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Abstract. Importance sampling algorithms are discussed in detail, with an

emphasis on implicit sampling, and applied to data assimilation via particle fil-
ters. Implicit sampling makes it possible to use the data to find high-probability

samples at relatively low cost, making the assimilation more efficient. A new

analysis of the feasibility of data assimilation is presented, showing in detail
why feasibility depends on the Frobenius norm of the covariance matrix of the

noise and not on the number of variables. A discussion of the convergence

of particular particle filters follows. A major open problem in numerical data
assimilation is the determination of appropriate priors; a progress report on
recent work on this problem is given. The analysis highlights the need for
a careful attention both to the data and to the physics in data assimilation
problems.
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1. Introduction. Bayesian methods for estimating parameters and states in com-
plex systems are widely used in science and engineering; they combine a prior dis-
tribution of the quantities of interest, often generated by computation, with data
from observations, to produce a posterior distribution from which reliable infer-
ences can be made. Some recent applications of these methods, for example in
geophysics, involve more unknowns, larger data sets, and problems that are more
nonlinear than earlier applications, and present new challenges in their use (see,
e.g. [7, 50, 21, 48, 16] for recent reviews of Bayesian methods in engineering and
physics).

The emphasis in the present paper is on data assimilation via particle filters,
which requires effective sampling. We give a preliminary discussion of importance
sampling and explain why implicit sampling [36, 3, 14, 13] is an effective impor-
tance sampling method. We then present implicit sampling methods for calculating
a posterior distribution of the unknowns of interest, given a prior distribution and a
distribution of the observation errors, first in a parameter estimation problem, then
in a data assimilation problem where the prior is generated by solving stochastic
differential equations with a given noise. Conditions for data assimilation to be fea-
sible in principle and their physical interpretation are discussed (see also [12]). A
linear convergence analysis for data assimilation methods shows that Monte Carlo
methods converge for many physically meaningful data assimilation problems, pro-
vided that the numerical analysis is appropriate and that the size of the noise is
small enough in the appropriate norm, even when the number of variables is very
large. The keys to success are a careful use of data and a careful attention to
correlations.

An important open problem in the practical application of data assimilation
methods is the difficulty in finding suitable error models, or priors. We discuss a
family of problems where priors can be found, with an example. Here too a proper
use of data and a careful attention to correlations are the keys to success.

2. Importance sampling. Consider the problem of sampling a given probability
density function (pdf) f on the computer, i.e., given a pdf for an m-dimensional
random vector, construct a sequence of vectors X1, X2, . . . , which can pass sta-
tistical independence tests, and whose histogram converges to the graph of f , in
symbols, find Xi ∼ f. We discuss this problem in the context of numerical quadra-
ture. Suppose one wishes to evaluate the integral

I =

∫
g(y)f(y)dy,

where g(y) is a given function and f(y) is a pdf, i.e., f(y) ≥ 0 and
∫
f dy = 1. The

integral I equals E[g(x)], where x is a random variable with pdf f and E[·] denotes
an expected value. This integral can be approximated via the law of large numbers
as

I = E [g(x)] ≈ 1

M

M∑

i=1

g(Xi),

where Xi ∼ f and M is a large integer (the number of samples we draw). The error
is of the order of σ(g(x))/M1/2, where σ(·) denotes the standard deviation of the
variable in the parentheses. This assumes that one knows how to find the samples
Xi, which in general is difficult. One way to proceed is importance sampling (see,
e.g., [26, 9]): introduce an auxiliary pdf f0, often called an importance function,
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Figure 1. Poor choice of importance function: the importance
function (purple) is not close to the pdf we wish to sample (blue).

which never vanishes unless f does, and which one knows how to sample, and rewrite
the integral as

I =

∫
g(y)

f(y)

f0(y)
f0(y)dy = E [g(x∗)w(x∗)]

where the pdf of x∗ is f0 and w(x∗) = f(x∗)/f0(x∗). The expected value can then
be approximated by

I ≈ 1

M

M∑

i=1

g(X∗i )w(X∗i ) (1)

where X∗i ∼ f0 and the w(X∗i ) = f(X∗i )/f0(X∗i ) are the sampling weights. The
error in this approximation is of order σ(gw)/M1/2 (here the standard deviation is
computed with respect to the pdf f0). The sampling weights make up for the fact
that one is sampling the wrong pdf.

Importance sampling can work well if f and f0 are fairly close to each other.
Suppose they are not (see figure 1). Then many of the samples Xi (drawn from the
importance function) fall where f is negligible and their sampling weight is small.
The computing effort used to generate such samples is wasted since the low-weight
samples contribute little to the approximation of the expected value. In fact, one
can define an effective number of samples [16, 2, 53, 28] as

Meff =
M

R
, R =

E
[
w2
]

E [w]
2 , (2)

where expected values are computed with respect to the importance function f0. In
particular, Meff = M if all the particles have weights 1/M . The effective number of
samples approximates the equivalent number of independent, unweighted samples
one has after importance sampling withM samples. Importance sampling is efficient
if R is much smaller than M . For example, suppose that you find that one weight
is much larger than all the others. Then R ≈ M , so that one has effectively one
sample and this sample does not necessarily have a high probability. In this case, the
importance sampling scheme has “collapsed”. To find f0 that prevents a collapse,
one has to know the shape of f quite well, in particular know the region where f
is large. In some of the examples below, the whole problem is to estimate where
a particular pdf is large, and it is not realistic to assume that this is known in
advance.

