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Abstract

We present iDARR, a scalable iterative Data-Adaptive RKHS Regularization method, for solving
ill-posed linear inverse problems. The method searches for solutions in subspaces where the true
solution can be identified, with the data-adaptive RKHS penalizing the spaces of small singular
values. At the core of the method is a new generalized Golub-Kahan bidiagonalization procedure
that recursively constructs orthonormal bases for a sequence of RKHS-restricted Krylov subspaces.
The method is scalable with a complexity of O(kmn) for m-by-n matrices with &k denoting the
iteration numbers. Numerical tests on the Fredholm integral equation and 2D image deblurring show
that it outperforms the widely used L? and [2 norms, producing stable accurate solutions consistently
converging when the noise level decays.
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1 Introduction

This study considers large-scale ill-posed linear inverse problems with little prior information on the
regularization norm. The goal is to reliably solve high-dimensional vectors x € R™ from the equation

Ar+w=0b, AeR™" (1.1)

where A and b are data-dependent forward mapping and output, and w denotes noise or measurement
error. The problem is ill-posed in the sense that the least squares solution with minimal Euclidean
norm, often solved by 25 = ATb or x5 = (AT A)TATH with T denoting pseudo-inverse, is sensitive to
perturbations in b. Such an ill-posedness happens when the singular values of A decay to zero faster
than the perturbation in b projected in the corresponding singular vectors.

Regularization is crucial to producing stable solutions for the ill-posed inverse problem. Broadly, it
encompasses two integral components: a penalty term that defines the search domain and a hyperpa-
rameter that controls the strength of regularization. There are two primary approaches to implementing
regularization: direct methods, which rely on matrix decomposition, e.g., the Tikhonov regulariza-
tion [35], the truncated singular value decomposition (SVD) [11,15]; and iterative methods, which use
matrix-vector computations to scale for high-dimensional problems, see e.g., [7,12,41] for recent devel-
opments.

In our setting, we encounter two primary challenges: selecting an adaptive regularization norm and
devising an iterative method to ensure scalability. The need for an adaptive norm arises from the vari-
ability of the forward map A across different applications and the often limited prior information about
the regularity of x. Many existing regularization norms, such as the Euclidean norms used in Tikhonov
methods in [15,35] and the total variation norm in [33], lack this adaptability; for more examples, see the
related work section below. Although a data-adaptive regularization norm has been proposed in [25,26]



for nonparametric regression, it is implicitly defined and requires a spectral decomposition of the normal
operator.

We introduce iDARR, an iterative Data-Adaptive Reproducing kernel Hilbert space Regularization
method. This method resolves both challenges by iteratively solving the subspace-projected problem

xp = argmin |z ¢

rkhs? Xk = {','U : mln HA:’U - bH2}7
xEXk LBESk

where || - [|c,,,. is the implicitly defined semi-norm of a data-adaptive RKHS (DA-RKHS), and S, are
subspaces of the DA-RKHS constructed by a generalized Golub-Kahan bidiagonalization (gGKB). By
stopping the iteration early using the L-curve criterion, it produces a stable accurate solution without
using any matrix decomposition.

The DA-RKHS is a space defined by the data and model, embodying the intrinsic nature of the inverse
problem. Its closure is the data-dependent space in which the true solution can be recovered, particularly
when A is deficient-ranked. Thus, when used for regularization, it confines the solution search in the right
space and penalizes the small singular values, leading to stable solutions. We construct this DA-RKHS
by reformulating eq. (1.1) as a weighted Fredholm integral equation of the first kind and examining the
identifiability of the input signal, as detailed in Section 2.

Our key innovation is the gGKB. It constructs solution subspaces in the DA-RKHS without explicitly
computing it. It is scalable with a cost of only O(kmn), where k is the number of iterations. This cost
is orders of magnitude much smaller than the cost of direct methods based on spectral decomposition
of AT A, typically O(n3 + mn?) operations.

The iDARR and gGKB have solid mathematical foundations. We prove that each subspace Sy is
restricted in the DA-RKHS, thereby named the RKHS-restricted Krylov subspaces. 1t is spanned by the
orthonormal vectors produced by gGKB. Importantly, if not stopped early, the gGKB terminates when
the RKHS-restricted Krylov subspace is fully explored, and the solution in each iteration is unique.

Systematic numerical tests employing the Fredholm integral equations demonstrate that iDARR

surpasses traditional iterative methods employing /2 and L? norms in the state-of-the-art IR TOOLS
package [12]|. Notably, iDARR delivers accurate estimators that consistently decay with the noise level.
This superior performance is evident irrespective of whether the spectral decay is exponential or polyno-
mial, or whether the true solution resides inside or outside the DA-RKHS. Furthermore, our application
to image deblurring underscores both its scalability and accuracy.
Main contributions. Our main contribution lies in developing iDARR, a scalable iterative regular-
ization method tailored for large-scale ill-posed inverse problems with little prior knowledge about the
solution. The cornerstone of iDARR is the introduction of a new data-adaptive RKHS determined by
the underlying model and the data. A key technical innovation is the gGKB, which efficiently constructs
solution subspaces of the implicitly defined DA-RKHS.

1.1 Related work

Numerous regularization methods have been developed, and the literature on this topic is too vast to
be surveyed here; we refer to [11,12,15] and references therein for an overview. In the following, we
compare iDARR with the most closely related works.

Regularization norms Various regularization norms exist, such as Fuclidean norms of Tikhonov
in [15,35], the total variation norm |2’|;1 of the Rudin—Osher—Fatemi method in [33], the L' norm
|z||z1 of LASSO in [34], and the RKHS norm |z|% of an RKHS with a user-specified reproducing kernel
R [3,9,37]. These norms, however, are often based on presumed properties of the solution and do not
consider the specifics of each inverse problem. Our RKHS norm differs by adapting to the model and
data: our RKHS has a reproducing kernel determined by the inverse problem, and its closure is the



space in which the solution can be identified, making it an apt choice for regularization in the absence
of additional solution information.

Iterative regularization (IR) methods IR methods are scalable by accessing the matrix only via
matrix-vector multiplications, producing a sequence of estimators until an early stopping, where the
iteration number plays the role of the regularization parameter. IR has a rich and extensive history and
continues to be a vibrant area of interest in contemporary studies [1,12,24,30]. Different regularization
terms lead to various methods. The LSQR algorithm [5,30] with early stopping is standard for ||z|3-
regularization. It solves projected problems in Krylov subspaces before transforming back to the original
domain. For |Lx|3 with L € RP*"  the widely-used methods include joint bidiagonalization method
[18,19], generalized Krylov subspace method [21,31], random SVD or generalized SVD method [38-40],
modified truncated SVD method [2,17], etc. For the general regularization norm in the form 27 M with
a symmetric matrix M, the MLSQR in [1] treats positive definite M and the preconditioned GKB [24]
handles positive semi-definite M’s. Our iDARR studies the case that M is unavailable but M7 is ready
to be used.

Golub-Kahan bidiagonalization (GKB) The GKB was first used to solve inverse problems in [29],
which generates orthonormal bases for Krylov subspaces in (R”,{:,-)2) and (R™,{:,-)2). This method
extends to bounded linear compact operators between Hilbert spaces, with properties and convergence
results detailed in [6]. Our gGKB extends the method to construct RKHS-restricted Krylov subspace
in (R, (-, >c,pp.) and (R™, (-, -)9), where Cyips is positive semidefinite, and in particular, only Clkhs is
available.

The remainder of this paper is organized as follows: Section 2 introduces the adaptive RKHS with
a characterization of its norm. Section 3 presents in detail the iDARR. Section 4 proves the desired
properties of gGKB. In Section 5, we systematically examine the algorithm and demonstrate the robust
convergence of the estimator when the noise becomes small. Finally, Section 6 concludes with a discussion
on future developments.

2 A Data Adaptive RKHS for Regularization

This section introduces a data-adaptive RKHS (DA-RKHS) that adapts to the model and data in the
inverse problem. The closure of this DA-RKHS is the function (or vector) space in which the true
solution can be recovered, or equivalently, the inverse problem is well-defined in the sense that the loss
function has a unique minimizer. Hence, when its norm is used for regularization, this DA-RKHS ensures
that the minimization searches in the space where we can identify the solution.

