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ABSTRACT

The use of discrete-time stochastic parameterization to account for model error due to unresolved scales in

ensembleKalman filters is investigated by numerical experiments. The parameterization quantifies themodel

error and produces an improved non-Markovian forecast model, which generates high quality forecast en-

sembles and improves filter performance. Results are compared with themethods of dealing withmodel error

through covariance inflation and localization (IL), using as an example the two-layer Lorenz-96 system. The

numerical results show that when the ensemble size is sufficiently large, the parameterization is more effective

in accounting for the model error than IL; if the ensemble size is small, IL is needed to reduce sampling error,

but the parameterization further improves the performance of the filter. This suggests that in real applications

where the ensemble size is relatively small, the filter can achieve better performance than pure IL if stochastic

parameterization methods are combined with IL.

1. Introduction

Model error due to unresolved scales can degrade the

performance of data assimilation schemes. Such model

error can arise from the failure to represent subgrid

processes correctly, from computational resources that

are too limited to resolve all scales, and from dis-

cretization and truncation errors.

Various methods have been proposed for taking

model error into account. One can roughly divide

them into direct and indirect approaches. In an in-

direct approach, one accounts for model error in en-

semble data assimilation by correcting the ensemble

during the assimilation step. The most widely used

indirect methods are covariance inflation and locali-

zation (IL) algorithms, which correct the sample co-

variance (Houtekamer and Mitchell 1998; Anderson

and Anderson 1999; Mitchell and Houtekamer 2000;

Hamill et al. 2001). These algorithms were originally

introduced to reduce sampling errors in the sample

covariance as a result of insufficient ensemble size.

Nevertheless, they have been found to compensate

effectively for model errors and have been widely used

for that purpose (see e.g., Mitchell and Houtekamer

2000; Hamill and Whitaker 2005; Anderson 2007a,

2009). Other examples of indirect techniques include

covariance relaxation (Zhang et al. 2004) and bias

correction methods that use innovations from data to

remove bias in the forecast ensemble (Dee and Da

Silva 1998). The drawbacks of these indirect methods

include that they need empirical tuning, and more im-

portant, that the deficiency of the forecast model

remains.

In a direct approach, one seeks a representation of the

model error to augment and improve the forecast

model, so that the forecast ensemble has correctCorresponding author: Fei Lu, feilu@berkeley.edu
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statistics and dynamics. Examples include deterministic

and stochastic parameterization methods (Palmer 2001;

Meng and Zhang 2007; Berry and Harlim 2014; Mitchell

and Carrassi 2015), additive random perturbations

(Hamill and Whitaker 2005; Houtekamer et al. 2009), a

low-dimensional method (Li et al. 2009), and averaging

and homogenizationmethods (Pavliotis and Stuart 2008;

Mitchell and Gottwald 2012; Gottwald and Harlim

2013). Representations of the model error can be de-

rived either via data assimilation using the noisy obser-

vations, or before data assimilation using noiseless

training data. In the latter case, numerous results dem-

onstrate that stochastic parameterization is preferable

to deterministic parameterization (Buizza et al. 1999;

Palmer 2001; Pavliotis and Stuart 2008), and that a non-

Markovian model is preferable to aMarkovian model in

the absence of scale separation (see, e.g., Wilks 2005;

Crommelin and Vanden-Eijnden 2008; Danforth and

Kalnay 2008; Chekroun et al. 2011; Majda and Harlim

2013; Kondrashov et al. 2015). These findings are con-

sistent with the Mori–Zwanzig analysis (Zwanzig 1973,

2001; Chorin and Hald 2013; Chorin et al. 2000, 2002;

Gottwald et al. 2015) in statistical physics, which shows

that a closed system of equations for a subset of vari-

ables in a given problem consists of a Markovian term, a

non-Markovian memory term, and a stochastic noise

term. The abovementioned methods pose challenges

when deriving an effective non-Markovian model, as a

result of difficulties in inferring a continuous-timemodel

from partial discrete data and then deriving an accurate

discretization for it. A novel, efficient, discrete-time

non-Markovian stochastic parameterization scheme

for quantifying model error was introduced by Chorin

and Lu (2015). This method is fully discrete, readily

takes memory effects into account, simplifies the in-

ference from discrete data, and requires no discretiza-

tion. It leads to an improved non-Markovian forecast

model that can capture key statistical and dynamical

features of the resolved scales.

It is natural to ask whether the direct approach can be

as good as or better than themethods of IL in accounting

for model error in ensemble Kalman filters (EnKFs).

Several direct methods have been studied for this pur-

pose. Additive error representations were shown to

improve the performance of the ensemble square root

Kalman filter in Hamill and Whitaker (2005), bias re-

moval methods augmented by additive noise were

shown to outperform pure inflation schemes in the local

ensemble transformKalman filter in Li et al. (2009), and

time-varying and time-constant model error represen-

tations were shown to reduce the tuning of IL in the

ensemble transform Kalman filter in Mitchell and

Carrassi (2015).

In the present study we examine the discrete-time

parameterization and compare it with covariance in-

flation and localization in accounting for model error in

the EnKF.We assume that offline noiseless training data

of the resolved scales can be generated and used either

to tune inflation and localization or to infer parameters

in the parameterization. We examine both cases where

the ensemble is large enough so that the sampling error

is negligible, and where the sample is small and the

sampling error needs to be reduced by IL. We carry out

numerical tests on the two-layer Lorenz-96 system

(Lorenz 1996), a simplified nonlinear model of atmo-

spheric dynamics involving interacting resolved and

unresolved scales of motion. A forecast model in the

EnKF is a truncated model of the large scales alone,

and its model error comes from the unresolved small

scales. The parameterization directly accounts for the

model error by constructing an improved forecast

model for the filter and is compared with the IL

approach.