As the number of variables increases, the value of a carefully designed importance
function also increases. This can be illustrated by an example. Suppose that f =
N (0, Im), where Im is the identity matrix of order m (here and below we denote
a Gaussian with mean µ and covariance matrix Q by N (µ,Q)). To sample this
Gaussian we pick a Gaussian importance function f0 = N (0, σ2Im), σ > 1. The
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Figure 2. The number of samples required increases exponentially
with the number of variables.

importance function has a shape similar to that of the function we wish to sample
and f0 is large where f is large (for moderate σ). Nonetheless, sampling becomes
increasingly costly as the number of components of x increases. We find that

w(x) = σm exp

(
−1

2

σ2 − 1

σ2
xTx

)
,

where the superscript T denotes a transpose, so that

E [w(x)] = 1, E
[
w(x)2

]
=

(
σ2

√
2σ2 − 1

)m
.

Here, the expected values are computed with respect to the importance function.
Equation (2) shows that the number of samples required for a given Meff grows
exponentially with the number of variables m:

log(M) = m log

(
σ2

√
2σ2 − 1

)
+ log(Meff).

The situation is illustrated in figure 2. As the number of variables increases, the cost
of sampling, measured by the number of samples required to obtain the pre-specified
number of effective samples, grows exponentially with the number of variables for
any σ > 1/2 except σ = 1; see also the discussion in [40].

3. Implicit sampling. Implicit sampling is a general numerical method for con-
structing effective importance functions [36, 3, 14, 13]. We write the pdf to sample
as f = e−F (x) and, temporarily, assume that F (x) is convex. The idea is to write
x as a one-to-one and onto function of an easy-to-sample reference variable ξ with
pdf g ∝ e−G(ξ), where G is convex. To find this function, we first find the minima
of F, G, call them φF = minF, φG = minG, and define φ = φF − φG. Then define
a mapping ψ : ξ → x such that ξ and x satisfy the equation

F (x)− φ = G(ξ). (3)

With our convexity assumptions a one-to-one and onto map exists, in fact there
are many, because equation (3) is underdetermined (it is a single equation that
connects the m elements of Xi to the m elements of Ξi, where m is the number of
variables). To find samples X1, X2, . . . , first find samples Ξ1,Ξ2, . . . of ξ, and for
each i = 1, 2, . . . , solve (3). A sample Xi obtained this way has a high probability
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(with a high probability) for the following reasons. A sample Ξi of the reference
density g is likely to lie near the minimum of G, so that the difference (G(Ξi)−φG)
is likely to be small. By equation (3) the difference (F (Xi)−φF ) is also likely to be
small and the sample Xi is in the region where f is large. Thus, by solving (3), we
map the high-probability region of the reference variable ξ to the high-probability
region of x, so that one obtains a high-probability sample Xi from a high-probability
sample Ξi.

The mapping ψ defines the importance function implicitly by the solutions of (3):

f0(x(ξ)) = g(ξ)

∣∣∣∣det

(
∂ξ

∂x

)∣∣∣∣ .

A short calculation shows that the sampling weight w(Xi) is

w(Xi) ∝ e−φ |J(Xi)| , (4)

where J is the Jacobian det(∂x/∂ξ). The factor e−φ, common to all the weights, is
immaterial here, but plays an important role further below.

We now give an example of a map ψ that makes this construction easy to imple-
ment. We assume here and for the rest of the paper that the reference variable ξ is
the Gaussian N (0, Im), where m is the dimension of x. With a Gaussian ξ, φG = 0
and equation (3) becomes

F (x)− φ =
1

2
ξT ξ. (5)

We can find a map that satisfies this equation by looking for solutions in a random
direction η = ξ/(ξT ξ), i.e. use a mapping ψ such that

x = µ+ λLη, (6)

where µ = argminF is the minimizer of F , L is a given matrix, and λ is a scalar that
depends on ξ. Substitution of the above mapping into (5) gives a scalar equation in
the single variable λ (regardless of the dimension of x). The matrix L can be chosen
to optimize the distribution of the sampling weights. For example, if L is a square
root of the inverse of the Hessian of F at the minimum, then the algorithm is affine
invariant, which is important in applications with multiple scales [23]. Equation (6)
can be readily solved and the resulting Jacobian is easy to calculate (see [36] for
details).

Other constructions of suitable maps ψ are presented in e.g. [13, 22] and some
of these are analyzed in [22]. With these constructions, often the most expensive
part of the calculation is finding the minimum of F . Note that this needs to be
done only once for each sampling problem, and that finding the maximum of f
is an unavoidable part of any useful choice of importance function, explicitly or
implicitly. Addressing the need for the optimization explicitly has the advantage
that effective optimization methods can be brought to bear. Connections between
optimization and (implicit) sampling also have been pointed out in [3, 37]. In fact,
an alternate derivation of implicit sampling can be given by starting from maximum
likelihood estimation, followed by a randomization that removes bias and provides
error estimates.

We now relax the assumption that F is convex. If F is U -shaped, the above
construction works without modification. A scalar function F is U -shaped if it
is piecewise differentiable, its first derivative vanishes at a single point which is a
minimum, F is strictly decreasing on one side of the minimum and strictly increasing
on the other, and F (x) → ∞ as |x| → ∞; in the general case, F is U -shaped if it
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has a single minimum and each intersection of the graph of the function y = F (x)
with a vertical plane through the minimum is U -shaped in the scalar sense. If
F is not U -shaped, but has only one minimum, one can replace it by a U -shaped
approximation, say F0, and then apply implicit sampling as above. The bias created
by this approximation can be annulled by reweighting [13]. If there are multiple
minima, one can represent f as a mixture of components whose logarithms are U -
shaped, and then pick as a reference pdf g a cross-product of a Gaussian and a
discrete random variable. However, the decomposition into a suitable mixture can
be laborious (see [54]).