To describe the DA-RKHS, we first present a unified notation that applies to both discrete and
continuous time models using a weighted Fredholm integral equation of the first kind. Based on this
notation, we write the normal operator as an integral operator emerging in a variational formulation of
the inverse problem. The integral kernel is the reproducing kernel for the DA-RKHS. In other words, the
normal operator defines the DA-RKHS. At last, we briefly review a DA-RKHS Tikhonov regularization
algorithm, the DARTR algorithm.

2.1 Unified notation for discrete and continuous models

The linear equation eq. (1.1) can arise from discrete or continuous inverse problems. In either case, we can
present the inverse problem using the prototype of the Fredholm integral equation of the first kind. We
consider only the 1D case for simplicity, and the extension to high-dimensional cases is straightforward.
Specifically, let S,7 < R be two compact sets. We aim to recover the function ¢ : S — R in the



Fredholm equation
y(t) = js K(t,s)o(s)v(ds) + UW(t) =: Lgo(t) + UW(t), Vte T (2.1)

from discrete noisy data
b=(y(tr),-.,y(tm)) " €R™,

where we assume the observation index 7 = {t;}72; to be 0 = to < t; < - <, for simplicity. Here

the measurement noise aW(t) is the white noise scaled by o; that is, the noise at ¢; has a Gaussian
distribution N'(0,02(t;+1 — t;)) for each j. Such noise is integrable when the observation mesh refines,
i.e., max;(t;j11 — t;) vanishes.

Here the finite measure v can be either the Lebesgue measure with § being an interval or an atom
measure with S having finitely many elements. Correspondingly, the Fredholm integral equation eq. (2.1)
is either a continuous or a discrete model.

In either case, the goal is to solve for the function ¢ : S — R in eq. (2.1). When seeking a solution
in the form of ¢ = 31" | x;¢;, where {¢;}!" | is a pre-selected set of basis functions, we obtain the linear
equation eq. (1.1) with x = (21,...,2,)" € R® and the matrix A with entries

A(_], l) = J:g- K(tj,s)@(s)y(ds) = LK¢i(tj)a 1< j sm, 1<i<n. (2.2)

In particular, when {¢;} are piece-wise constants, we obtain A as follows.

e Discrete model. Let v be an atom measure on S = {s;}] ;, a set with n elements. Suppose that
the basis functions are ¢;(s) = 1y,(s). Then, ¢ = z and the matrix A has entries A(j,7) =
K(tj, s:)v(si).

e Continuous model. Let v be the Lebesgue measure on § = [0, 1], and ¢;(s) = 1[5,_, 5(s) be
piecewise constant functions on a partition of & with 0 = sg < s1 < ... < s, = 1. Then,
¢ = > xi¢; and the matrix A has entries A(j,1) = K (5, s;)(si — si—1).

The default function spaces for ¢ and y above are LZ(S) and L2(T). The loss function &(x) =
|Az — b|3 over L2(S) becomes

E(¢) = Lk —ylTa () = (Lrd, L d)izr) — 2Lxd, yyracr) + lylL2 () (2.3)

Eq.eq. (2.1) is a prototype of ill-posed inverse problems, dating back from Hadamard [14], and it
remains a testbed for new regularization methods [15,23,28,36].

The L2(S) norm is often a default choice for regularization. However, it has a major drawback: it
does not take into account the operator Ly, particularly when Lx has zero eigenvalues, and it leads to
unstable solutions that may blow up in the small noise limit [22]. To avoid such instability, particularly
for iterative methods, we introduce a weighted function space and an RKHS that are adaptive to both
the data and the model in the next sections.

2.2 The function space of identifiability

We first introduce a weighted function space L%(S), where the measure p is defined as

3—5(3) - % L K (1, 8)|u(dt), Vs € S, (2.4)

where Z = {4 {|K(t, s)|u(dt)v(ds) is a normalizing constant. This measure quantifies the exploration
of data to the unknown function through the integral kernel K at the output set T, i.e., {K(t;,)}t;eT,

4



hence it is referred to as an exploration measure. In particular, when (1.1) is a discrete model, the
exploration measure is the normalized column sum of the absolute values of the matrix A.

The major advantage of the space L2(S) over the original space L7(S) is that it is adaptive to the
specific setting of the inverse problem. In particular, this weighted space takes into account the structure
of the integral kernel and the data points in 7. Thus, while the following introduction of RKHS can be
carried out in both L2(S) and L2 (S), we will focus only on LZ(S)

Next, we consider the variational inverse problem over L and the goal is to find a minimizer of the
loss function eq. (2.3) in L%' Since the loss function is quadratlc, its Hessian is a symmetric positive linear
operator, and it has a unique minimizer in the linear subspace where the Hessian is strictly positive. We
assign a name to this subspace in the next definition.

Definition 2.1 (Function space of identifiability) In a variational inverse problem of minimizing
a quadratic loss function & in L2 we call Lz = 1V25 the normal operator, where V2E is the Hessian
of €, and we call H = Null(Lg )L the function space of identifiability (FSOI).

The next lemma specifies the FSOI for the loss function in eq. (2.3) (see [26] for its proof).

Lemma 2.2 Assume K € C(T x 8). For p in eq. (2.4), define G:S8 xS — R as

, G(s,8) = f K(t,s)K(t,s")u(dt). (2.5)
T

(a) The normal operator for £ in eq. (2.3) over L2 is Lg : L3 — L2 defined by

f o(s)T(s, ) plds'), (2.6)
and the loss function can be written as
£(6) = (Lgb, $)13 — 2", $)1 + const., (2.7)
where ¢ comes from Riesz representation s.t. (¢, ¢>L% = Lk, y>Lﬁ(7—) for any ¢ € Lf,.

(b) Lz is compact, self-adjoint, and positive. Hence, ils eigenvalues {\;}i=1 converge to zero and its
orthonormal eigenfunctions {1;}; form a complete basis of L/QJ(S).

(¢) The FSOI is H := span{t;};:x,>0 < L%(S), and the unique minimizer of € in H is ¢ = La 1P,
where Ea_l is the inversion of L : H — Lf).

Theorem 2.2 reveals the cause of the ill-posedness, and provides insights on regularization:

e The variational inverse problem is well-defined only in the FSOI H, which can be a proper subset
of L,%' Its ill-posedness in H depends on the smallest eigenvalue of the operator L and the error
<D
in ¢~

e When the data is noiseless, the loss function can only identify the H-projection of the true input
function. When data is noisy, its minimizer Eaflng is ill-defined in L% when ¢P ¢ Le(H).

As a result, when regularizing the ill-posed problem, an important task is to ensure the search takes
place in the FSOI and to remove the noise-contaminated components making ¢ ¢ Lo(H).



2.3 A Data-adaptive RKHS

Our data-adaptive RKHS is the RKHS with G in eq. (2.5) as a reproducing kernel. Hence, it is adaptive
to the integral kernel K and the data in the model. When its norm is used for regularization, it
ensures that the search takes place in the FSOI because its L% closure is the FSOI; also, it penalizes the

components in ¢ corresponding to the small singular values.
The next lemma characterizes this RKHS, and we refer to [26] for its proof.

Lemma 2.3 (Characterization of the adaptive RKHS) Assume K € C(T x S). The RKHS Hg
with G as its reproducing kernel satisfies the following properties.

(a) Hg := Ea%(Lﬁ(S)) has inner product {¢, d)m, = <£§_%¢,£§_%¢>L%(S).
(b) {VAii}r>0 is an orthonormal basis of He, where {(X\;,¢;)}i are eigen-pairs of Lg.

(c) For any ¢ = >..° | c;y; € Hg, we have
0 0 Q0
(Lgd, Lx¢)rz(m) = Z i3, ||¢||%g = Z i, ol = Z At
=1 =1 i=1

(d) H = Hg with inclosure in L?)(S), where H = span{y;};.a;>0 s the FSOL

The next theorem shows the computation of the RKHS norm for the problem eq. (1.1) when it is
written in the form eq. (2.1)-eq. (2.2). A key component is solving the eigenvalues of Lz through a
generalized eigenvalue problem.