The numerical results show that when the ensemble

size is large, the parameterization outperforms IL in

accounting for model error. To the best of our

knowledge, this is the first comparison made in a case

where the ensemble size is large enough for the sam-

pling error to be negligible, so that both methods

account exclusively for model error and their perfor-

mance can be compared clearly. The numerical results

also show that when the ensemble size is small, IL is

needed to reduce sampling error, but the parameteri-

zation further improves the filter performance. This

result is in line with the previous findings in work by

Hamill and Whitaker (2005), Li et al. (2009), and

Mitchell and Carrassi (2015) that show that with the

combination of stochastic methods and IL the filter can

achieve better performance than pure IL in small,

practical ensemble sizes.

This paper is organized as follows. In section 2 we

provide a quick review of the EnKF. In section 3 we

review covariance inflation and localization algorithms,

as well as discrete-time non-Markovian stochastic pa-

rameterization. We devote section 4 to a numerical

study using the two-layer Lorenz-96 system, and con-

clude the paper with a discussion of the results in

section 5.

2. The ensemble Kalman filter

The ensemble Kalman filter is a Monte Carlo imple-

mentation of Bayesian filtering with the Kalman filter

update (Evensen 1994; Evensen andVan Leeuwen 1996;

Houtekamer and Mitchell 1998; Burgers et al. 1998).

This approach uses an ensemble of random samples,
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also called particles, to approximate the forecast and

analysis distributions by Gaussian distributions whose

means and covariances are given by ensemble means

and covariances. Among various EnKF algorithms, we

choose to consider only the version with perturbed ob-

servations, introduced by Burgers et al. (1998) and

Houtekamer and Mitchell (1998), and we refer to Lei

et al. (2010) for a comparison of different versions of

EnKF algorithms.

Suppose the filter uses a forecast model

x
n
5F

n
(x

n2l:n21
) , (1)

where xn 2 R
dx is the state variable, xn2l:n21 5

(xn2l, . . . , xn21), and Fn is a forecast operator at time n,

which maps Rl3dx to R
dx with 1# l# n2 1. The forecast

model can be either stochastic or deterministic, and ei-

ther Markovian (e.g., l5 1) or non-Markovian (e.g.,

l. 1). The state variable is observed through a linear

observation operator with Gaussian noise:

z
n
5Hx

n
1 e

n
,

where H 2 R
dz3dx is the observation matrix and the

en ;N(0, R) are independent Gaussian noises. In this

study, we assume that the observation matrix R

is known.

a. The standard EnKF

The EnKF iterates the following two steps, with an

initial ensemble of particles fxa,(i)0 , i5 1, . . . , Mg sam-

pled from the forecast distribution of the state variable

x (e.g., the stationary distribution of the forecast

model).

1) Forecast step: from the ensemble fxa,(i)1:n21g at time

n2 1, generate a forecast ensemble fxf ,(i)n g using

the forecast model in (1); that is, xf ,(i)n 5Fn(x
a,(i)
n2l:n21).

Here, the superscript in xfn denotes the ensemble

from the forecast model, and the superscript in xan
denotes the ensemble of the posterior distribution

after assimilating data in the following analysis

step. If the forecast model is stochastic, indepen-

dent realizations should be used at different times.

2) Analysis step: given a new observation zn, update the

forecast ensemble to get a posterior ensemble of

xn,
xa,(i)n 5 xf ,(i)n 1K

n
(z(i)n 2 Hxf ,(i)n ), (2)

for i5 1, . . . , M, where the Kalman gain matrix is

K
n
5Cf

nH
T(HCf

nH
T 1R)21 , (3)

where the matrix Cf
n is the sample covariance of the

forecast ensemble,

Cf
n 5

1

M2 1
�
M

i51

(xf ,(i)n 2 xfn)(x
f ,(i)
n 2 xfn)

T,

where xfn 5 (1/M)�M

i51x
f ,(i)
n and the z(i)n are obtained

by adding random perturbations «(i)n ;N(0, R) to zn,

z(i)n 5 z
n
1 «(i)n .

b. A block update algorithm

At each time n, only the current state x(i)n of the ith

particle is updated in the analysis step in the above

standard EnKF, and the past trajectory x
(i)
1:n21 of the

particle remains unchanged. Therefore, the time cor-

relation between xn and x1:n21 is not properly repre-

sented by the ensemble. For a Markovian forecast

model, this works fine, because the next state xn11 de-

pends only on the current state xn. For a non-

Markovian model with lag l, however, the next state

xn11 depends directly on a block of the past trajectory

xn2l11:n. This requires the ensemble to properly repre-

sent the space–time correlation of xn2l11:n, and there-

fore the states xn2l11:n should be updated as a whole at

time n. Inspired by the block sampling algorithm of

Doucet et al. (2006), we introduce the following block

update algorithm that updates a block xn2L11:n with

L$ l in the analysis step of the EnKF. This block up-

date algorithm is akin to the fixed-lag smoother using

EnKF (Khare et al. 2008), which is an implementation

of the ensemble Kalman smoother (EnKS) discussed

by Evensen and Van Leeuwen (2000) and Whitaker

and Compo (2002).

We choose a block length L$ 1, and define the aug-

mented observation matrix ~H 2 R
Ldz3Ldx and the aug-

mented noise covariance ~R 2 R
Ldz3Ldz as

~H5 diag(0, . . . , 0,H), ~R5 diag(0, . . . , 0,R). (4)

For n,L, we use the above EnKF method. At time

n$L, after obtaining the forecast ensemble fxf ,(i)n g,
we update the ensemble of the block path

Xf ,(i)
n 5 (x

a,(i)
n2L11:n21, x

f ,(i)
n ):

Xa,(i)
n 5Xf ,(i)

n 1 ~K
n
, (z(i)n 2 ~HXf ,(i)

n )

for i5 1, . . . , M, where the Kalman gain matrix is

computed as

~K
n
5 ~Cf

n
~HT(~H~Cf

n
~HT 1 ~R)21 .
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Here the matrix ~Cf
n is the sample covariance of the

forecast ensemble:

~Cf
n 5

1

M2 1
�
M

i51

(Xf ,(i)
n 2 Xf

n)(X
f ,(i)
n 2 Xf

n)
T,

where Xf
n 5 1/M�M

i51X
f ,(i)
n . Then, we update the current

L-step block by setting x
a,(i)
n2L11:n 5Xa,(i)

n .