4. Beyond implicit sampling. Implicit sampling produces a sequence of samples
that lie in the high-probability domain and are weighted by a Jacobian. It is natural
to wonder whether one can absorb the Jacobian into the map ψ : ξ → x and
obtain “optimal” samples that need no weights (here and below, optimal refers to
minimum variance of the weights, i.e. an optimal sampler is one with a constant
weight function). If a random variable x with pdf f is a one-to-one function of a
variable ξ with pdf g, then

f(x(ξ)) = g(ξ)J(ξ), (7)

where J is the Jacobian of the map ψ. One can obtain samples of x directly
(i.e. without weights) by solving (7). Notable efforts in that direction can be found
in [43, 38].

However, optimal samplers can be expensive to use; the difficulties can be demon-
strated by the following construction. Consider a one-variable pdf f with a convex
F = − log f . Find the maximizer z of f , with maximum Mf = f(z), and let g
be the pdf of a reference variable ξ, with its maximizer also at z and maximum
Mg = g(z). To simplify the notations, change variables so that z = 0. Then
construct a mapping ψ : ξ → x as follows. Solve the differential equation

du

dt
=

g(t)

f(u)
, (8)

where t is the independent variable and u is a function of t, in the t-interval [0, ξ],
with initial condition u = 0 when t = 0. Define the map from ξ to x by x = u(ξ);
then f(x) = g(ξ)J , where J = |du/dx| evaluated at t = ξ. Under the assumptions
made, this map is one-to-one and onto. We have achieved optimal sampling.

The catch is that the initial value of g(t)/f(u) is Mg/Mf , which requires that
the normalization constants of f and g be known. In general the solution of the
differential equation does not depend linearly on the initial value of g(0)/f(u(0)),
so that unless Mf and Mg are known, the samples are in the wrong place while
weights to remove the resulting bias are unavailable. Analogous conclusions were
reached in [17] for a different sampling scheme. In the special case where F =
− log f and G = − log g are both quadratic functions the constants Mf ,Mg can be
easily calculated, but under these conditions one can find a linear map that satisfies
equation (7) and implicit sampling becomes identical to optimal sampling. The
elimination of all variability in the weights in the nonlinear case is rarely worth the
cost of computing the normalization constants.

Note that the normalization constants are not needed for implicit sampling. The
mapping (6) for solving (3) is well-defined even when the normalization constants of
f and g are unknown, because if one multiplies the functions f or g by a constant,
the logarithm of this constant is added both to F (G) and to φF (φG) and cancels
out. Implicit sampling simplifies equation (7) by assuming that the Jacobian is a
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constant. It produces weighted samples where the weights are known only up to a
constant, and this indefiniteness can be removed by normalizing the weights so that
their sum equals 1.

5. Bayesian parameter estimation. We now apply implicit sampling to Bayesian
estimation. For the sake of clarity we first explain how to use Bayesian estimation
to determine physical parameters needed in the numerical modeling of physical pro-
cesses, given noisy observations of these processes. This discussion explains how a
prior and data combine to create a posterior probability density that is used for in-
ference. In the next section we extend the methodology to data assimilation, which
is our main focus.

Suppose one wishes to model the diffusion of some material in a given medium.
The density of the diffusing material can be described by a diffusion equation, pro-
vided the diffusion coefficients θ ∈ Rm can be determined. Given the coefficients θ,
one can solve the equation and determine the values of the density at a set of points
in space and time. The values of the density at these points can be measured ex-
perimentally, by some method with an error η whose probability density is assumed
known; once the measurements d ∈ Rk are made, this assigns a probability to θ.
The relation between d and θ can be written as

d = h(θ) + η, (9)

where h : Rk → Rm is a generally nonlinear function, and η ∼ pη(·) is a random
variable with known pdf that represents the uncertainty in the measurements. The
evaluation of h often requires a solution of a differential equation and can be expen-
sive. In the Bayesian approach, one assumes that information about the parameters
is available beforehand in form of a prior probability density p0(θ). This prior and
the likelihood p(d|θ) = pη(d−h(θ)), defined by (9), are combined via Bayes’ rule to
give the posterior pdf, which is the probability density function for the parameters
θ given the data d,

p(θ|d) =
1

γ(d)
p0(θ)p(d|θ), (10)

where γ(d) =
∫
p0(θ)p(d|θ)dθ is a normalization constant (which may be hard to

compute).
In a Monte Carlo approach to the determination of the parameters, one finds

samples of the posterior pdf. These samples can, for example, be used to approxi-
mate the expected value

E[θ|d] =

∫
θ p(θ|d) dθ,

which is the best approximation of θ in a least squares sense (see, e.g. [9]); an error
estimate can also be computed, see [48].

When sampling the posterior p(θ|d), it is natural to set the importance function
equal to the prior probability p0(θ) and then weight the samples by the likelihood
p(d|θ). However, if the data are informative, i.e., if the measurements d modify
the prior significantly, then the prior and the posterior can be very different and
this importance sampling scheme is ineffective. When implicit sampling is used to
sample the posterior, the data are taken into account already when one generates
the samples, not only in the weights of the samples.

As the number of variables increases, the prior p0 and the posterior p(θ|d) may
become nearly mutually singular. In fact, in most practical problems these pdfs
are negligible outside a small spherical domain so that the odds that the prior and



4234 A. J. CHORIN, F. LU, R. N. MILLER, M. MORZFELD AND X. TU

the posterior have a significant overlap decrease quickly with the the number of
variables, making implicit sampling increasingly useful (see [37] for an application
of implicit sampling to parameter estimation).

