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a b s t r a c t

The problem of constructing data-based, predictive, reduced models for the Kuramoto–Sivashinsky
equation is considered, under circumstances where one has observation data only for a small subset
of the dynamical variables. Accurate prediction is achieved by developing a discrete-time stochastic
reduced system, based on a NARMAX (Nonlinear Autoregressive Moving Average with eXogenous input)
representation. The practical issue, with the NARMAX representation as with any other, is to identify
an efficient structure, i.e., one with a small number of terms and coefficients. This is accomplished here
by estimating coefficients for an approximate inertial form. The broader significance of the results is
discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There aremanyhigh-dimensional dynamical systems in science
and engineering that are too complex or computationally expen-
sive to solve in full, and where only a relatively small subset of
the degrees of freedom are observable and of direct interest. Un-
der these conditions, it is useful to derive low-dimensional models
that can predict the evolution of the variables of interest without
reference to the remaining degrees of freedom, and reproduce their
statistics at an acceptable cost.

We assume here that the variables of interest have been ob-
served in the past, and we consider the problem of deriving low-
dimensional models on the basis of such prior observations. We
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do the analysis in the case of the Kuramoto–Sivashinsky equation
(KSE):
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+ @4v

@x4
= 0 , x 2 R, t > 0; (1)

v(x, t) = v(x + L, t); v(x, 0) = g(x),

where t is time, x is space, v is the solution of the equation, L is an
assumed spatial period, and g is the initial datum. We pick a small
integer K , and assume that one can observe only the Fouriermodes
of the solution with wave numbers k = 1, . . . , K at a discrete se-
quence of points in time. To model the usual situation where the
observed modes are not sufficient to determine a solution of the
differential equations without additional input, we pick K small
enough so that the dynamics of a Galerkin–Fourier representation
of the solution, truncated so that it contains only K modes, are
far from the dynamics of the full system. The goal is to account
for the effects of ‘‘model error’’, i.e. for the effects of the missing
‘‘unresolved’’ modes on the ‘‘resolved’’ modes, by suitable terms in
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reduced equations for the resolved modes, using the information
contained in the observations of the resolved modes; we are not
interested in the unresolved modes per se. In the present paper
the observations are obtained by a solution of the full system; we
hope that our methods are applicable to problems where the data
come from physical measurements, including problems where a
full model is not known.

We start from the truncated equations for the resolved modes,
and solve an inverse problem where the data are used to estimate
the effects of model error, i.e., what needs to be added to the
truncated equations for the solution of the truncated equations
to agree with the data. Once these effects are estimated, they
need to be identified, i.e., summarized by expressions that can
be readily used in computation. In our problem the added
terms can take a range of values for each value of the resolved
variables, and therefore a stochastic model is a better choice than
a deterministic model. We solve the inverse problem within a
discrete-time setting (see [1]), and then identify the needed terms
within aNARMAX (NonlinearAutoregressionwithMovingAverage
and eXogenous input) representation of discrete time series.
The determination of missing terms from data is often called a
‘‘parametrization’’; what we are presenting is a discrete stochastic
parametrization. Themain difficulty in stochastic parametrization,
as in non-parametric statistical inference problems, is making the
identified representation efficient, i.e., with a small number of
terms and coefficients. We accomplish this by a semi-parametric
approach: we propose terms for the NARMAX representation from
an approximate ‘‘inertial form’’ [2], i.e., a system of ordinary
differential equations that describes the motion of the system
on a finite-dimensional, globally attracting manifold called an
‘‘inertial manifold’’. (Relevant facts from inertial manifold theory
are reviewed later.)