When L5 1, the above algorithm is the same as the

standard EnKF. When L. 1, it updates a block of the

trajectory using the new observation. A natural choice of

block length L is the length l of the memory in the forecast

operator fn(xn2l:n21). This is the choice we make in this

paper, and we leave it as future work to discuss of the op-

timal choice ofL aswell as of other issues such as covariance

inflation and localization for this block update algorithm

and its variants in applications to non-Markovian models.

3. Methods for accounting for model error

Let a forecast model at our disposal be represented as

x
n
5 f

0
(x

n21
) , (5)

where xn is a vector in R
dx representing the resolved

scales at time tn, and f0 is a forecast operator in-

dependent of time. This is a reduced model of a more

complicated full model of the form

(
x̂
n
5 F̂(x̂

n21
, ŷ

n21
),

ŷ
n
5 Ĝ(x̂

n21
, ŷ

n21
),

(6)

where x̂n 2 R
dx and ŷn 2 R

dy are the resolved and un-

resolved scales at time tn, respectively, with dx � dy #‘,
and where the functions F̂ and Ĝ map the states from

time tn21 to tn. In general, this full model is a discrete

representation of a system of differential equations. The

reduced model is used when the full system is too diffi-

cult to solve or possibly not fully understood, and it is

often obtained by truncating the full system. The dif-

ference between the solutions of the reducedmodel [(5)]

and the full model [(6)] is the model error due to un-

resolved scales.

a. Covariance inflation and localization

1) COVARIANCE LOCALIZATION

Covariance localization was originally designed

to remove poorly estimated long-range spatial

correlations due to insufficient ensemble size

(Houtekamer and Mitchell 1998; Gaspari and Cohn

1999; Furrer and Bengtsson 2007; Anderson 2007b).

The standard implementation of localization is

through the Schur product (entry-wise product, also

known as the Hadamard product) of the forecast

covariance Cf
n by a localization matrix Cloc, which is a

symmetric positive definite matrix with entries ob-

tained from a predefined correlation-length func-

tion, known as a taper function. In this study, we

employ the widely used Gaspari–Cohn taper func-

tion (Gaspari and Cohn 1999), which has compact

support given by

g(s)5

8>>>>><
>>>>>:

12
5

3
s2 1

5

8
s3 1

1

2
s4 2

1

4
s5 , if 0# s# 1;

2
2

3s
1 42 5s1

5

3
s2 1

5

8
s3 2

1

2
s4 1

1

12
s5 , if 1# s# 2;

0, if s$ 2.

(7)

The corresponding localization matrix is

C
rloc
(i, j)5 g(ji2 jj/r

loc
) , (8)

where rloc is the localization radius. We refer to Furrer

and Bengtsson (2007), Anderson (2007b), and Sakov

and Bertino (2011) for analysis and comparison between

different localization methods, and refer to Bishop and

Hodyss (2007) and Anderson (2012), and the references

therein, for recent developments in adaptive localiza-

tion methods.

2) COVARIANCE INFLATION

Covariance inflation algorithms account for the un-

derestimation in the covariance of the forecast ensem-

ble. There are two main types of covariance inflation:

additive and multiplicative inflation. In additive in-

flation algorithms (Hamill and Whitaker 2005; Tong

et al. 2016), the forecast covariance Cf
n in the EnKF is

replaced by

Ĉf
n 5Cf

n 1 lI ,
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for some l. 0. In multiplicative inflation algorithms

(Anderson and Anderson 1999; Hamill et al. 2001), the

spread of the forecast ensemble is inflated by replacing

xf ,(i)n with xf ,(i)n 1
ffiffiffiffiffiffiffiffiffiffiffi
11 l

p
(xf ,(i)n 2 x

f ,(i)
n ) for some l. 0 in

the analysis step, which is equivalent to replacing the

covariance Cf
n by

Ĉf
n 5 (11 l)Cf

n .

This increases the covariance of the forecast ensemble,

so as to account for the underestimation of covariance.

Inflation has the effect of weighting the observations

more than the deficient forecast model and pulling the

filter back toward the observations so as to avoid filter

divergence. Optimization of the inflation parameter l is

usually done by numerical tuning. To avoid ad hoc

tuning and to account for the dynamical changes in the

model error, adaptive inflation algorithms have been

recently developed by Anderson (2007a, 2009) for

multiplicative inflation and by Kelly et al. (2014) and

Tong et al. (2015, 2016) for additive inflation.

In the numerical experiments that follow, we use in-

flation and localization simultaneously, test both additive

and multiplicative inflation, and select the best combina-

tions. The main cost is the generation of training data to

tune the inflation parameter and the localization radius.

b. Discrete-time stochastic parameterization

The model error in the forecast model [(5)] is

F̂(x̂n21, ŷn21)2 f0(x̂n21), which can be seen by rewriting

the first equation in the full system [(6)]:

x̂
n
5 f

0
(x̂

n21
)1 [F̂(x̂

n21
, ŷ

n21
)2 f

0
(x̂

n21
)].

The discrete-time stochastic parameterization method

quantifies the model error and produces an improved

forecast model. It constructs a non-Markovian nonlinear

autoregression moving average (NARMA) forecast

model of the form

x
n
5 f

0
(x

n21
)1F(x

n2p:n21
, j

n2q:n21
)1 j

n
, (9)

where the fjng are independent Gaussian random vari-

ables with mean zero and covariance diag(s2
j). The func-

tion f0 comes from the original forecast model [(5)], and

F(xn2p:n21, jn2q:n21) is a parametric function of the form

F
n
dF(x

n2p:n21
, j

n2q:n21
) (10)

5�
j51

p

a
j
x
n2j

1 �
r

i50
�
p

j51

b
i,j
f
i
(x

n2j
)1 �

q

j51

c
j
j
n2j

,

where faj, bi,j, cj, s
2
jg are parameters to be estimated

and ff i, i5 1, . . . , rg are functions to be provided by

modelers. The appearance of f0 in F has the effect of

modifying the coefficient of f0(xn21) from what it was in

the original forecast model.

