent the precise shocks. A key element is
a new characterization of shocks, called shock trace, which is a binary
indicator that reveals the timing and location of the occurrence of a
shock. The shock trace is defined via empirical resolution-adaptive
thresholds.

The NAR model describes the evolution of only the leading K
Fourier modes with K being a friction of the full model and with a
time step size ten times the full model. Thus, it reduces the com-
putational cost by orders of magnitude. The NAR model predicts
the shock trace almost as good as those computed from the K-mode
projection of the full model’s solution. The NAR model consistently
outperforms the corresponding Galerkin truncated system in fore-
casting the shock trace from both noiseless and noisy observations.
Thus, the data-driven closure in the NAR model plays an essential
role in its success of shock trace prediction.

We conclude by reiterating some key elements that contributed
to the success of the closure model utilized here and also mention
potential future works.

Data representation and importance of closure terms. The
reduction and prediction approach presented here is independent
of the orthogonal basis adopted to decompose the solution field.
Instead of the Fourier basis, one could use for instance empiri-
cally computed modes obtained from, e.g., the proper orthogonal
decomposition method64 and its variants65 or the dynamic mode
decomposition.66,67

The superior performance of the NAR model over the trun-
cated system demonstrates the importance of incorporating suitable
closure terms into the reduced model in order to effectively rep-
resent the nonlinear feedback from the unresolved-scale variables
to the resolved ones. Such nonlinear feedback effects are impor-
tant to be properly approximated here since a significant amount
of energy in the shocks can be contained in the high-frequency
variables, which are not resolved by a low-dimensional reduced sys-
tem (cf. Table IV). Of course, besides the NAR model, many other
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closure modeling techniques can potentially be used for this pur-
pose; see, e.g., Refs. 39, 46, and 68, 71.

Predicting key information of extreme events by reduced
models. By relaxing the goal from predicting the full shock pro-
files to predicting only their space–time locations, we arrive at a task
within the representation capacity of a low-dimensional reduced
subspace, which is thus much more accessible by a reduced-order
modeling approach. The indicator function (2.8) introduced here
for identifying binary shock traces is based on a simple resolution-
adaptive threshold defined by (2.7), which is computed empirically
using an ensemble of the true solution trajectories or their projec-
tions onto a given number of Fourier modes. These binary shock
traces encode the shock locations in space–time, providing thus
important partial information about the shocks.

While we illustrated the approach on the stochastic Burgers
equation, it is expected that the developed strategy will be of inter-
est for data-driven predictive modeling of a broad range of extreme
events, particularly those beyond the representation capacity of
a reduced-order modeling framework. Note that the concerned
extreme events do not have to be the extreme values1,2,21,23 of the
states of the model; the shocks correspond to extreme values in the
spatial gradient field instead. It is reasonable to expect that the repre-
sentation capacity offered by a fixed subspace will be violated more
often when higher derivatives are involved in defining the concerned
extreme events.

Prediction of the exact shocks. Going beyond shock trace pre-
diction, if one would wish for instance to approximate the sharp
gradients presented in the shock profiles, it would require either to
resolve more Fourier modes, or switch to a data-adaptive empiri-
cal basis such as those mentioned above, or adopt a combination of
good low-dimensional reduced models with additional techniques
to recover the unresolved high-frequency modes. A few possibilities
are available for the latter option depending on the setup.

For instance, when observations are only available for
the low-frequency modes, one can design computationally effi-
cient data assimilation strategies within the conditional Gaussian
framework72,73 to approximate the dynamics of the high-frequency
modes with quantified uncertainties by a suitable dynamical model
for the unresolved modes. On the other hand, one can parameterize
the high-frequency modes using suitable random functions of the
resolved low-frequency dynamics. These random functions can be
designed for instance through the dynamics-based parameterizing
manifold approach46,74 or other data-driven and machine learning
approaches. When good parameterizations of the unresolved modes
are available, they can be used to both build reduced models for

the resolved modes and provide approximations of the unresolved
modes.
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APPENDIX A: THE ENSEMBLE KALMAN FILTER

The Ensemble Kalman Filter (EnKF) is a Monte Carlo imple-
mentation of Bayesian filtering with the Kalman filter update.62,75–77

It uses an ensemble of random samples, also called particles, to
approximate the forecast and analysis distributions by Gaussian
distributions whose means and covariances are given by ensemble
means and covariances. Among various EnKF algorithms, we con-
sider the version with perturbed observations, introduced in Refs. 62
and 77, and we refer to Ref. 78 for a comparison of different versions
of EnKF algorithms.