Theorem 2.4 (Computation of RKHS norm) Suppose that eq. (1.1) is equivalent to eq. (2.1) under
basis functions {¢;}I ; with n < 00 and eq. (2.2). Let B with entries B(i,j) = <¢i7¢j>L3 be the non-
singular basis matriz, where p is the measure defined in eq. (2.4). Then, the operator L in eq. (2.6) has
eigenvalues (A1, ..., A\n) solved by the generalize eigenvalue problem:

ATAV = BVA, st., VBV =1, A=diag(\,...,\), (2.8)
and the eigenfunctions are {1y = Z?:l Vikdite. The RKHS norm of ¢ = ;" | x;¢; satisfies

|61%s = 1212, ,, = =" Crinsz,

2.9
Crns = VAV = B(ATA)'B, ¢, =B71(ATA)B™. (29)

In particular, if B = I,,, we have Cppps = (AT AT,

Proof. Denote ® = (¢1,...,¢,)" and ¥ = (¢, ...,v,). We first prove that the eigenvalues of L are
solved by eq. (2.8). We suppose {(X,1;)}j_; are the eigenvalues and eigen-functions of Lz over L2 with
{¢i} being an orthonormal basis of L2(S). Since H = span{¢;}j_; 2 Lg(L3), there exists V e R™*"
such that ¥ = VI®, ie. 9y, = Z?=1 Vik®;}k for each 1 < k < n. Then, the task is to verify that V" and
A = Diag(Ay, ..., \n) satisfy ATAV = BVA and VI BV = I,,.

The orthonormality of {¢;} implies that

In = (<¢k’wl>Lg)1<k,l<n = (<Z szk¢m Z V}l¢j>Lg)1<k7[<n = VTBV
i=1 =1
Note that [ATA](_], i) = Lk i, LK¢j>Lﬁ(T) = <(Z)j, £§¢i>L% for 1 <4,j <n. Then,

n

(s Latiory = (AT A, i) Vi

i=1
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Meanwhile, the eigen-equation Lzv, = Apyx implies that for each ¢,

n n
(b5, Lgtiyrz = Ml Yoz = My, Y Vikdidrz = M ) BjiVi,
i=1 i=1
ie., (<¢j, ﬁﬁﬂkhg) — BVA. Hence, these two equations imply that AT AV = BVA.
Next, to compute the norm of ¢ = > | xip; € Hg, we write it as ¢ = z'® = 2TV ~1W. Then, its
norm is

- _ —1\2 _ _
1613, = X A @V, =2 TVIIATV T = 2 T(VAV )T,
k=1

Thus, Cpins = (VAVT = B(ATA)' B and €T, = VAVT = B-1(ATA)B™!. m

In particular, when eq. (1.1) is either a discrete model or a discretization of eq. (2.1) based on
Riemann sum approximation of the integral, the exploration measure p is the normalized column sum
of the absolute values of the matrix A, and B = diag(p). See Section 5.1 for details.

2.4 DARTR: data-adaptive RKHS Tikhonov regularization

We review DARTR, a data-adaptive RKHS Tikhonov regularization algorithm introduced in [26].
Specifically, it solves the problem eq. (1.1) with regularization:

(Zags ) = argmin Ex(x), where &y(z) := |Az — bH2 + )\Hxﬂaksh,
zeR™ \eR+

where the norm |-|¢,, ., is the DA-RKHS norm introduced in Theorem 2.4. A direct solution minimizing
Ex(x) is to solve (AT A4+ ACppns)xy = ATb. However, the computation of Cypp,s requires a pseudo-inverse
that may cause numerical instability.

DARTR introduces a transformation matrix Cy := VAY2 to avoid using the pseudo-inverse. Note

that C] CpinsCy = <I(;" 8) := I, where I, is the identity matrix with rank r, the number of positive
eigenvalues in A. Then, the linear equation (AT A + ACypps)zy = ATb is equivalent to
(CLATAC, + \L)3\ = CLATb (2.10)

with &, = C;'zy. Thus, DARTR computes ¥, in the above equation by least squares with minimal
norm, and returns x) = CyT).

DARTR is a direct method based on matrix decomposition, and it takes O(mn? + n?) flops. Hence,
it is computationally infeasible when n is large. The iterative method in the next section implements
the RKHS regularization in a scalable fashion.

3 Iterative Regularization by DA-RKHS

This section introduces a subspace project method tailored to utilize the DA-RKHS for iterative reg-
ularization. As an iterative method, it achieves scalability by accessing the coefficient matrix only via
matrix-vector multiplications, producing a sequence of estimators until reaching a desired solution. This
section follows the notation conventions in Table 1.

3.1 Overview

Our regularization method is based on subspace projection in the DA-RKHS. It iteratively constructs
a sequence of linear subspaces Si of the DA-RKHS (R",{:, )¢ and recursively solves projected
problems

rkhs )’

T = argmin HxHCrkhs’
xeXk

Xy = {z : min | Az — b|2}. (3.1)
zESk



Table 1: Table of notations.

A B,C matrix or array by capital letters

b,c,x,y,z,u,v  vector by regular letters
a, B, scalar by Greek letters
R(A) and N(A) the range and null spaces of matrix A

This process yields a sequence of solutions {x}, each emerging from its corresponding subspace. We
ensure the uniqueness of the solution within each iteration, as detailed in Theorem 4.7. The iteration
proceeds until it meets an early stopping criterion, designed to exclude excessive noisy components and
thereby achieve effective regularization. The spaces Sy are called the solution subspaces, and the iteration
number k plays the role of the regularization parameter.

Algorithm 1 outlines this procedure, which is a recursion of the following three parts.

P1 Construct the solution subspaces. We introduce a new generalized Golub-Kahan bidiagonaliza-
tion (gGKB) to construct the solution subspaces in the DA-RKHS iteratively. The procedure is
presented in Algorithm 2.

P2 Recursively update the solution to the projected problem. We solve the least squares problem in the
solution subspaces in eq. (3.1) efficiently by a new LSQR-type algorithm, Algorithm 3, updating
|7kl c,4p. and the residual norm ||[Az — b2 without even computing the residual.

P3 Regularize by early stopping. We select the optimal k by either the discrepancy principle (DP)
when we have an accurate estimate of |w|s or the L-curve criterion otherwise.

Require: A € R™*" b e R™, B = diag(p), xg = 0, Typ = 0, where p is the exploration measure in
eq. (2.4).

1: for k=1,2,...,do

2: P1. Compute ug, 2z, Zk, o, Br by gGKB in Algorithm 2.

3: P2 Update zy, Yk+1, |zkllcppp., ete. by Algorithm 3.

4: P3: Stop at iteration ky if Early stopping criterion is satisfied. > L-curve or DP

Ensure: Final solution xy,,

Algorithm 1: iDARR: Iterative Data-Adaptive RKHS Regularization

In the next subsection, we present details for these key parts. Then, we analyze the computational
complexity of the algorithm.

3.2 Algorithm details and derivations

This subsection presents detailed derivations for the three parts P1-P3 in Algorithm 1.
P1l. Construct the solution subspaces. We construct the solution subspaces by elaborately in-
corporating the regularization term || - H%m}w in the Golub-Kahan bidiagonalization (GKB) process. A

key point is to use Clkh = B 1ATAB™! to avoid explicitly computing C, s, which involves the costly
spectral decomposition of the normal operator, see eq. (2.9) in Theorem 2.4.