The NARMA model can capture key statistical and

dynamical features of the resolved scales and generate

high quality forecast ensembles that have the correct

mean and covariance if the ensemble size is sufficient.

We emphasize that this is different from simply cor-

recting the ensemble, because the forecast model is

improved, and this treats the root of the model error

problem.

The main difficulty in this construction is deriving and

selecting the ansatz (i.e., the functions ff ig and the or-

ders fp, r, qg) of the NARMA model. The ansatz may

be derived from the physical properties of the full sys-

tem, and it may depend on the numerical scheme used in

the original reduced model. We refer to Crommelin and

Vanden-Eijnden (2008) Majda and Harlim (2013),

Kondrashov et al. (2015), Harlim (2016), and Lu et al.

(2017, 2016) for further discussion.

Once ff ig and the orders fp, r, qg are fixed, the pa-

rameters u5 faj, bi,j, cj, s
2
jg are estimated by condi-

tional likelihood methods. We first solve the full system

[(6)] offline to generate a time series fx̂ngNn51 for a large

N. Then, the parameters are estimated as follows.

Conditional on j1, . . . , jm, the negative log likelihood of

fxn 5 x̂ngNn5m11 is

L(u j j
1
, . . . , j

m
)5 �

dx

k51
�
N

n5m11

(x
n,k

2F
n,k
)2

2s2
j,k

1
N2 q

2
logs2

j,k, (11)

where m5maxfp, qg and u5 (akj , b
k
i,j, c

k
j , s

2
j,k). For a

given value of u, if q5 0, the values of fFngNn5m11 can be

computed directly from data fxngNn51. If q. 0, the values

of fFngNn5m11 and fjngNn5m11 can be computed re-

cursively, conditional on j1 5 . . . 5 jm 5 0. That is, one

computes Fm11 from jm2q11:m using (10), and computes

jm11 from Fm11 using (9); and repeats this process for

the rest of the times n$m1 1. Themaximum likelihood

estimator (MLE) of the parameter is the minimizer of

the negative log-likelihood:

û
N
5 argmin

u
L

N
(u j j

1
, . . . , j

m
).

If q5 0, the minimization reduces to least squares re-

gression. If q. 0, the minimization can be done by an

iterative least squares approach (Ding and Chen 2005)

or other optimization methods.

As in covariance inflation and localization algorithms,

the main cost of the discrete-time stochastic parame-

terization method is the generation of the training
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dataset. This requires solving the full system offline for a

time interval long enough so that the maximum likeli-

hood estimator, which converges at the rate 1/
ffiffiffiffi
N

p
, is

close to its limit. The cost of parameter estimation de-

pends on theNARMAmodel. It is negligible if themodel

does not have a moving average term (i.e., if q5 0). In

this case the maximum likelihood estimator is equivalent

to the least squares estimator. The cost varies when q 6¼ 0

since the minimization may need many iterations.

4. Numerical experiments on the Lorenz-96 system

In this section we carry out numerical experiments on

the two-layer Lorenz-96 system (Lorenz 1996), which

consists of K-resolved variables xk coupled to J3K

unresolved variables yj,k:

d

dt
x
k
5 x

k21
(x

k11
2 x

k22
)2 x

k
1F1 z

k
and

d

dt
y
j,k
5

1

«
[y

j11,k
(y

j21,k
2 y

j12,k
)2 y

j,k
1h

y
x
k
],

where zk 5 (hx/J)� jyj,k, k5 1, . . . , K, and j5 1, . . . , J.

The indices are cyclic: xk 5 xk1K, yj,k 5 yj,k1K and

yj1J,k 5 yj,k11. The system is invariant under spatial

translations, and the statistical properties are identical

for all xk. The formulation here is equivalent to the

original formulation by Lorenz (see, e.g., Fatkullin and

Vanden-Eijnden 2004; Crommelin and Vanden-Eijnden

2008; Kwasniok 2012). The parameter « measures the

scale separation between the resolved variables xk and

the unresolved variables yj,k. We set «5 0:5, so that

there is no significant scale separation between the re-

solved and unresolved processes, as is both more re-

alistic andmore difficult to handle for parameterizations

[see Fatkullin and Vanden-Eijnden (2004) and refer-

ences therein]. We takeK5 18, J5 20, F5 10, hx 521

and hy 5 1. Here, one model time unit is approximately

equal to five atmospheric days, deduced by comparing

the error-doubling time of the model to that observed in

the atmosphere (Lorenz 1996; Arnold et al. 2013;

Mitchell and Carrassi 2015).

In the experiments, we take a trajectory of the re-

solved variables x in the full system to be the truth. We

solve the full system by a fourth-order Runge–Kutta

methodwith a time step dt5 0:001, andmake recordings

every 50 steps, that is, with observation spacing h5 0:05,

approximately six atmospheric hours. To eliminate

transients, we begin to make observations after running

the full model for 100 time units. To create noisy ob-

servations, we add to the recorded trajectory in-

dependent Gaussian random vectors with mean zero

and covariance R5s2
«I.

In the data assimilation, we assume that we cannot afford

to solve the full Lorenz-96 system for ensemble forecasts and

use a reduced system obtained by discarding the y variables:

d

dt
x
k
5 x

k21
(x

k11
2 x

k22
)2 x

k
1F ,

for k5 1, . . . , K. After discretization by a fourth-order

Runge–Kutta method with time step h (i.e., the obser-

vation spacing), one obtains a system of difference

equations:

x
k,n

5 x
k,n21

1 f hk (x�,n21
), (12)

for k5 1, . . . , K, where xk,n is the value of the compo-

nent xk at time n and x�,n21 denotes the vector of the

K-resolved variables at time n2 1. Hereafter, we refer

to this reduced discretizedmodel as the L96xmodel, and

we refer to the discrete representation of the full L96

system as the full model.