Suppose the filter uses a forecast model

xn = Fn(xn−l:n−1), (A1)

where xn ∈ Rdx is the state variable, xn−l:n−1 = (xn−l, . . . , xn−1), and
Fn is a forecast operator at time n which maps Rl×dx to Rdx with
1 ≤ l ≤ n − 1. The forecast model can be either stochastic or deter-
ministic, and either Markovian (e.g., l = 1) or non-Markovian (e.g.,
l > 1). The state variable is observed through a linear observation
operator with Gaussian noise,

zn = Hxn + εn,

TABLE V. Parameters in the NAR model: weak stochastic force σ = 0.2.

k 1 2 3 4 5 6 7 8

cv −0.01 −0.05 −0.12 −0.26 −0.73 −1.28 −2.02 −2.68
cR 1.08 1.04 1.00 0.93 0.93 0.83 0.65 0.26
cf (×10−3) −0.12 −0.47 −1.07 −1.90 −0.00 −0.00 −0.00 −0.00
cw (×10−5) −1.38 4.59 −3.41 −4.47 −5.48 −5.37 −0.00 −5.91
σ̂g 0.04 0.13 0.23 0.32 0.44 0.55 0.70 0.93
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TABLE VI. Parameters in the NAR model: strong stochastic force σ = 1.

k 1 2 3 4 5 6 7 8

cv −0.05 −0.23 −0.54 −1.07 −2.71 −4.49 −6.84 −9.20
cR 1.08 1.02 0.97 0.87 0.88 0.78 0.64 0.35
cf (×10−3) −0.26 −1.05 −2.39 −4.25 0.00 −0.00 0.00 −0.00
cw (×10−6) −0.70 −6.88 −1.87 −4.57 −1.84 −2.27 −1.43 −7.74
σ̂g 0.92 2.06 3.19 4.08 5.12 5.96 7.28 9.74

where H ∈ Rdz×dx is the observation matrix, and the εn ∼ N(0, R)
are independent Gaussian noises. In this study, we assume that the
observation matrix R is known.

The EnKF iterates the following two steps, with an initial

ensemble of particles {xa,(i)
0 , i = 1, . . . , M} sampled from the forecast

distribution of the state variable x (e.g., the stationary distribution of
the forecast model).

1. Forecast step: from the ensemble {xa,(i)
1:n−1} at time n − 1, gener-

ate a forecast ensemble {x
f,(i)
n } using the forecast model in (A1),

i.e., x
f,(i)
n = Fn(x

a,(i)
n−l:n−1). Here, the superscript in x

f
n denotes the

ensemble from the forecast model, and the superscript in xa
n

denotes the ensemble of the posterior distribution after assimi-
lating data in the following analysis step. If the forecast model is
stochastic, independent realizations should be used at different
times.

2. Analysis step: Given new observation zn, update the forecast
ensemble to get a posterior ensemble of xn,

xa,(i)
n = xf,(i)

n + Kn(z
(i)
n − Hxf,(i)

n ), (A2)

for i = 1, . . . , M, where the Kalman gain matrix is

Kn = Cf
nHT(HCf

nHT + R)
−1

, (A3)

where the matrix C
f
n is the sample covariance of the forecast

ensemble,

Cf
n =

1

M − 1

M∑

i=1

(
xf,(i)

n − xf
n

) (
xf,(i)

n − xf
n

)T

,

where xf
n = 1

M

∑M
i=1 x

f,(i)
n and the z(i)

n are obtained by adding
random perturbations ε(i)

n ∼ N(0, R) to zn,

z(i)
n = zn + ε(i)

n .

APPENDIX B: PARAMETERS IN THE NAR MODELS

The parameters for the NAR models in the regimes of weak
and strong stochastic forcing are shown in Tables V and VI (see
Sec. III B 3 for the specifications).
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