Consider first the case where Cl.ips is positive definite. In this scenario, A has full column rank, and
the Cygps-inner product Hilbert space (R",{-,-)c,,,.) is a discrete representation of the RKHS Hg with
the given basis functions. Note that the true solution is mapped to the noisy b by A : (R",{-,)¢c,,,.) —
(R™, (-, -)2). Let A* : (R™,{:,-)2) = (R",{-,-)c,,,.) be the adjoint of A, i.e. (Ax, by = {x, A*b)c,,,.




for any z € R™ and b € R™. By definition, the matrix-form expression of A* is
A*=Ch AT (3.2)

since (Az,byy = x' ATb and (x, A*bye . = xT Crpns A*b for any x and b.
The Golub-Kahan bidiagonalization (GKB) process recursively constructs orthonormal bases for
these two Hilbert spaces starting with the vector b as follows:

Brur =b, arz = Au, (3.3a)
Biv1uir1 = Az — aju;, (3.3b)
aiy1zit1 = A*uip1 — Biv14i, (3.3¢)

where u; € (R™,{-,-)2), zi € (R",{-,-)¢,p.) With 29 = 0, and «;, §; are normalizing factor such that
|uill2 = |zillc.p,. = 1. The iteration starts with uy = b/8; with 81 = ||b|2. Using A* in eq. (3.2), we
write eq. (3.3¢) as

1y T
aip12ir1 = Cpp A uiv1 — Biy12i (3.4)

with a1 = \|C’7TklhsATui+1 — Biv1zilc,,,.- To compute a;11 without explicitly computing Cipps, define
Zi = Crinszi- Then we have

air1Zie1 = A uir1 — Bit1 %, (3.5)
where Z) := 0. Let p = ATu;1 — Bi+1%. Then we obtain aj+1 = |C,} plow. = 07 C.p) Y2, which
uses C’;ﬂlhs = B 1AT AB~! without computing C,ps.

Next, consider that C,..ps is positive semidefinite. The iterative process remains the same with C;Clh <

replaced by the pseudo-inverse C;fkh > because C;fkh = B~'ATAB~! has the same form as C’T_klh ; for the
non-singular case. Specifically, the recursive relation eq. (3.4) becomes

Nj412i+1 = C:khsATui+1 - Bi+1zi. (36)
To compute «;11, we use the property that z; € R(Cykps), which will be proved in Theorem 4.3. Note

that C:k‘hsc"'khs = PN(CTMLS)L = PR(C,4n,) SINCE Ckns is symmetric, where Py is the projection operator
onto subspace X. It follows that C:khSC’Tkhszi = z;. Therefore, eq. (3.6) becomes

.
aip1zit1 = Ol (AT w1 — Bis1Crans2i)-

Letting Z; = Crinsz and p = ATujpq — Biv17 again, we get a1 = ||C:khsp|\crkh5 = (pTC:khsp)l/Q.

Thus, the two cases of Crps lead to the same iterative process. We summarize the iterative process
in Algorithm 2, and call it generalized Golub-Kahan bidiagonalization (gGKB).

Suppose the gGKB process terminates at step k; := maxg>1{axSr > 0}. We show in Theo-
rem 4.4-Theorem 4.5 that the output vectors {u;}*, and {2}, are orthonormal in (R™,{-,-)9) and
(R™,{,-)c, 0. )s Tespectively. In particular, they span two Krylov subspaces generated by {ACIkh SAT, b}
and {C’IkhSATA, C’IkhsATb}, respectively.

In matrix form, the k-step gGKB process with k < ki, starting with vector b, produces a 2-

orthonormal matrix Ugiq1 = (u1,...,ug41) € R (k+1) (i.e., U,LlUkH = Ix41), a Crgps-orthonormal
matrix Zy11 = (21,...,2k+1) € R™(#+1) “and a bidiagonal matrix
aq
B2 o
Bk. _ ﬁ3 . e R(k+1)><k (37>
) o
Br+1



Require: A € R™*" phe R™, B = diag(p)

1: Initialize: let B1 = |b]2, w1 = b/B1, and compute p = ATuy, s =B 1ATAB!p.

2 Let oq = (s'p)Y2, 21 = s/a1, Z1 = p/aq.

3: fort=1,2,...,k, do

4 = Az — o, Bivr = |rll2, w1 = 7/Biv1;

5. p= ATui# —finiF s = B 'ATAB 1p; = Cl,. =B 1'ATAB!
6 aip1 = (sTp)Y2, zip1 = s/aiv1, Zit1 = plais. > z; = Crknsi

k+1 s 1k+1
Ensure: {aiaﬁi i:17 {uivz’iazi}i;rl

Algorithm 2: Generalized Golub-Kahan bidiagonalization (gGKB)

such that the recursion in eq. (3.3a),eq. (3.3b) and eq. (3.6) can be written as

P1Uks1e1 = b, (3.8a)
AZy, = Uy41By, (3.8b)
C;rkhsATUk'i'l = ZiBy + Q126 11€441,5 (3.8¢)

where e; and e, are the first and (k + 1)-th columns of I, 1. We emphasize that By is a bidiagonal
matrix of full column rank, since «;, 3; > 0 for all i < k + 1.

P2. Recursively update the solution to the projected problem. For each k < ki, i.e., before
the gGKB terminates, we solve eq. (3.1) in the subspace

Sk :=span{zi, ..., 2} (3.9)

and compute the RKHS norm of the solution.
We show first the uniqueness of the solution to eq. (3.1). From eq. (3.8b) we have By = U,IHAZ;C,
which implies that By is a projection of A onto the two subspaces span{Uj1} and span{Z}. Since any
vector x in S can be written as z = Zpy with a y € R¥, we obtain from eq. (3.8a) and eq. (3.8b) that
for any x = Zy,
min [Az — b|2 = min |AZyy — Ugs151€1ll2
=2y yeRF

] . (3.10)
= min |Ug4+1Bry — Ugs1P1€1]|2 = min | Bry — Biei|2.
yeRk yeRF

Since k < k¢, B has full column rank, this k-dimensional least squares problem has a unique solution.
Therefore, the unique solution to eq. (3.1) is

Tk = Zryk, Yr = argmin |Bry — Bieql|2- (3.11)
yeRE
We note that the above uniqueness is independent of the specific construction of the basis vectors {zj}.
In general, as long as Sk, € R(Cyrns), the solution to eq. (3.1) is unique; see Theorem 4.7.
Importantly, we recursively compute zj; without explicitly solving y; in eq. (3.11), avoiding the
O(k?) computational cost. To this end, we adopt a procedure similar to the LSQR algorithm in [30] to
iteratively update xj from xg = 0. It starts from the following Givens QR factorization:

p1 02 LM
p2 03 L2
Qi (Br Bier) = (Rk _fk ) = : ;
Tk+1 Pr—1 Ok ' k-1
o Py W
' Vi1
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where the orthogonal matrix Qi is the product of a series of Givens rotation matrices, and Ry is a
bidiagonal upper triangular matrix; see [13, §5.2.5]. We implement the Givens QR factorization using
the procedure in [30], which recursively zeros out the subdiagonal elements j; for each 2 < i < k + 1.
Specifically, at the i-th step, a Givens rotation zeros out ;11 by

(Ci 3i><ﬁi 0 ”_Yi>:<Pz‘ i1 ’Yz')
si —¢i) \Biv1 «iz1 0 0 pit1 Yi+1/)’

where the entries ¢; and s; of the Givens rotations satisfy ¢? + s? = 1, and the elements p;, 6;+1, pi+1,
vi, Yi+1 are recursively updated accordingly; see [30] for more details.
As a result of the QR factorization, we can write

2 Y 2 2 || 2
1By = Brerl} = |Qu (B Bren) <_1> | = 1R = £l + i (3.12)

Hence, the solution to min,cge |Bry — Bre1| is yr = R fi. Factorizing Ry, as

p1 1 62/

_ P2 _ 1 03/p2
Ry = DRy, Dy := . , Ry = /

O/ pr—1
Pk 1

and denoting W}, = Zlezl = (w1,...,wg), we get

e

xr = Ziye = Ze Ry M fr = (Ze Ry D)(DLt fir) = Wi(Dy f) = Z (vi/pi)w

Updating x, recursively, and solving W), R, = Z;, by back substitution, we obtain:
x; = xi—1 + (vi/pi)wi,  wiy1 = ziv1 — (Oiv1/pi)wi, V1 <i<k. (3.13)

Lastly, we compute ||x;|c ,,  without an explicit Cyips. We have from eq. (3.13):

rkhs
Crkhsxi = Crkhsxz 1+ (’YZ/PZ) rkhsWi, Crkhswi+l = Crkhszi+1 ( z+1/pz) rkhsWs-

Letting Z; = Crppsxi and w; = Crppsw;, and recalling that z; = Crppszi, we have

|@illZ, . = 2 Ty T = Zia + (vi/pi) Wi, Wirs = Ziv1 — (Bis1/pi) ;. (3.14)

Let 2o =0, o = 0, w1 = 21, w1 = Z1, Y1 = B1, p1 = 1
fori=1,2,...,k, do
pi = (PZ + 5Z+1)1/27 ¢i = pi/pis si = Bi+1/pi
Oiv1 = 5iQiy1, Pitl = —CiQiy1, Yi = Ci%, Vil = Si%i
ri = xi1 + (Vi/pi)wi, wir1 = ziv1 — (0ip1/pi)w;
Ty = Ti—1 + (Vi/pi) Wi, Wis1 = Ziy1 — (Oi41/pi)w;

lillc, . = (@] 2)"?