In the following, we first implement the two methods

reviewed in section 3 to account for such model error in

sections 4a and 4b, and we then compare their filtering

and forecasting performance in sections 4c and 4d.

a. Accounting for model error by discrete-time
stochastic parameterization

Discrete-time stochastic parameterization quantifies

the model error of the L96x model and produces an im-

proved forecast model, which we call the NARMA

model, as introduced in section 3b. Specifically, this is

done by using the conditional likelihood method to fit a

NARMA model to a set of training data, which is gen-

erated by solving the full model over a long time. The

initial conditions in the simulation that generates training

data can be arbitrary, because the estimated parameters

of the NARMA model will converge as the length of the

training data increases, because of the ergodicity of the

full system (Chorin andLu 2015). According to the results

in Chorin and Lu (2015), we use a NARMA(2,0 ) model:

x
k,n

5 �
2

j51

[a
j
x
k,n2j

1 b
j
f hk (x�,n2j

)]1 c
0
1 c

1
x2k,n21

1 c
2
x3k,n21 1 j

k,n
, (13)

where f hk (x) comes from the right-hand side of (12) and

fjk,ng is a sequence of independent Gaussian random

vectors with mean zero and covariance s2
j I. The pa-

rameters in the different components are the same be-

cause of the symmetry in the equations.

The main cost in deriving the NARMA representa-

tion is the generation of training data. The cost of the

NARMA parameter estimation is negligible compared
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with cost of generating the training data, because the

model does not have moving average terms and the opti-

mization reduces to linear least squares. In our tests, the

training data were generated by solving the full system

with step size dt5 0:001 and recording data every 50 steps

(i.e., with observation spacing h5 0:05). Table 1 shows the

values of the parameters (aj, bj, cj, sj) estimated from a

training dataset of length N5 105 (i.e., 5000 time units,

approximately equal to 69 atmospheric years). Further

tests showed that a data length of N5 104 could also lead

to models with good statistical properties. The minimum

data length necessary to identify a NARMA model is

problem dependent, and a general criterion is beyond the

scope of the current study.

NARMAASAN IMPROVED FORECASTMODEL FOR

THE L96X MODEL

Figure 1 shows the empirical probability density

function (PDF) and the autocorrelation function (ACF)

of the full model, the L96x model, and the NARMA

model, computed from time averaging of a long trajec-

tory of eachmodel. The NARMAmodel reproduces the

PDF and the ACF faithfully, while the L96x model

misses the shape of the PDF and the oscillation of the

ACF. The PDF approximates the invariant measure of

the large-scale variables, and the ACF approximates the

dynamical transition. Hence, the NARMA model cap-

tures the statistical and dynamical features of the large-

scale variables much better than the L96x model.

By accounting for themodel error, theNARMAmodel

significantly improves state estimation of the filters over

the L96x model. Table 2 shows the mean and standard

deviation of the relative errors of state estimation from

100 simulations, in which the variance of the observation

noise is s« 5 0:2 and the ensemble size isM5 1000. Here,

we judge the quality of the state estimates by the relative

error in the ensemble means, that is, the relative differ-

ence between the ensemble means and the truth:

e
rel
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,

(14)

where (xk,n, n5N0 1 1, . . . , N) are the ensemble means

and (xk,n, n5N0 1 1, . . . , N) are the true state values.

We skipped the first N0 steps so as to eliminate the

transients in assimilation. In the tests, it took only a few

steps for the filters to reach a stationary state, so we took

N5 400 and N0 5 200. We implemented both the stan-

dard EnKF and the EnKF with the block update using

block length L 5 2. In both cases, the NARMA model

successfully reduced the relative error in the state esti-

mation to below 2.10%, which is the relative uncertainty

induced by the observation noise; the filter with the L96x

FIG. 1. Empirical (top) PDF and (bottom) ACF of the full model,

the L96x model, and the NARMA model.

TABLE 2. The mean and standard deviation of the relative errors

of state estimation on 100 simulations, in which the ensemble size is

M 5 1000 and the variance of the observation noise is s« 5 0:2.

Both the standard EnKF and the EnKF with the block update al-

gorithm are implemented, with the L96x and NARMA models as

the forecast model.

Standard EnKF EnKF with block update

L96x 0.7884 6 0.0774 0.8022 6 0.0818

NARMA 0.0182 6 0.0016 0.0156 6 0.0011

TABLE 1. Values of the parameters in the NARMA model.

a1 a2 b1 b2

1.8992 20.9022 0.9946 20.9058

c0 c1 (31025) c2 (31025) sj

0.0024 20.3903 0.9396 0.0084
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model performs very poorly, as a result of the

model error.

We also tested a parameterization using a Markovian

model in the form of NARMA (1, 0) similar to (13). The

Markovian model reproduced the empirical PDF and

ACF well, but is slightly inferior to the NARMAmodel

(data not shown here). The Markovian model success-

fully reduced the relative error to 0.02106 0.0022 in the

above 100 simulations, which is slightly larger than those

of the NARMA model (0.0156 6 0.0019). Also, the

NARMA model yielded better forecast performance

than the Markovian model. Therefore, it is important to

choose a good model for the model error, and we con-

sider only the NARMA model in this study.

These results show that discrete-time stochastic param-

eterization can effectively account for model error and,

therefore, improve the performance of ensemble filter.

Note also that the block update algorithm reduces the

error of the state estimation for theNARMAmodel, but

it does not improve the performance of the filter with

the L96xmodel. Hence, in the following tests, we use the

block update algorithm for the NARMAmodel and the

standard EnKF for the L96x model.

b. Accounting for model error by tuning inflation
and localization

Covariance inflation and localization can account for

both model error and sampling error, but the parame-

terization can only reduce the model error. To compare

their effectiveness in accounting for model error, we

consider two situations: one with an ensemble suffi-

ciently large for sampling error to be negligible and one

with a practical small ensemble. In the first situation, we

compare the filter performance of the NARMA model

using no IL, with the performance of the L96x model

using the best-tuned IL. This highlights the impact of

the two methods on accounting for model error. In the

second situation, we apply IL to both the L96x and the

NARMA models; in the L96x model, IL accounts for

both sampling error and model error; in the NARMA

model, IL accounts mainly for sampling error.