6. Data assimilation. We now apply Bayesian estimation via implicit sampling to
data assimilation, in which one makes inferences from an unreliable time-dependent
approximate model that defines a prior, supplemented by a stream of noisy and/or
partial data. We assume here that the model is a discrete recursion of the form

xn+1 = f(xn) + wn, (11)

where n is a discrete time, n = 0, 1, 2, . . . , the set of m-dimensional vectors x0:n =
(x0, x1, . . . , xn, . . . ) are the state vectors we wish to estimate, f(·) is a given func-
tion, and wn is a Gaussian random vector N (0, Q). The model often represents a
discretization of a stochastic differential equation. We assume that k-component
data vectors bn, n = 1, 2, . . . are related to the states xn by

bn = h(xn) + ηn, (12)

where h(·) is the (generally nonlinear) observation function and ηn is a N (0, R)
Gaussian vector (the ηn and wn are independent of ηk and wk for k < n and also
independent of each other). In addition, initial data x0, which may be random,
are given at time n = 0. For simplicity, we consider in this section the problem
of estimating the state x of the system rather than estimating parameters in the
equations as in the previous section. Thus, we wish to sample the conditional pdf
p(x0:n|b1:n), which describes the probability of the sequence of states between 0
and n given the data b1:n = (b1, . . . , bn). The samples of this conditional pdf are
sequences X0, X1, X2, . . . , usually referred to as “particles”. The conditional pdf
satisfies the recursion

p(x0:n+1|b1:n+1) = p(x0:n|b1:n)
p(xn+1|xn)p(bn+1|xn+1)

p(bn+1|b1:n)
, (13)

where p(xn+1|xn) is determined by equation (11) and p(bn+1|xn+1) is determined
by equation (12). (see e.g. [16]). We wish to sample the conditional pdf recursively,
time step after time step, which is natural in problems where the data are obtained
sequentially, and drastically reduces the computational cost. To do this we use an
importance function π of the form

π(x0:n+1|b1:n+1) = π0(x0)

n+1∏

k=1

πk(xk|x0:k−1, b1:k). (14)

where the πk are increments of the importance function. The recursion (13) and
the factorization (14) yield a recursion for the weight Wn+1

j of the j-th particle,

Wn+1
j =

p(x0:n+1|b1:n+1)

π(x0:n+1|b1:n+1)
= Wn

j

p(Xn+1
j |Xn

j )p(bn+1|Xn+1
j )

πn+1(Xn+1
j |X0,n

j , b1:n)
. (15)

With this recursion, the task at hand is to pick a suitable update πk(xk|x0:k−1, b1:k)
for each particle, to sample p(Xn+1

j |Xn
j )p(bn+1|Xn+1

j ), and to update the weights

so that the pdf p(x0:n+1|b1:n+1) is well-represented. The solution of the discrete
model (11) plays the same role in data assimilation as the prior in the parameter
estimation problem of section 5.
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In the SIR (sequential importance sampling) filter one picks

πn+1(xn+1|x0:n, b1:n+1) = p(xn+1
j |Xn−1

j ),

and the weight is Wn+1
j ∝Wn

j p(b
n+1|Xn+1

j ). Thus, the SIR filter proposes samples

by the model (11) and determines their probability from the data (12).
In implicit data assimilation one samples πn+1(xn+1|x0:n, b1:n+1) by implicit sam-

pling, thus taking the most recent data bn+1 into account for generating the samples.
The weight of each particle is given by equation (15)

Wn+1
j = Wn

j exp(−φn+1
j )J(Xn+1

j ),

where φn+1
j = argmin Fn+1

j is the minimum of

Fn+1
j (xn+1) = − log

(
p(xn+1|Xn

j )p(bn+1|xn+1)
)
.

A minimization is required for each particle at each step.
The “optimal” importance function [17, 56, 28] is defined by (14) with

πn+1(xn+1|x0:n, b1:n+1) = p(xn+1|xn, bn+1),

and its weights are
Wn+1
j = Wn

j p(bn+1|Xn
j ).

This choice of importance functions is optimal in the sense that it minimizes the
variance of the weights at the n + 1 step given the data and the particle posi-
tions at the previous step. In fact, this importance function is optimal over all
importance functions that factorize as in (14), and in the sense that the variance
of the weights var(wn) is minimized (with expectations computed with respect to
π(x0:n+1|b0:n+1)), see [47]. In a linear problem where all the noises are Gaussian, or
in a problem with nonlinear dynamics and a linear observation functional in which
observations are available every time step, the implicit filter and the optimal filter
coincide [14, 36, 32]. When a problem is nonlinear, the optimal filter may be hard
to implement, as discussed above.

A variety of other constructions is available (see e.g. [54, 53, 52, 51, 1]). The
SIR and optimal filters are extreme cases, in the sense that one of them makes no
use of the data in finding samples while the other makes maximum use of the data.
The optimal filter becomes impractical for nonlinear problems while the implicit
filter can be implemented at a reasonable cost. Implicit sampling balances the use
of data in sampling and the computational cost.

7. The size of a covariance matrix and the feasibility of data assimilation.
Particle filters do not necessarily succeed in assimilating data. There are many
possible causes- for example, the recursion (11) may be unstable, or the data may
be inconsistent. The most frequent cause of failure is filter collapse, in which only
one particle has a non-negligible weight, so that there is effectively only one particle,
which is not sufficient for valid inference. In the next section we analyze how particle
collapse happens and how to avoid it. In preparation for this discussion, we discuss
here the Frobenius norm of a covariance matrix, its geometrical significance, and
physical interpretation.