Algorithm 3: Updating procedure

The whole updating procedure is described in Algorithm 3. This algorithm yields the residual norm
| Az, — b||2 without explicitly computing the residual. In fact, by eq. (3.10) and eq. (3.12) we have

Ve+1 = | Bryr — Preil2 = Az, — bl2. (3.15)
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Note that 4541 decreases monotonically since zj minimizes | Az —bl|2 in the gradually expanding subspace
span{Zy}.

Importantly, Algorithm 3 efficiently computes the solution xj, and |z c,,,.. At each step of updating
x; or w41, the computation takes O(2n) flops. Similarly, for updating z; or w; 41, as well as for computing
|zillc,,,., the number of flops are also O(2n). Therefore, the dominant computational cost is O(10n).
In contrast, if y;, is solved explicitly at each step, it takes O(Zf;l i3) ~ O(k*) flops; together with the
step of forming zp = Zpyy that takes O(kn) flops, they lead to a total cost of O(kn + k*) flops. Thus,
the LSQR-type iteration in Algorithm 3 significantly reduces the number of flops from O(kn + k*) to
O(10n).
P3. Regularize by early stopping. An early stopping strategy is imperative to prevent the solu-
tion subspace from becoming excessively large, which could otherwise compromise the regularization.
This necessity is rooted in the phenomenon of semi-convergence: the iteration vector xj initially ap-
proaches an optimal regularized solution but subsequently moves towards the unstable naive solution to
MiNgeR(C,pns) A — bll2, as detailed in Theorem 4.6.

For early stopping, we adopt the L-curve criterion, as outlined in [12]. This method identifies the

ideal early stopping iteration k, at the corner of the curve represented by

(log |Azg — bl2, |2k cpip.) = (0gFrr1,10g |2k ] )i ) - (3.16)

Here 4541 and ||zx|c,,,. are computed with negligible cost in Algorithm 3. To construct the L-curve
effectively, we set the gGKB to execute at least 10 iterations. Additionally, to enhance numerical stability,
we stop the gGKB when either «; or f5; is near the machine precision, as inspired by Theorem 4.6.

It is noteworthy that the discrepancy principle (DP) presents a viable alternative when the mea-
surement error |w|sz in eq. (1.1) is available with a high degree of accuracy. The DP halts iterations at
the earliest instance of k that satisfies Y11 = ||Axg — b||2 < 7|w|2, where 7 is chosen to be marginally

greater than 1.

3.3 Computational Complexity

Suppose the algorithm takes k iterations and the basis matrix B is diagonal. Recall that A € R™*"™,
B e R™"™ u; € R™ and z; € R™. The total computational cost of Algorithm 1 is about O(3mnk) when
m < n/3 or k < n/3; and about O((m + k)n?) when otherwise. The cost is dominated by the gGKB
process since the cost of the update procedure in Algorithm 3 is only O(n) at each step.

The gGKB can be computed in two approaches. The first approach uses only matrix-vector multipli-
cation. The main computations in each iteration of gGKB occur at the matrix-vector products p = A" u;
and s = B~'ATAB™'p = B~1(AT(A(B~'p))), which take O(mn) and O(2mn) flops respectively. Thus,
the total computational cost of gGKB is O(3mnk) flops. Another approach is using A = AT A instead
of AT and A to compute s. In this approach, the computation of A from A takes O(mn?) flops, and
the matrix-vector multiplication Av in each iteration takes about O(n?) flops. Hence, the total cost of
k iterations is O(mn? + kn?). The second approach is faster when mn? + n?k < 3mnk, or equivalently,
(3m — n)k > mn. That is, roughly speaking, m > n/3 and k > mn/(3m —n) > n/3.

In practice, the matrix-vector computation is preferred since the iteration number £ is often small.
The resulting iDARR algorithm takes about O(3mnk) flops.

4 Properties of gGKB

This section studies the properties of the gGKB in Algorithm 2, including the structure of the solution
subspace, the orthogonality of the resulted vectors {u,}fjll and {z; fjll and the number of iterations at
termination, defined as:

gGKB terminate step: k; := Illﬂlai({oék,@k > 0}. (4.1)
>
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Additionally, we show that the solution to eq. (3.1) is unique in each iteration.

Throughout this section, let r denote the rank of A and let V,. denote the first r columns of V', where
A and V' are matrices constituted by the generalized eigenvalues and eigenvectors of {A, B} in eq. (2.9)
in Theorem 2.4. We have rank(A) = r. Recall that Coips = (VAVT)T = B(ATA)TB. Note that the
DA-RKHS is (R(Orkhs)v <'a '>Crkhs)'

4.1 Properties of gGKB

We show first that the gGKB-produced vectors {u; ;":11 and {z; ,’fjll are orthogonal in R™ and in the
DA-RKHS, and the solution subspaces of the gGKB are RKHS-restricted Krylov subspaces.

Definition 4.1 (RKHS-restricted Krylov subspace) Let A€ R™*"™ and b € R", and let B € R"*"
be a symmetric positive definite matriz. Let Cypns = B(AT A)'B, which defines an RKHS (R™, (-, >¢,,, ).
The RKHS-restricted Krylov subspaces are

Kroi(Cl, ATA CT, ATb) = span{(C!,, ATAYCl ATo}E . k=>o0. (4.2)
The main result is the following.

Theorem 4.2 (Properties of gGKB) Recall k; in eq. (4.1), and the gGKB generates vectors {u;}¥_,,
{2}, and Sy, = span{z;}¥_,. They satisfy the following properties:

(i) {ui}¥_ | and {2}, are orthonormal in R™ and in (R(Crihs), sV, ), TESPectively;

(ii) S = ICk(C’ZkhSATA, CIkhSATb) for each k < k¢, and the termination iteration number is k; =
dim (Ko (Cl,, ATA, CL, ATD)).

r

Proof. Part (i) follows from Theorem 4.3, where we show that z; € R(Cyins), and Theorem 4.4, where
we show the orthogonality of these vectors.
For Part (ii), Sk = ICk(CIkhSATA, CIkhSATb) follows from that {2;}¥_; form an orthonormal basis of

the RKHS-restricted Krylov subspace. We prove k; = dim(lCoo(CIkhsATA, C’:khsATb)) in Theorem 4.5.
[

Proposition 4.3 For each z; generatad by gGKB in eq. (3.3), it holds that z; € R(Crrps). Additionally,
if g:=Cl, ATuji1 — Biy12i # 0, then ai1 = |l cypn. # 0.

Proof. We prove it by mathematical induction. For i = 1, we obtain from eq. (3.6) and Theorem 2.4 that
a1z = C’IkhsATul = VAVTATu; € R(V;) = R(Crins), where 7 is the rank of A. Suppose z; € R(Cprps)
for i > 1. Using again eq. (3.6) and Theorem 2.4 we get

aip1zie1 = Ol A w1 — Biv1zi = VAV ATuiy — Big12i € R(Copns).