A number of stochastic parametrization methods have been
proposed in recent years, often in the context of weather and
climate prediction. In [3–5], model error is represented as the sum
of an approximating polynomial in the resolved variables, obtained
by regression, and a one-step autoregression. The shortcomings
of this representation as a general tool are that it does not
allow the model error to depend sufficiently on the past values
of the solution, that the model error is calculated inaccurately,
especially when the data are sparse, and that the autoregression
term is not necessarily small, making it difficult to solve the
resulting stochastic equations accurately. Detailed comparisons
between this approach and a discrete-time NARMAX approach
can be found in [1]. In [6,7] the model error is represented as
a conditional Markov chain that depends on both current and
past values of the solution; the Markov chain is deduced from
data by binning and counting, assuming that exact observations
of the model error are available, i.e., that the inverse problem
has been solved perfectly. It should be noted that the Markov
chain representation is intrinsically discrete, making this work
close to ours in spirit. In [8] the noise is treated as continuous and
represented by a hypo-elliptic system that is partly analogous to
the NARMAX representation, once translated from the continuum
to the grid. An earlier construction of a reduced approximation can
be found in [9], where the approach was not yet fully discrete.
Other interesting relatedwork canbe found in [10–14]. Thepresent
authors’ previouswork on the discrete-time approach to stochastic
parametrization and the use of NARMAX representations can be
found in [1].

The KSE is a prototypical model of spatiotemporal chaos. As a
nonlinear PDE, it has features found in more complex models of
continuum mechanics, yet its analysis and numerical solution are
fairly well understood because of its relatively simple structure.
There is a lot of previous work on stochastic model reduction
for the KSE. Yakhot [15] developed a dynamic renormalization

group method for reducing the KSE, and showed that the model
error generates a random force and a positive viscosity. Recent
development of this method can be found in [16,17]. Toh [18]
studied the statistical properties of the KSE, and constructed a
statistical model to reproduce the energy spectrum. Rost and
Krug [19] presented a model of interacting particles on the line
which exhibits spatiotemporal chaos, and made a connection with
the stochastic Burgers equation and the KPZ equation.

Stinis [20] addressed the problem of reducing the KSE as an
under-resolved computation problem with missing initial data,
and used the Mori–Zwanzig (MZ) formalism [21] in the finite
memory approximation [22,23] to produce a reduced system that
can make short-time predictions. Full-system solutions were used
to compute the conditional means used in the reduced system. As
discussed in [1], the NARMAX representation can be thought of as
both a generalization and an implementation of theMZ formalism,
and the full-system solutions used by Stinis can be viewed as data,
so that the pioneering work of Stinis is close in spirit to our work.
We provide below a comparison of our work with that of Stinis.

The paper is organized as follows. In Section 2, we introduce the
Kuramoto–Sivashinsky equation, the dynamics of its solutions, and
its numerical solution by spectral methods. In Section 3 we apply
the discrete approach for the determination of reduced systems to
the KSE, and discuss the NARMAX representation of time series. In
Section 4 we use an inertial form to determine the structure of a
NARMAX representation for the KSE, and estimate its coefficients.
Numerical results are presented in Section 5. Conclusions and the
broader significance of the work, as well as its limitations, are
discussed in a concluding section.

2. The Kuramoto–Sivashinsky equation

We begin with basic observations: in Eq. (1), the term @2v/@x2
is responsible for instability at large scales, the dissipative term
@4v/@x4 provides damping at small scales, and the non-linear term
v@v/@x stabilizes the system by transferring energy between large
and small scales. To see this, first write the KSE in terms of Fourier
modes:

d
dt

vk = (q2k � q4k)vk � iqk
2

1X

l=�1
vlvk�l, (2)

where the vk(t) are the Fourier coefficients

vk(t) := F [v(·, t)]k := 1
L

Z L

0
v(x, t)e�iqkxdx, (3)

where qk = 2⇡k
L , k 2 Z, and F denotes the Fourier transform, so

that

v(x, t) = F �1[v·(t)] =
+1X

k=�1
vk(t)eiqkx. (4)

Since v is real, the Fourier modes satisfy v�k = v⇤
k , where v⇤

k is the
complex conjugate of vk. We refer to |vk(t)|2 as the ‘‘energy’’ of the
kth mode at time t .