The effectiveness of a sampling algorithm depends on the pdf that it samples.
For example, suppose that the posterior you want to sample is in one variable, but
has a large variance. Then there is a large uncertainty in the state even after the
data are taken into account, so that not much can be said about the state. We
wish to assess the conditions under which the posterior can be used to draw reliable
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conclusions about the state, i.e. we make the statement “the uncertainty is not too
large” quantitative. We call sampling problems with a small enough uncertainty
“feasible in principle”. There is no reason to attempt to solve a sampling problem
that is not feasible in principle.

Our analysis is linear and Gaussian and we allow the number of variables to be
large. In multivariate Gaussian problems, feasibility requires that a suitable norm
of the covariance matrix be small enough. This analysis is inspired by geophysical
applications where the number of variables is large, but the nonlinearity may be
mild; parts of it were presented in [12].

We describe the size of the uncertainty in multivariate problems by the size the
m×m covariance matrix P = (pij), which we measure by its Frobenius norm

||P ||F =




m∑

i=1

m∑

j=1

p2
ij




1/2

=

(
m∑

k=1

λ2
k

)1/2

, (16)

where the λk, k = 1, . . . ,m are the eigenvalues of P . The reason for this choice
is the geometric significance of the Frobenius norm. Let x ∼ N (µ, P ) be an m-
dimensional Gaussian variable, and consider the distance between a sample of x
and its most likely value µ

r = ||x− µ||2 =
√

(x− µ)T (x− µ).

If all eigenvalues of P are O(1) and if m is large, then E[r], the expected value of r,
is O(||P ||F ) and var(r) = O(1), i.e. the samples concentrate on a thin shell, far from
their most likely value. Different parts of the shell may correspond to physically
different scenarios (such as “rain” or “no rain”). Moreover, the expected value and
variance of the distance distance r =

√
y of a sample to its most likely value are

bounded above and below by multiples of ||P ||F (see [12]). If one tries to estimate
the state of a system with a large ||P ||F , the Euclidean distance between a sample
and the resulting estimate is likely to be large, making the estimate useless. For a
feasible problem we thus require that ||P ||F not be too large. How large “large”
can be depends on the problem.

In [12] and in earlier work [46, 6, 4] on the feasibility of particle filters, the
Frobenius norm of P was called the “effective dimension”. This terminology is
confusing and we abandon it here. The norm ||P ||F quantifies the strength of the
noise, but we define the effective dimension of the noise by

min ` ∈ Z :
∑̀

j=1

λ2
j ≥ (1− ε)

∞∑

j=1

λ2
j , (17)

where ε is a predetermined small parameter. This definition of effective dimension is
similar in spirit to the standard procedure in regression analysis in which an effective
number of independent variables is determined by applying a formula essentially
identical to (17) to the covariance matrix of the independent variables (e.g., [20]).
The small parameter ε is usually chosen to retain only those components with
amplitudes above some predetermined noise level. A small ||P ||F can imply a
small `, however the reverse is not necessarily true and ||P ||F can be small, even
though ` is large (for example if x ∼ N (0, Im/

√
m)) and vice versa. There are

low-dimensional problems with a large noise (large ||P ||F ) which are not feasible in
principle, and there are large dimensional problems with a small noise which are
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feasible in principle (small ||P ||F ). Estimation based on a posterior pdf is feasible
in principle only if ||P ||F is small.

We now examine the relations between ||P ||F , the effective dimension `, and the
correlations between the components of the noise (i.e., the size of the off-diagonal
terms in P ). We assume that our random variables are point values xi of a stationary
stochastic process on the real line, measured at the points ih of the finite interval
[0, 1], where i = 1, 2, . . . ,m and h = 1/m. As the mesh is refined, m increases. The
condition for the discrete problem to be feasible is that the Frobenius norm of its
covariance matrix be bounded. Let the covariance matrix of the continuous process
be k(x, x′) = k(x− x′); the corresponding covariance operator is defined by

Kϕ =

∫ 1

0

k(x, x′)ϕ(x′)dx′

for every function ϕ = ϕ(x). The eigenvalues of K can be approximated by the
eigenvalues of P multiplied by h (see [42]). The Frobenius norm of K,

(∫ 1

0

∫ 1

0

k2 dx dx′
)1/2

,

describes the distance of a sample to its most likely value in the L2 sense, as can
be seen by following the same steps as in [12], replacing the Euclidean norm by the
appropriate grid-norm ||x||22 =

∑m
k=1 hx

2
k.

We consider a family of Gaussian stationary processes with differing correlation
structures. The discussion is simplified if we keep the energy e defined by

e =

∫ ∞

−∞
k(s)2 ds, (s = x− x′)

equal to 1 for all the members of the family (so that all the members of the family
are equally noisy); that e is an energy follows from Khinchin’s theorem (see e.g.
[9]). An example of such a family is the family of zero-mean processes with

k(x, x′) = π−
1
4L−

1
2 exp

(
− (x− x′)2

2L2

)
,

where L is the correlation length. The infinite limits in the definition of e make
the calculations easier, and are harmless as long as L is less than about 1/3. The
elements pij of the discrete matrix P are pij = k(ih, jh), i, j = 1, . . . ,m.