Therefore, z;+1 € R(Crips), and g € R(Crips)-

If a;11 = 0, then ¢ € N(Crrns) = R(Cyppns)®. Therefore, ¢ =0. m

Thus, even if Cpps is singular (positive semidefinite), the gGKB in Algorithm 2 does not terminate
as long as the right-hand sides of eq. (3.3b) and eq. (3.6) are nonzero, since the iterative computation
of {Bi+1,ui+1} and {a;41,2i+1} can continue. Next, we show that these vectors are orthogonal.

Proposition 4.4 (Orthogonality) Suppose the k-step gGKB does not terminate, i.e. k < ki, then

{u; f:ll is a 2-orthonormal basis of the Krylov subspace

Kri1(ACT,, AT, b) = span{(ACT,, AT)ib}E . (4.3)

and {z; f:ll is a Cygps-orthonormal basis for the RKHS-restricted Krylov subspace in eq. (4.2).
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Proof. Note from Theorem 2.4 that Clkhs = VAVT. Let W, = VTA}/Q, Then W;C’rkhSWr = I,
Czkhs = W, W,T, and R(W,.) = R(Cypps). For any z;, Theorem 4.3 implies that there exists v; € R” such

that z; = W,v;. We get from eq. (3.3b) and eq. (3.6) that
Bit1uir1 = AW,v; — oy,
aip1vipr = W, ATy — Biavs,
where the second equation comes from «; 1 Wyv;401 = WTWTTATuiH — Bix1W,v;. Combining the above
two relations with eq. (3.3a), we conclude that the iterative process for generating u; and v; is the
standard GKB process of AW,. with starting vector b between the two finite dimensional Hilbert spaces
(R”,{-,-%9) and (R™,{-,-)9). Therefore, {u;}**! and {v;}*"] are two 2-orthonormal bases of the Krylov
subspaces
K1 (AW,(AW,) T, b) = span{(AW,W,T AT)ib}k_
Kir1 (AW,)TAW,., (AW,)Tb) = span{(W, ATAW,)'W,F ATb}E_ |
respectively; see e.g. [13, §10.4]. Then, W, W,I = C;Ikhs implies eq. (4.3). Also, {zi}i-c:ll = {Wwi}f:ll is

a Cypps-orthonormal basis of W, Ky 1((AW,)T AW,., (AW,.)Tb) since W, is Cypps-orthonormal.

Finally, {z f:ll are Cygps orthogonal by construction, and by using the relation

W, (W,T AT AW, W, Ao = (W, W, AT AYw, W, ATo = (CT,, AT AYiCT,, ATb,
we get that {zi}fill in the RKHS-restricted Krylov subspace in eq. (4.2). m

Proposition 4.5 (gGKB termination number) Suppose the gGKB in Algorithm 2 terminates at
step ki = maxg>1{agBr > 0}. Let the distinct nonzero eigenvalues of AC’:MZSAT be p1 > -+ g > 0 with

multiplicities m1,...,ms, and the corresponding eigenspaces are Gi,--- ,Gs. Then, ky = q, where q is
the number of nonzero elements in {Pg,b, ..., Pg,b}, and
— d; f T 3 T T i T
q = dim(Kn(AC,,, A" b)) = dim(Kx(C,ppA A, CLypA'D)), (4.4)

where Ko (M, v) = span{Mv}¥ , denotes the Krylov subspace of {M,v}. Moreover, 3.7 | m; = r with
r being the rank of A and ky = q < r.

Proof. First, we prove eq. (4.4) with ¢ being the number of nonzero elements in {Pg,b, ..., Pg b}. Let

gj = Pg;b/|Pg,bl|2 for 1 < j < s, and let g1,..., g, # 0 without loss of generality. Note that {gj}?.:l are

orthonormal. Let Gj be a matrix with orthonormal columns that span G;. Note that Fg, = GjGJT. By
. oy T T

the eigenvalue decomposition AC:khSA = ijl ujGjGj , we have

s q

wi = (ACT, AT 7o = 3T i GG = Y i Py bllag;. (4.5)

j=1 j=1
Hence, rank{w;};Z; < ¢. On the other hand, for 1 < k < g, setting w; = |Pg;b[2gj, we have

(wy ..., wg) = (wy,.. .,wq)Tk with
T, — 1 M2 /~L27 . Tkl
e o s | e
1 Mq e Mé“_l
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where Ty, € RF*F consists of the first k rows of T}, and Tye € R¥97% consists of the rest rows. Note
that T} is a Vandermonde matrix and it is nonsingular since p; # p; for 1 <@ # j < k. Then, T}, has
full column rank, thereby the rank of {w;}¥ | is k for 1 < k < ¢, and rank{w;}*; > rank{w;}’_, = q.
Therefore, we have dim(ICoo(ACIkhsAT, b)) = rank{w;}2, = q.

Also, we have dim(lCoo(C:khsATA, ClkhsATb)) = rank{CIkhsATwi};-ﬁ‘l = ¢, where the first equality
follows from

(CikhsATA)i_lczkhsATb = CIkhSAT(ACIkhsAT)i_lb = C:khsATwi’ (4.6)

and the second equality follows from rank{C:khsATwi}ioil = rank{w;}, = ¢ since C:khSAT is non-
singular on span{w;};~, which is a subset of span{G;};_; by eq. (4.5). In fact, Clkh (AT is non-singular
on span{G;};_, because {G;} are eigenspaces of AC’Ikh SAT corresponding to the positive eiengvalues.

Furthermore, eq. (4.6) and the non-degeneracy of C’Ikh SAT on span{w;};”, imply that

dim(KC,(Cl, AT A, CT, AT)) =rank({C],, AT A)Y~cl, ATb})

(4.7)
=rank({C],, ATw;}{_, = rank{w;}L_ | = q.

That is, the vectors {C’IkhSATA)i_lC’:khsATb}?;g are linearly independent.

Next, we prove that k; = q. Clearly, k; < g since by Theorem 4.4 {z; f;l are orthogonal and they are
in Ith(CIkhSATA, CIkhSATb) c ICOO(C’IkhSATA, CIkhSATb), whose dimension is ¢. On the other hand,
we show next that if k; < ¢, there will be a contradiction; hence, we must have k; = ¢. In fact, eq. (3.3b)
and eq. (3.6) imply that, for each 1 < i < ky,

C;[khsATAzi = aic:khsATui + Bi+10:khsATui+1
= aj(izi + Biziv1) + Biv1(ip12zip1 + Biv12),

which leads to
Qi1 Bis1zir1 = Clyy AT Azi — (a2 + B21) 2 — aifizict.

Note that a1 8121 = CIkhsATﬁ1u1 = C’:khsATb. Combining the above two relations and using a8 > 0
for all k& < ki, it follows that z; € span{(CIkhSATA)iCIkhSATb}fZO for all £ < k;. Hence, recursively

applying z; = %&ClkhsATAzi_l — %ﬂi(af_l + BH)zio1 — %zi_g for all 2 <4 < k¢, we can write

k¢
akt-‘rlﬁkt-l—lzkt-‘rl = Z gl(C’IkhSATA)zCTTk‘hSATb’
=0

with §; € R and in particular, &, = 1/1_[?;1041-& # 0. Now ag,+10k,+1 = 0 implies that {(CjkhsATA)iCIkhsATb}f;O
are linearly dependent, contradicting with the fact that they are linearly independent as suggested by
eq. (4.7). Therefore, we have g = k;.

Lastly, to prove that >,7_; m; = r, it suffices to show that rank(AC’:kh SAT) = r since the eigenvalues
of AC’:khSAT are nonnegative. To see that its rank is r, following the proof of Theorem 4.4, we write
AC:khsAT = AW, W,F AT, Since AW, = AVTA}«/Q, we only need to prove that AV, has full column rank.
Suppose AV,y = 0 with y € R". By Theorem 2.4 it follows ATAV,y = 0 & BV,A,y = 0 & y = 0.
Thus, rank(ACIkhsAT) =rank(AW,) =r. m

4.2 Uniqueness of solutions in the iterations

Proposition 4.6 If gGKB terminates at step ki in eq. (4.1), the iterative solution xy, is the unique least
squares solution to minger(c,,,.) |Az —bl2.
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Proof. Following the proof of Theorem 4.4, the solution to minger(c,,,.) A% — bl2 is .« = W,y, with
y» = argmin, [| AW,y — bl|2. Since AW, has full column rank, it follows that y, is the unique solution to
W,T AT(AW,y—b) = 0. Note that R(W;) = R(Crns). Thus, z, is the solution to minger(c,,,.) |Az—b2
CTkhS)AT(Ax* —b)=0.