We also test the standard EnKF using the full model,

which has no model error, as the forecast model, so as to

provide a useful yardstick for assessing the results.

We carry out the covariance localization with the lo-

calization matrix Crloc defined in (8), using the Gaspari–

Cohn taper function [(7)], where rloc is the localization

radius. We also tested a Toeplitz circulant matrix with

exponential spectrum decay, but there is no clear im-

provement in filter performance over the Gaspari–Cohn

matrix (data not shown here). In the EnKFwith the block

update, the localization matrix is an array containing L

copies of Crloc in the row and column dimensions.

We tune the localization and inflation by trying dif-

ferent values of rloc and l for filtering a single set of

observations with noise variance s« 5 0:2. Both additive

and multiplicative inflation were tested, and additive

inflation led to slightly better filter performance for both

the full and the L96x models (data are not shown here).

Hence, in the following we only consider additive

inflation.

1) TUNING IN THE CASE OF SUFFICIENT

ENSEMBLE SIZE

We first discuss tuning in the case where the sample

size is sufficiently large for the sampling error to be

negligible. Here, a large ensemble with M 5 1000

members is found to be sufficient. For the computational

cost to be similar to that of the L96x and NARMA

models, the full model uses an ensemble of sizeM5 10,

with IL to account for the sampling error because of

insufficient size. Tests showed that IL was able to ef-

fectively account for the sampling error, yielding state

estimations almost as accurate as the full model with an

ensemble size M 5 1000.

Figure 2 shows the relative errors in scaled colors (the

darker the color, the smaller the relative error in state

estimation) for different rloc and additive inflation l.

Here, a localization radius rloc 5 0means no localization,

and an additive inflation value l5 0 means no inflation.

To demonstrate the need of tuning for different models,

common values of rloc and l are plotted. The best-tuned

values shown heremay not be optimal, but they are close

to the optimal values in finer tuning.

The left plot in Fig. 2 shows the relative errors of the

L96x model with IL. Because of the model error, the

L96x model performs poorly without IL (rloc 5 0, l5 0).

As the additive inflation parameter l increases, the

relative error in state estimation first sharply decreases

and then slightly increases; a similar pattern can be ob-

served as the localization radius rloc increases. To select

the best values for rloc and l, we do not choose the pair

(rloc, l) that produces the smallest relative error in the

array, but rather the pair at the intersection of the col-

umn and the row that have the smallest sum of relative

errors among the columns and rows, respectively. This is

because tests show that the pair that yields the smallest

error is sensitive to various factors, such as the number

of observations and the initial conditions used to gen-

erate the training data, while the pairs at the intersection

are much more robust to these factors. For the L96x

model, this strategy yields (rloc, l)5 (2,0:1 ).

In the center panel in Fig. 2 we show the parameter

values for tuning IL for the NARMA model. IL brings

negligible improvements for the NARMA model: the

relative error decreases only from 0.016 to 0.014 in this
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simulation (results are similar for other simulations).

This suggests that the NARMA model has accounted

for the model error so well that IL cannot offer

much help.

The right plot in Fig. 2 shows the relative errors in

filtering with the full model. Because of the sampling

error caused by the small ensemble size, the EnKF with

the full model diverges if no localization or inflation is

used. IL accounts for the sampling error, stabilizes the

filter, and leads to accurate state estimation with relative

error 0.013, while the relative error of the full model

with M 5 1000 is 0.011. The best values for the IL pa-

rameters in this setup are rloc 5 2 and l5 0:01.

In summary, when comparing filter performance in

the case of large ensemble size in section 4c, we use

rloc 5 2 and l5 0:1 for the L96x model and rloc 5 2 and

l5 0:01 for the full model. For the NARMAmodel, we

use a block updating algorithm without any localization

or inflation. We found that even when IL is tuned, the

filter with the full model may diverge (with a frequency

of about 2 out of 100 simulations). Since the full model

only serves as a reference, we drop the simulation when

the filter diverges.

2) TUNING IN THE CASE OF SMALL ENSEMBLE SIZE

We use the same tuning strategy as above for different

small ensemble sizes, ranging from 10 to 100. Table 3

shows the best pair of the localization radius rloc and the

additive inflation parameter l in the case of ensemble

size M 5 10. The best pair (rloc, l) for the L96x model

did not change much when the ensemble size changed.

The best pairs of (rloc, l) for the NARMA model and

the full model were sensitive to changes in ensemble

size, with l varying between 0.001 and 0.01 and rloc
varying between 2 and 10. But the relative errors cor-

responding to these pairs in the array were very close to

each other (data not shown here, but this can be readily

seen from the center and right plots in Fig. 2). Therefore,

we accept these suboptimal pairs and use them in Table 3

for other ensemble sizes when comparing filter perfor-

mance in section 4d.

c. Filter performance comparison: The case of
sufficient ensemble size

We consider first the case of a large ensemble sizeM5
1000. This setup aims to answer themain question of this

paper: whether the parameterization can be as effective

as IL in accounting for the model error due to un-

resolved scales. With this M, the sampling error in the

ensemble covariance is negligible compared to the

model error; therefore, the filter performance depends

on how well the two methods can account for the

model error.

Their performance is measured by the resulting state

estimates and ensemble forecasts. We first compare them

in a single simulation, and then we consider the statistics

of the errors over 100 simulations. Results from the full

model, with ensemble size M 5 10 and IL with

(rloc, l)5 (2, 0:01 ) are included to provide a sense of the

best possible results at a comparable computational cost.

1) STATE ESTIMATION

The trajectories in a short single simulation with ob-

servation noise s« 5 0:2 are shown in Fig. 3. The filtered

trajectories (the magenta lines) are in the time interval

[0, 6 ]. The ensemble and its mean (the black dash dot

TABLE 3. The best-tuned values of localization radius rloc and

additive inflation parameter l for the three models using ensemble

size M 5 10.