In the left panel of figure 3 we demonstrate that for a fixed correlation length L,
the Frobenius norm

||P ||F =

(
m∑

k=1

(hλk)2

) 1
2

,

where the λk are the eigenvalues of the covariance matrix P , is independent of the
mesh (for small enough h) and, therefore independent of the discretization. In the
calculation of the dimension ` in (17), we use ε = 5%. In the figure, we plot the
Frobenius norms of the m × m matrices P as the purple dashed lines. The solid
line is the Frobenius norm of the covariance operator K of the continuous process,
which, for this simple example, can be computed analytically:

||K||2F =

∫ 1

0

∫ 1

0

k(y, y)2 dydy′ =

∞∑
j=1

λ̃2
j = π L

((
exp

(
− 1

L2

)
− 1

)
+
√
πErf

(
1

L

))
,
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Figure 3. Norms of covariance matrices and dimension ` for a
family of Gaussian processes with constant energy as a function of
the mesh size h (left) and as a function of the correlation length L
(right).

where the λ̃ are the eigenvalues of the operator K. We find a good agreement
between the infinite dimensional results for K and and their finite dimensional ap-
proximations by ||P ||F . (the dashed lines are mostly invisible because they coincide
with the results calculated from the infinite dimensional problem).

The right panel of the figure shows the variation of ||P ||F and the dimension `
with the correlation length L. We observe that the Frobenius norm remains almost
constant for L < 10−2. On the other hand, the dimension ` in (17) increases as
the correlation length decreases. What this figure shows is that the feasibility of
data assimilation depends on the level of noise, but not on the effective number of
variables. One can find the same level of noise for very different effective dimensions.
If data assimilation is not feasible, it is because the problem has too much noise,
not too many variables.

It is interesting to consider the limit L → 0 in our family of processes. A
stationary process u(x) such that for every x, u(x) is a Gaussian variable, with
E[u(x)u(x′)] = 0 for x 6= x′ and E[u(x)2] = A, where A is a finite constant, has very
little energy; white noise, the most widely used Gaussian process with independent
values, has E[u(x)u(x′)] = δx,x′ , where the right-hand-side is a δ function, so that
E[u(x)2] is unbounded. The energy of white noise is infinite, as is well-known. If
k(x− x′) in our family blew up like L−1 at the origin as L→ 0, the process would
be a multiple of Brownian motion; here it blows up like L−1/2, allowing the energy
to remain finite while not allowing the E[u2] to remain bounded. The moral of this
discussion is that a sampling problem where P = Im for all m is unphysical.

An apparent paradox appears when one applies our theory to determine the
feasibility of a Gaussian random variable with covariance matrix P = Im, as in
[46, 6, 4, 45, 47]. In this case, ||P ||F =

√
m, so that the problem is infeasible by our

definition if the number of variables m is large. On the other hand, the problem
seems to be physically plausible. For example, suppose one wishes to estimate the
wind velocity at m geographical sites based on independent local models for each
site (e.g. today’s wind velocity is yesterday’s wind velocity with some uncertainty),
and independent noisy measurements at each site. The local Pj at each site is one-
dimensional and equals 1. Why then not try to determine the m velocities in one fell
swoop, by considering the whole vector x and setting P = Im ? Intuition suggest
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that the set of local problems is equivalent to the P = Im problem, e.g. that one
can use local stochastic models to predict the velocities at nearby sites, and then
mark these on a weather map and obtain a plausible global field. Thus, ||P ||F seems
to be large in a plausible and feasible problem. This, however, is not so. First, in
reality, the uncertainties in the velocities at nearby sites are highly correlated, while
the problem P = Im assumes that this is not so. The resulting velocities map from
the latter will be unphysical and lead to wrong forecasts- large scale coherent flows
in today’s weather map will have a different impact on tomorrow’s forecast than a
set of uncorrelated wind patterns, and carry a much larger energy, even if the local
amplitudes are the same. If one has a global problem where the covariance matrix
is truly Im, then replacing the solution of the full problem by a component-wise
solution merely changes the estimate of the noise from ||P ||F to the numerically
smaller maximum of the component variances, which is not as good a measure of
the distance between the samples and their mean.

8. Linear analysis of the convergence of data assimilation. We now sum-
marize the linear analysis of the conditions under which particular particle filters
produce reliable estimates when the problem is linear (see [12]). A general nonlinear
analysis is not within reach, while the linear analysis captures the main issues.

The dynamical equation now takes the form:

xn+1 = Axn + wn, (18)

where A is an m×m matrix and, the data equation becomes

bn+1 = Hxn+1 + ηn, (19)

where H is an k×m matrix. As before, wn are independent N (0, Q) and the ηn are
independent N (0, R), independent also of the wn. We assume that equation (18) is
stable and the data are sufficient for assimilation (for a more technical discussion of
these assumptions, see e.g. [12]). These two equations define a posterior probability
density, independently of any method of estimation. The first question is, under
what conditions is state estimation with the posterior feasible in principle. If one
wants to estimate the state at time n, given the data up to time n, this requires
that the covariance of xn|b1:n have a small Frobenius norm.

The theoretical analysis of the Kalman filter [25] can be used to estimate this
covariance, even when the problem is not feasible in principle or the Kalman filter
itself is too expensive for practical use. Under wide conditions, the covariance of
xn|b1:n rapidly reaches a steady state

P = (I −KH)X,

where X is the unique positive semi-definite solution of a particular nonlinear alge-
braic Riccati equation (see e.g. [27]) and

K = XHT (HXHT +R)−1.

One can calculate ||P ||F and decide whether the estimation problem is feasible
in principle. Thus, a condition for successful data assimilation is that ||P ||F be
moderate, which generaly requires that the ||Q||F , ||R||F in equations (18) and (19)
be small enough.