Now we only need to prove PR(CTkhS)AT(qu —b) = 0 since k; = ¢ by Theorem 4.5. Using the

rkhs

if and only if Pr(

property Pr(c,,,.) = CrkhsC:khsa we get from eq. (3.8¢)

T
PR A Ukt = Crins(ZkBE + a1 zis1€44)-

Combining the above relation with eq. (3.10), we have

PR(CTkhS)AT(qu —b) = Crkhs(ZquT + aq-i—lzq-i-le;;r-s-l)(quq — fre)
= Crins| Zo(B] Byyq — By Bre1) + g1 fg+1744164 g
= Oéq+15q+1crkhszq+1€quq =0,
since ag+13¢+1 = 0 when gGKB terminates. m

This result shows the necessity for early stopping the iteration to avoid getting a naive solution. The
next theorem shows the uniqueness of the solution in each iteration of the algorithm.

Theorem 4.7 (Uniquess of solution in each iteration) For each iteration with k < ky, there exists
a unique solution to eq. (3.1). Furthermore, there exists a unique solution to minges, |Ax — b|s.

Proof. Let W), € R™** that has orthonormal columns and spans S;,. For any x € Sy, there is a unique
y € R¥ such that & = Wjy. Then the solution to eq. (3.1) should be z, = Wiy, where y, is the solution
to

min [Wiy|c,u.,, Ve = {y : min [AWry — b]2}.
yeVk yeRk

By [10, Theorem 2.1], it has a unique solution y iff N(C:,gLSWk) N (AW) = {0}.
Now we prove N(CgéiSWk) = {0}. To this end, suppose y € N(C’:ﬁSWk) and = Wyy. Then x €

Sk ﬂN(C:éis) Since N(Cq}éis) = N(Crkhs) = R(CrkhS)J‘, we get €T € Sk mR(Crkhs)J‘ < R(Crkhs) ﬂR(Crkhs)J‘ =

{0}. Therefore, z = Wyy = 0, which leads to y = 0.

To prove the uniqueness of a solution to minges, ||[Ax — b|2, suppose that there are two minimizers,
x1 # T9 € Sk, and we prove that they must be the same. Let z, = 21 —x2 and we have AT Az, = 0 since
the minimizer of £(z) = | Az — b|» must satisfy 0 = VE(z) = AT Az — ATb. That is, z, € N(ATA).

On the other hand, since z, € Sy © R(Crins) by Theorem 4.3, and note that Cyyps = B(ATA)B =
BV, AV, B, we have B~'z, € R((ATA)B) c N(ATA)*.

Combining the above two, we have (x4, B~1z,) = 0. But B is a symmetric positive definite matrix,
so we must have ., = 0. =

5 Numerical Examples

We test iDARR. in solving the Fredholm integral equation of the first kind and 2D image de-blurring

applications.’.

5.1 The Fredholm equation of the first kind

We first examine the iDARR in solving the discrete Fredholm integral equation of the first kind. The
tests cover two distinct types of spectral decay: exponential and polynomial. The latter is well-known to

!The MATLAB code is available at https://github.com/feilumath/iDARR
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be challenging, often occurring in applications such as image deblurring. Additionally, we investigate two
scenarios concerning whether the true solution is inside or outside the function space of identifiability
(FSOI).

Three norms in iterative and direct methods. We compare the {2, L?, and DA-RKHS norms in
iterative and direct methods. The direct methods are based on matrix decomposition. These regularizers
are listed in Table 2.

Table 2: Three regularization norms in iterative and direct methods.

Norms |2 Iterative  Direct
12 a I IR-12 12
L? z" Bx IR-L2 L2
DA-RKHS z'Cippsz | iDARR  DARTR

The iterative methods differ primarily in their regularization norms. For the with 12 norm, we use the
LSQR method in the IR TOOLS package [12], and we stop the iteration when «; or 3; becomes negligible
to maintain stability. For the L? norm, we use gGKB to construct solution subspaces by replacing Cyxps
by the basis matrix B; note that this method is equivalent to the LSQR method using L = v/B as a
preconditioner in the IR TOOLS package.

The direct methods are Tikhonov regularizers using the L-curve method [16].

Numerical settings. We consider the problem of recovering the input signal ¢ in a discretization
of Fredholm integral equation in eq. (2.1) with s € [a,b] and ¢ € [¢,d]. The data are discrete noisy
observations b = (y(t1),...,y(tm)) € R™, where t; = ¢+ j(d — ¢)/m for 0 < j < m. The task is
to estimate the coefficient vector z = (¢(s1),...,¢(s,)) € R™ in a piecewise-constant function ¢(s) =
i1 A(8i)1 s,y s,](8), where S := {s;}7_; < [a,b] with s; = a + 45, 6 = (b — a)/n. We obtain the linear
system eq. (1.1) with A(j,i) = K(¢;,s;)0 by a Riemann sum approximation of the integral. We set
(a,b,c,d) = (1,5,0,5), m = 500, and take n = 100 except when testing the computational time with a
sequence of large values for n.

The R™-valued noise w is Gaussian N(0,02Atl,,). We set the standard deviation of the noise
to be 0 = ||Ax| x nsr, where nsr is the noise-to-signal ratio, and we test our methods with nsr =
{0.0625,0.125,0.25,0.5, 1}.

We consider two integral kernels

(a) K(t,s):=s2e%; (b) K(t,s):=s !sin(st + 1)|. (5.1)

which lead to exponential and polynomial decaying spectra, respectively, as shown in Figure 1. The
first kernel arises from magnetic resonance relaxometry [4] with ¢ being the distribution of transverse
nuclear relaxation times.
The DA-RKHS. By its definition in eq. (2.4), the exploration measure is p(s;) = %Zﬁl |K (t;,5:)]0
fori =1,...,n with v being the normalizing constant. In other words, it is the normalized column sum
of the absolute values of the matrix A. The discrete function space L% (8) is equivalent to R™ with weight
p=(p(s1),...,p(sn)), and its norm is {x, x>L% := z"diag(p(s;))x for all z € R”. The basis matrix for
the Cartesian basis of R™ is B = diag(p(s;)), which is also the basis matrix for step functions in the
Riemann sum discretization. The DA-RKHS in this discrete setting is (M(ATA)L, ¢, e, ).
Settings for comparisons. The comparison consists of two scenarios regarding whether the true
solution is inside or outside of the FSOI: (i) the true solution is the second eigenvector of L; thus it is
inside the FSOI; and (ii) the true solution is ¢(x) = 22, which has significant components outside the
FSOL

For each scenario, we conduct 100 independent simulations, with each simulation comprising five
datasets at varying noise levels. The results are presented by a box plot, which illustrates the median,
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Figure 1: Singular values of A and generalized eigenvalues of (AT A, B) for kernels in eq. (5.1).

the lower and upper quartiles, any outliers, and the range of values excluding outliers. The key indicator
of a regularizer’s effectiveness is its ability to produce accurate estimators whose errors decay consistently
as the noise level decreases. Since exploring the decay rate in the small noise limit is not the focus of
this study, we direct readers to [22,27] for initial insights into how this rate is influenced by factors such
as spectral decay, the smoothness of the true solution, and the choice of regularization strength.
Results. We report the results separately according to the spectral decay.