L96x NARMA Full model

Localization radius rloc 2 2 2

Additive inflation l 0.1 0.01 0.01

FIG. 2. Relative error of the ensemble fitter for different covariance localizations and ad-

ditive inflations, with ensemble sizeM5 10 for the full model andM5 1000 for the reduced

models. The letters NaN indicate that the filter diverged. Here, a localization radius rloc 5 0

means no localization. An additive inflation l5 0 means no inflation.
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lines) follow the true trajectory (the blue line) relatively

well for all the three forecast models. The relative errors

of state estimation are 1.91%, 1.59%, and 1.31% for

L96x, NARMA, and the full model, respectively.

The difference in state estimation is clear in the sta-

tistics of the relative error in 100 simulations, as shown in

Fig. 4. To test the robustness of the filter, we consider

different variances of observation noise, with s« taking

the values f0:1, 0:2, 0:4, 0:8g, for which the relative er-

ror of the observation noise ranges from 1.05% to

8.40%. The NARMA model, using no covariance lo-

calization or inflation, has smaller errors than the L96x

model using tuned IL. For example, in the case s« 5 0:2,

the average relative errors are 1.73%, 1.33%, and 1.11%

for L96x, NARMAand the full model, respectively. The

relative error of the L96 model is about 1.3 times the

relative error of the NARMA model. This shows that

the stochastic parameterization is more effective than IL

in dealing with model error. On the other hand, with the

help of IL, the full model with a small ensemble size has

slightly smaller errors than the NARMA model. This

indicates that 1) tuned covariance IL is effective in

dealing with sampling error and 2) there is still model

error in the NARMA model.

2) FORECASTING

The goal of state estimation is to provide the initial

conditions for the forecast model to use in forecasting

the future evolution of the resolved scales. After as-

similating the last observation, the filtering ensemble

provides the desired initial conditions, and by running

the forecast model, we obtain a forecasting ensemble.

The difference in the ensemble forecasts of these

models is clear in the single simulation shown in Fig. 3.

The forecasting trajectories (the cyan lines) are in the

time interval (6, 10 ]. It is desirable that the ensemble of

forecasting trajectories follows the true trajectory as

long as possible before spreading out. The ensemble of

the full model follows the true trajectory for about 2.5

time units (from t 5 6 to 8.5), and the L96x and

NARMA models for about 1 and 1.8 time units, re-

spectively. The ensemble means keep following the true

trajectory slightly longer. This shows that the NARMA

model has better prediction skills than the L96x model

in this simulation.

The improved forecast of the NARMAmodel over the

L96x 1 IL combination can be attributed to two factors:

a better forecast model and more accurate two-step initial

distributions. To disentangle these two factors, we tested a

Markovian model in the form of NARMA(1, 0) simulta-

neously with the above non-Markovian NARMA and

L96x model. Results showed that the Markovian NARMA

(1, 0) model made forecasts that were slightly inferior

to the NARMAmodel but much better than L96x1 IL,

while it has relative errors in state estimation similar to

L96x1 IL. This suggests that the improvement of the

forecast of the NARMA model over L96x 1 IL comes

mainly from the better forecast model.

We further compare the forecast performance over

100 simulations by studying the root-mean-square

FIG. 3. Ensembles of trajectories in filtering and forecasting.

Each plot contains a true trajectory (blue line), an ensemble of

filtering trajectories (magenta lines) in the time interval [0, 6 ] (in

gray shading) and forecasting trajectories (cyan lines) in the time

interval (6, 10 ], and the ensemble mean (black dash–dot line).

Covariance IL accounts for the model error of the L96x model in

the filter, and the parameterization reduces the model error

through the NARMA model, in the case of a large ensemble size

(M5 1000). The full model provides a yardstick for performance at

a comparable cost by using tuned IL with ensemble size M 5 10.

FIG. 4. Mean and standard deviation of the relative error of state

estimation calculated with 100 simulations for different variances

of observation noise. The ensemble size is 1000 for the L96x and

NARMA model, and 10 for the full model. The L96x model and

the full model use tuned IL, and NARMA uses neither.
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error (RMSE) and the anomaly correlation (ANCR)

between the mean trajectories of the forecast ensem-

bles and the true trajectories. The RMSEmeasures the

average difference between trajectories whereas the

ANCR measures the average correlation between

them (Crommelin and Vanden-Eijnden 2008). Figure 5

shows the RMSE and the ANCR results of the forecast

ensemble in the 100 simulations, when s« 5 0:2. A

small and slowly increasing RMSE, combined with a

large and slowly decreasing ANCR, indicates a good

level of forecast performance. The NARMA model

shows a significant improvement over the L96x model

and is close to the full model, which has the smallest

RMSE and the largest ANCR. With the threshold of

RMSE less than 9 and the ANCR larger than 0.8, the

forecast time of the NARMAmodel is about two time

units (approximately 10 atmospheric days), which is

double that of the L96x model’s one time unit (ap-

proximately 5 atmospheric days), and is slightly less

than the full model’s 2.5 time units (approximately 13

atmospheric days). We also computed the rank his-

togram (Crommelin and Vanden-Eijnden 2008) at

lead time 1.6 (see Fig. 6). The rank histogram of the

full model is almost flat, as desired, and NARMA

has a rank histogram close to flat, but L96x1 IL has a

U-shaped rank histogram. We also compared the

RMSE with ensemble spread (i.e., the trace of the

ensemble covariance) in Fig. 7. The ensemble spread

of the full model matches the RMSE well, and the

ensemble spread of NARMA is close to the RMSE,

but there is a sizeable mismatch between the ensem-

ble spread and the RMSE for L96x 1 IL. The results

for the other values of s« are similar (data not shown

here).

In short, the NARMA model delivers significantly bet-

ter state estimation and prediction performance than the

L96x model, and its performance is close to that of the full

model. Recall that the NARMA accounts for the model

error by discrete-time stochastic parameterization of the

unresolved scales, while the L96x model accounts for the

model error by covariance inflation and localization. This

suggests that the discrete-time stochastic parameterization

is more effective in dealing with model error than co-

variance inflation and localization.

d. Filter performance comparison: The case of small
ensemble size

Because of limited computational resources, in many

applications one can afford only a small ensemble, and

significant sampling error may be present. In this case,

FIG. 5. (top) RMSE and (bottom) ANCR of ensemble fore-

casting on 100 simulations, with s« 5 0:2. The ensemble size is 1000

for the L96x and NARMAmodels, and the ensemble size is 10 for

the full model. The L96x model and the full model use tuned IL,

and NARMA uses neither.