A particle filter can be used to estimate the state by sampling the posterior pdf
p(x0:n|b1:n), defined by (18) and (19). The state at time n conditioned on the data
up to time n can be computed by marginalizing samples of p(x0:n|b1:n) to samples
of p(xn|b1:n+1) (which amounts to simply dropping the sample’s past). Thus, a
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particle filter does not directly sample p(xn|b1:n), so that its samples carry weights
(even in linear problems). These weights must not vary too much or else the filter
“collapses” (see section 2). Thus, a particle filter can fail, even if the estimation
problem is feasible in principle.

It was shown in [12, 46, 6, 4, 45] that the variance of the negative logarithm of
the weight must be small or else the filter collapses. For the SIR filter, the condition
that this collapse not happen is that the Frobenius norm of the matrix

ΣSIR = H(Q+APAT )HTR−1, (20)

be small enough. For the optimal filter, which in the present linear setting coincides
with the implicit filter, success requires a small Frobenius norm for

ΣOpt = HAPATHT (HQHT +R)−1, (21)

see [12]. In either case, this additional condition must be satisfied as well as the
condition that ||P ||F be small.

To understand what these formulas say, we apply them to a simple model problem
which is popular as a test problem in the analysis of numerical weather prediction
schemes. The problem is defined by H = A = Im and Q = qIm, R = rIm, where
we vary the number of components m. Note that for a fixed m, the problem is
parametrized by the variance r of the noise in the model and the variance q of the
noise in the data. This problem is feasible in principle if

||P ||F =
√
m

√
q2 + 4qr − q

2
,

is not too large. For a fixed m, this means that
√
q2 + 4qr − q

2
≤ 1,

where the number 1 stands in for a sharper estimate of the acceptable variance for
a given problem (and this choice gives the complete qualitative story). In figure 4,
this condition is illustrated by showing feasible problems in white and all infeasible
problems in grey. The analysis thus shows that for data assimilation to be feasible,
either the model or the data must be accurate. If both are noisy, data assimilation
is useless.

In the SIR filter, the additional condition for success becomes
√
q2 + 4qr + q

2r
≤ 1,

and for the optimal/implicit case, the additional condition is
√
q2 + 4qr − q
2(q + r)

≤ 1. (22)

In both cases, the number 1 on the right-hand-side stands in for a sharper estimate
of the acceptable variance of the weights for a given problem (which also depends
on the computing resources). In both cases, the added condition is quadratic and
homogeneous in the ratio q/r, and thus slices out conical regions from the region
where data assimilation is feasible in principle. These conical regions are shown in
figure 4. The region where estimation with a particular filter is feasible is labeled
by the name of that filter. Note that we also show results for the ensemble Kalman
filter (EnKF) [18, 49], which are derived in [35], but not discussed in the present
paper. The analysis of the EnKF relates to the situation where it is used to sample
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Figure 4. Conditions for feasible data assimilation and for suc-
cessful sampling with the optimal particle filter (which coincides
here with the implicit filter), the SIR particle filter, and the en-
semble Kalman filter (from [35]).

the same posterior density as the other filters quoted in the figure. The analysis
in [35] also includes the situation where the EnKF is used to sample a marginal of
that pdf directly, when the conclusions are different.

In practical problems one usually tries to sharpen estimates obtained from ap-
proximate dynamics with the help of accurate measurements, and the optimal/
implicit filter works well in such problems. However, there is a region in which
not even the optimal filter succeeds. What fails there is the sequential approach to
the estimation problem, i.e. the factorization of the importance function as in (14),
see[35, 47]. Non-recursive filters can succeed in this region. However, one can use
filters that are not recursive, and there too implicit sampling can be helpful i.e. one
can apply implicit sampling to p(x0:n|b1:n).

One conclusion from our analysis is that if Bayesian estimation is feasible in
principle then it is feasible in practice. However, it is assumed in the previous
analysis so far that one has suitable priors, or equivalently, one knows what the
noise wn in equation (11) really is. The fact is that generally one does not. We
discuss this issue in the next section.

9. Estimating the prior. The previous sections described how one may use a
prior and a distribution of observation errors to estimate the states or the parameters
of a system. This estimation depends on knowing the prior. As we have seen, in
data assimilation, the prior is generated by the solution of an equation such as the
recursion (11) and depends on knowing the noise wn in that equation. It is often
assumed that the noise in that equation is white. However, one can show that
the noise is not white in most problems (see e.g. [55, 15, 10]). We now present a
preliminary discussion of methods for estimating the noise.

First, one has to make some assumptions about the origin of the noise. A rea-
sonable assumption (see e.g. [10, 5]) is that there is noise in the equations of motion
because a practical description of nature is necessarily incomplete. For example,
one can write a solvable equation of motion for a satellite turning around the earth
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by assuming that the gravitational pull is due to a perfectly spherical earth with
a density that is a function only of distance from the center (see [34]). Reality is
different, and the difference produces noise, also known as model error. The prob-
lems to be solved are: (i) estimate this difference, (ii) identify it, i.e., find a concise
approximate representation of this difference that can be effectively evaluated or
sampled on a computer, and (iii) design an algorithm that imbeds the identified
noise in a practical data assimilation scheme. These problems have been discussed
in a number of recent papers, e.g. [10, 31], in particular the review paper [24] which
contains an extensive bibliography.