(i) Exponential decaying spectrum. Figure 2’s top row shows typical estimators of IR-12, IR~
L2, and iDARR and their de-noising of the output signal when nsr = 0.5. When the true solution
is inside the FSOI, the iDARR significantly outperforms the other two in producing a more accurate
estimator. However, both IR-1.2 and IR-12 can denoise the data accurately, even though their estimators
are largely biased. When the true solution is outside the FSOI, all the regularizers can not capture the
true function accurately, but iDARR and IR-L2 clearly outperform the [y regularizer. Yet again, all
these largely biased estimators can de-noise the data accurately. Thus, this inverse problem is severely
ill-defined, and one must restrict the inverse to be in the FSOI.

The 2nd top row of Figure 2 shows the decay of the residual |Axy — y|2 as the iteration number
increases, as well as the stopping iteration numbers of these regularizers in 100 simulations. The fast
decaying residual suggests the need for early stopping, and all three regularizers indeed stop in a few steps.
Notably, iDARR consistently stops early at the second iteration for different noise levels, outperforming
the other two regularizers in stably detecting the stopping iteration.

The effectiveness of the DA-RKHS regularization becomes particularly evident in the lower two
rows of Figure 2, which depict the decaying errors and loss values as the noise-to-signal ratio (nsr)
decreases in the 100 independent simulations. In both iterative and direct methods, the DA-RKHS
norm demonstrates superior performance compared to the [? and L? norms, consistently delivering
more accurate estimators that show a steady decrease in error alongside the noise level. Notably, the
values of the corresponding loss functions are similar, underscoring the inherent ill-posedness of the
inverse problem. Furthermore, iDARR marginally surpasses the direct method DARTR in producing
more precise estimators, particularly when the true solution resides within the FSOI. The performance
of iDARR suggests that its early stopping mechanism can reliably determine an optimal regularization
level, achieving results that are slightly more refined than those obtained with DARTR using the L-curve
method.

(ii) Polynomial decaying spectrum. Figure 3 illustrates again the superior performance of
iDARR over IR-L2 and IR-12 in the case of polynomial spectral decay. The 2nd top row shows that the
slow spectral decay poses a notable challenge to the iterative methods, as the noise level affects their
stopping iteration numbers. Also, they all stop early within approximately twelve steps, even though
the true solution may lay in a subspace with a higher dimension.

The lower two rows show that iDARR remains effective. It continues to outperform the other two
iterative regularizers when the true solution is in the FSOI, and it is marginally surpassed by IR-L2
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Figure 2: Results in the case of exponentially decaying spectrum. Top-row: typical estimators of IR-12,
IR-L2, and iDARR when nsr = 0.5 and their denoising of the output signal. The 2nd-top row: the
residual |Azy, — bl|2 as iteration number k increases in one realization when nsr = 0.5, as well as the
boxplots of the stopping iteration numbers in the 100 simulations. The lower two rows: boxplots of the
estimators’ L% errors and loss function values in the 100 simulations.

and IR-12 when the true solution is outside the FSOI. In both scenarios, the direct method DARTR

outperforms all other methods, including iDARR, indicating DARTR is more effective in extracting

information from the spectrum with slow decay.

Computational Complexity. The iterative method iDARR is orders of magnitude faster than the

direct method DARTR, especially when n is large. Figure 4 shows their computation time as n increases

in 10 independent simulations, and the results align with the complexity order illustrated in Section 3.3.
In summary, iDARR outperforms IR-L2 and IR-12 in yielding accurate estimators that consistently

decay with the noise level. Its major advantage comes from the DA-RKHS norm that adaptively exploits
the information in data and the model.

5.2 Image Deblurring

We further test iDARR in 2D image deblurring problems, where the task is to reconstruct images from
blurred and noisy observations. The mathematical model of this problem can be expressed in the form of
the first-kind Fredholm integral equation in eq. (2.1) with s, € R%. The kernel K(t, s) is a function that
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Figure 3: Results in the case of polynomial decaying spectrum. Top-row: typical estimators of IR-12,
IR-L2, and iDARR when nsr = 0.0625 and their denoising of the output signal. The 2nd-top row: the
residual |Axy — b|2 as iteration number k increases in one realization when nsr = 0.0625, as well as the
box plots of the stopping iteration numbers the 100 simulations. The lower two rows: box plots of the
estimators’ L% errors and loss function values in the 100 simulations.
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specifies how the points in the image are distorted, called the point spread function (PSF). We chose
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PRblurspeckle from [12]| as the blurring operator, which simulates spatially invariant blurring caused by
atmospheric turbulence, and we use zero boundary conditions to construct the matrix A. For a true
image with N x N pixels, the matrix A e RV IXN? g g psfMatrix object. We consider two images with
256 x 256 and 320 x 320 pixels, respectively, and set the noise level to be nsr = 0.01 for both images.
The true images, their blurred noisy observations, and corresponding PSFs that define matrices A are
presented in Figure 5.
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Figure 5: The true images, noisy images blurred by PRblurspeckle, and the corresponding PSFs.

iDARR best, k. = 180 iDARR recons., k = 111 LSQR best, k, = 32 LSQR recons., k = 133 hybrid-12 recons., k = 78

iDARR best, k. = 116 iDARR recons., k = 58 LSQR best, k, = 20 LSQR recons., k = 102 hybrid-12 recons., k = 21

Figure 6: The reconstructed images computed by iDARR, LSQR and hybrid-12 methods.

Figure 6 shows the reconstructed images computed by iDARR, LSQR, and the hybrid-12 methods.
Here the hybrid-12 applies an lo-norm Tikhonov regularization to the projected problem obtained by
LSQR, and it uses the stopping strategy in [12]. The best estimations of for iDARR or LSQR are
solutions with ks minimizing |zx — Ziruel2. Their reconstructed solutions are obtained by using the

L-curve method for early stopping.
Figure 7 (a)—(f) show the relative errors as the iteration number increases and the selection of the
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Figure 7: Relative errors in iteration numbers, where the circles mark the early stopping iterations
chosen by the L-curve method presented in the right two columns.

early stopping iterations by the L-curve method in the right two columns.

Notably, Figure 7 reveals that iDARR achieves more accurate reconstructed images than LSQR
for both tests, despite appearing to the contrary in Figure fig:deblur. The LSQR appears prone to
stopping late, resulting in lower-quality reconstructions than iDARR. In contrast, iDARR tends to stop
earlier than ideal, before achieving the best quality. However, the hybrid-12 method consistently produces
accurate estimators with stable convergence, suggesting potential benefits in developing a hybrid iDARR
approach to enhance stability.

The effectiveness of iDARR depends on the alignment of regularities between the convolution kernel
and the image, as the DA-RKHS’s regularity is tied to the smoothness of the convolution kernel. With
the PRblurspeckle featuring a smooth PSF, iDARR obtains a higher accuracy for the smoother Image-2
compared to Image-1, producing reconstructions with smooth edges. An avenue for future exploration
involves adjusting the DA-RKHS’s smoothness to better align with the smoothness of the data.

6 Conclusion and Future Work

We have introduced iDARR, a scalable iterative data-adaptive RKHS regularization method, for solving
ill-posed linear inverse problems. It searches for solutions in the subspaces where the true signal can be
identified and achieves reliable early stopping via the DA-RKHS norm. A core innovation is a generalized
Golub-Kahan bidiagonalization procedure that recursively computes orthonormal bases for a sequence
of RKHS-restricted Krylov subspaces. Systematic numerical tests on the Fredholm integral equation
show that iDARR outperforms the widely used iterative regularizations using the L? and [? norms, in
the sense that it produces stable accurate solutions consistently converging when the noise level decays.
Applications to 2D image de-blurring further show the iDARR outperforms the benchmark of LSQR

with the /2 norm.

Future Work: Hybrid Methods The accuracy and stability of the regularized solution hinges on
the choice of iteration number for early stopping. While the L-curve criterion is a commonly used tool for

22



determining this number, it can sometimes lead to suboptimal results due to its reliance on identifying
a corner in the discrete curve. Hybrid methods are well-recognized alternatives that help stabilize
this semi-convergence issue, as referenced in (8,20, 32]. One promising approach is to apply Tikhonov
regularization to each iteration of the projected problem. The hyperparameter for this process can be
determined using the weighted generalized cross-validation method (WGCV) as described in [8]. This
approach is a focus of our upcoming research project.
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