FIG. 6. Rank histograms of the 100 simulations at lead time

t5 1:6. An ideal rank histogram should be flat. The full model has

the flattest rank histogram and NARMA’s rank histogram is close

to flat, but L96x 1 IL has a U-shaped rank histogram.
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localization and/or inflation are needed to account for

the sampling error.

In this section, we compare the filter performance for

several small ensemble sizes, ranging from M 5 10 to

100, with all the models using tuned IL with parameters

given in Table 3. In all of the cases, the variance of the

observation noise is s« 5 0:2.

1) STATE ESTIMATION

Figure 8 shows the means and standard deviations of

the relative errors in state estimation on 100 simulations,

with several small ensemble sizes. With tuned IL, the

NARMAmodel (black triangle) has smaller errors than

the L96x model (red circle) for all sizes. Recall that IL

accounts for both sampling error andmodel error for the

L96x model, while in the filter with the NARMAmodel,

the combination mainly accounts for the sampling error

while the stochastic parameterization accounts for

model error. This shows that the parameterization treats

the model error more effectively than IL and improves

the filter performance.

We also tested the NARMA model without using in-

flation or localization (cyan triangle with dash–dot line).

Its error decreases much faster than those using inflation

and localization as the ensemble size increases. In par-

ticular, NARMAhas smaller errors than L96xwith tuned

IL when the ensemble size is larger than 60. Also, its

performance becomes close to that of NARMA with IL

when the ensemble size is 100. This indicates that 1) the

NARMAmodel has effectively reduced the model error

of the L96x model and 2) the sampling error becomes

small when the ensemble size reaches M 5 100. (It also

verifies that the size M 5 1000 used in section 4c is suf-

ficiently large to make the sampling error negligible.)

2) FORECASTING

Figure 9 shows the RMSE and the ANCR of the

forecast ensemble in 100 simulations, with all models

using ensemble sizeM5 10 and tuned IL. The NARMA

model is a clear improvement over the L96x model in

forecasting: its RMSE increases much slower and its

ANCR decreases much slower. But the gap between the

NARMAmodel and the full model is slightly larger than

the gap in Fig. 5, where a large ensemble size was used.

Here, the forecast time of the NARMA model is about

1.5 time units (approximately 8 atmospheric days),

which is 50% more than the L96x model’s one time unit

(approximately 5 atmospheric days), and it is less than

the full model’s 2.5 time units (approximately 13

atmospheric days).

In short, in cases with insufficient ensemble size, the

NARMA model offers better state estimation and pre-

diction properties than the L96x model, when both use

tuned IL. Covariance inflation and localization account

for both sampling error and model error for the L96x

model; they mainly account for the sampling error for

the NARMA model, which has quantified the model

error by parameterization. Hence, the discrete-time

stochastic parameterization can be combined with co-

variance inflation and localization to improve filter

performance.

FIG. 7. Comparison of RMSE with ensemble spread (i.e., the

trace of the ensemble covariance). The ensemble spread of the full

model matches the RMSE well, and the ensemble spread of

NARMA is close to the RMSE, but there is a sizeable mismatch

between the ensemble spread and the RMSE for L96x 1 IL.

FIG. 8. Mean and standard deviation of the relative error of the

state estimation in the EnKF with different ensemble sizes in 100

simulations. All three of the models use IL. The mean of the

NARMAmodel without IL is also plotted to indicate that sampling

error decreases as ensemble size increases.
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5. Summary and discussion

We have examined discrete-time stochastic parame-

terization as a way of accounting for themodel error due

to unresolved scales in the version of EnKF with per-

turbed observations and compared it with covariance

inflation and localization algorithms.

We carried out numerical experiments on the two-

layer Lorenz-96 system, with the goal of predicting the

future evolution of the observed variables on the basis of

noisy observations of these variables.We assumed that a

forecast model in the filter was a truncated system in

which the unobserved variables were unresolved. The

model error comes from this underresolution. We ana-

lyzed how the twomethods accounted for this error. The

stochastic parameterization method directly quantified

the model error and led to an improved forecast model,

while covariance inflation and localization corrected the

ensemble covariance in the analysis step in the filter.

When the ensemble size was sufficiently large for the

sampling error to be negligible, the improved forecast

model, without any inflation or localization, achieved

significantly better performance in state estimation and

prediction than the unmodified truncated forecast

model with tuned inflation and localization. When the

ensemble size was small, covariance inflation and lo-

calization were needed to account for the sampling er-

ror, but the improved forecast model provided further

improvement in filter performance. These results show

that the discrete-time stochastic parameterization ap-

proach was more effective than the inflation and local-

ization approach in dealing with model error from

unresolved scales.

As a consequence of this study, we advocate the direct

approach, which works on the root of the problem: the

deficiency of the model. The direct approach improves

the forecast model and, therefore, improves the overall

quality of the forecast ensemble as well as the filtering

and prediction performance (Harlim 2016; Chorin et al.

2016). This is fundamentally different from the co-

variance inflation and localization approach, which

corrects the sample covariance to improve ensemble

quality but permits the model deficiency to remain.

However, the parameterization can only account for

model error, but covariance inflation and localization

can account for both sampling and model error. When

there are both model error and sampling error because

of small ensemble size, these two methods can work

together to achieve better performance than inflation/

localization used alone.

This study has been carried out in a setting where the

full model can be solved offline, and its solution used to

tune inflation and localization or to infer parameters in

stochastic parameterization. A more challenging and

realistic setting would be one where the full model is

unknown, and one has to use noisy observations to

infer a parameterization (Li et al. 2009; Berry and

Harlim 2014; Harlim 2016). This is the challenging topic

of parameter estimation for hidden Markov and non-

Markov models (Kantas et al. 2009). We leave it to

future work.
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