Assume that the full description of a physical system has the form:

d

dt
x = R(x, y),

d

dt
y = S(x, y), (23)

where t is the time, x = (x1, x2, . . . , xm) is the vector of resolved variables, and
y = (y1, y2, . . . , y`) is the vector of unresolved variables, with initial data x(0), y(0).
Consider a situation where this system is too complicated to solve, but where data
are available, usually as sequences of measured values of x, assumed here to be
observed with negligible observation errors. Write R(x, y) in the form

R(x, y) = R0(x) + z(x, y), (24)

where R0 is a practical approximation of R(x, y) and one is able to solve the equation

d

dt
x = R0(x). (25)

However, x does not satisfy equation (25) because the true equation, the first of
equations (23), is more complicated. The difference between the true equation and
the approximate equation is the remainder z(x, y) = R(x, y)− R0(x), which is the
noise in the determination of x. In general, z has to be determined from the data,
i.e., from the observed values of x.

A usual approach to the problem of estimating z is to use equation (24) to
obtain its values from x data, i.e. calculate z = d

dtx−R0(x), and then identify it as
a continuous stochastic process. This may be difficult, in particular, calculating z
requires that one differentiate x, which is generally impractical or inaccurate because
z may have high-frequency components or fail to be sufficiently smooth, and the data
may not be available at sufficiently small time intervals (an illuminating analysis
in a special case can be found in [41, 44]). Once one has values of z, identifying
it as a function of the continuous variable t often requires making unwarranted
assumptions on the small-scale structure of z, which may be unknown when the
data are available only at discrete times.

An alternative is supplied by a discrete approach as in [11]. Equation (25) is
always solved on the computer, i.e., in discrete form, the data are always given
at discrete points, and it is x one wishes to determine but in general one is not
interested in determining z per se. We can therefore avoid the difficult detour
through a continuous-time z followed by a discretization, as follows. We pick once
and for all a particular discretization of equation (25) with a particular time step
time step δ,

xn+1 = xn + δRδ(x
n), (26)

where Rδ is obtained, for example, from a Runge–Kutta method, and where n
indexes the result after n steps; the differential equation has been reduced to a
recursion such as equation (11). We then use the data to identify the discrepancy
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sequence, zn+1
δ = (xn+1 − xn)/δ − Rδ(xn), which is available from x data without

approximation.
Then assume, as one does in the continuous-time case, that the system under

consideration is ergodic, so that its long-time statistics are stationary. The sequence
znδ becomes a stationary time series, which can be represented by one of the rep-
resentations of time series, e.g. the NARMAX (nonlinear auto-regression moving
average with exogenous inputs) representation, with x as an exogenous input. The
observed x of course may include observation errors, which have to be separated
from the model noise via filtering. A similar approach was presented in [39, 33] for
the Lorenz ’63 model [29]. In [8] an autoregressive process was fitted to the time
series of model-data misfits in a linear model of waves in the tropical Pacific in order
to construct an optimized Kalman filter.

As an example, we applied this construction to the Lorenz 96 system [30], created
to serve as a metaphor for the atmosphere, which has been widely used as a test
bench for various reduction and filtering schemes. It consists of a set of chaotic
differential equations, which, following [19], we write as:

d

dt
xk = xk−1 (xk+1 − xk−2)− xk + F + zk, (27)

d

dt
yj,k = 1

ε [yj+1,k(yj−1,k − yj+2,k)− yj,k + hyxk]

with

zk =
hx
J

∑

j

yj,k,

and k = 1, . . . ,K, j = 1, . . . , J . The indices are cyclic, xk = xk+K , yj,k = yj,k+K

and yj+J,k = yj,k+1. This system is invariant under spatial translations, and the
statistical properties are identical for all xk. The parameter ε measures the time-
scale separation between the resolved variables xk and the unresolved variables yj,k.
The parameters are ε = 0.5, K = 18, J = 20, F = 10, hx = −1 and hy = 1. The
ergodicity of the Lorenz 96 system has been established numerically in earlier work
(see e.g. [19]). We pretend that this system is too difficult to integrate in full; we
take R0 in equation (25) as the right hand side of equation (27) with zk = 0. The
noise is then zk, which in our special case can actually be calculated by solving
the full system of equations; in general the noise has to be estimated from data as
described above and in [55, 11]. In figure 5 we plot the covariance function of the
noise component z1 determined as just described. Note that z is far from white. To
the extent that the Lorenz 96 is a valid metaphor for the atmosphere, we find that
the noise in a realistic problem is not white. This can of course be deduced from the
construction after equations (23), where the noise appears as the difference between
solutions of differential equations, which is not likely to be white.

This relation between the preceding discussion of the noise (which defines the
prior through equation (24)) should be compared with the discussion of implicit
sampling and particle filters. Here too the data have been put to additional use
(there to define samples and not only to weight them, here to provide information
about the noise as well as about the signal); here too an assumption of a white noise
input has been found wanting, and realism requires non-trivial correlations, (there
in space, here in time).

The next steps are to extract noise estimates from noisy observations of a system,
and then combine the result with the observations to produce a state estimate.
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Figure 5. Autocorrelation function of the noise z in the Lorenz 96 system.

Recent work on this topic is summarized in [24]. An example of this construction
could not be produced in time to appear in this article.

10. Conclusions. We have presented and analyzed algorithms for data assimila-
tion and for estimating the prior. The work presented shows that the keys to success
are a better use of the data and a careful analysis of what is physically plausible and
useful. We feel that significant progress has been made. One conclusion we draw
from this work is that data assimilation, which is often considered as a problem
in statistics, should also, or even mainly, be viewed as a problem in computational
physics. This conclusion has also been reached by others, see e.g. [31, 15].
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