Next, we consider the linearization of the KSE about the
zero solution. In the linearized equations, the Fourier modes are
uncoupled, each represented by a first-order scalar ODE with
eigenvalue q2k � q4k . Modes with |qk| > 1 are linearly stable;
modes with |qk|  1 are not. The linearly unstable modes, of
which there are ⌫ = bL/2⇡c, are coupled to each other and to
the dampedmodes through the nonlinear term. Observe that if the
nonlinear terms were not present, most initial conditions would
lead to solutions whose energies blow up exponentially in time.
The KSE is, however, well-posed (see, e.g., [24]), and it can be
shown that solutions remain globally bounded in time (in suitable
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Fig. 1. Solutions of the KSE. Left: a sample solution of the KSE. Right: Mean energy h|vk|2i as a function of k/⌫, where ⌫ = L/2⇡ is the number of unstable modes, for a
number of different values of L.

function spaces) [25,26]. The solutions of Eq. (1) do not grow
exponentially because the quadratic nonlinearities,which formally
conserve the L2 norm, serve to transport energy from low to high
modes. Fig. 1 shows an example solution, as well as the energy
spectrum h|vk|2i, where h�i denotes the limit of 1

T

R T
0 �(v(t))dt as

T ! 1 . The energy spectrum has a characteristic ‘‘plateau’’ for
small wave numbers, which gives way to rapid, exponential decay
as k increases, see Fig. 1 (right). This concentration of energy in
the low-wavenumber modes is reflected in the cellular character
of the solution in Fig. 1 (left), where the length scale of the cells is
determined by the modes carrying the most energy.

Another feature of the nonlinear energy transfer is that the
KSE possesses an inertial manifold M . When the KSE is viewed as
an infinite-dimensional dynamical system on a suitable function
space B, there exists a finite-dimensional submanifold M ⇢ B
such that all solutions of the KSE tend asymptotically to M (see
e.g. [24]). The long-time dynamics of the KSE are thus essentially
finite-dimensional. Moreover, it can be shown that for sufficiently
large N (N > dim(M) at the very minimum), an inertial manifold
M can be written in the form

M = {x +  (x)|x 2 ⇡N(B)}, (5)

where ⇡N is the projection onto the span of {eikx, k = 1, . . . ,N},
and  : ⇡N(B) ! (⇡N(B))? is a Lipschitz-continuous map.
That is to say, for trajectories lying on the inertial manifold M ,
the high-wavenumber modes are completely determined by the
low-wavenumber modes. Inertial manifolds will be useful in
Section 4, and we say more about them there.

The KSE system is Galilean invariant; if v(x, t) is a solution, then
v(x � ct, t) + c , with c an arbitrary constant velocity, is also a
solution. Without loss of generality, we set

R
v(x, 0)dx = 0, which

implies that v0(0) = 0. From (2), we see that v0(t) ⌘ 0 for all t andR
v(x, t)dx ⌘ 0. In physical terms, solutions v(x, t) of the KSE can

be interpreted as the velocity of a propagating ‘‘front,’’ for example
as in flame propagation, and this decoupling of the v0 equation
from vk for k 6= 0 means the mean velocity is conserved.

Chaotic dynamics and statistical assumptions

Numerous studies have shown that the KSE exhibits chaotic
dynamics, as characterized by a positive Lyapunov exponent,
exponentially decaying time correlations, and other signatures of
chaos (see, e.g., [27] and references therein). Roughly speaking,
this means that nearby trajectories tend to separate exponentially
fast in time, and that, though the KSE is a deterministic equation,
its solutions are unpredictable in the long run as small errors

in initial conditions are amplified. Chaos also means that a
statistical modeling approach is natural. In what follows, we
assume our system is in a chaotic regime, characterized by a
translation-invariant physical invariant probability measure (see,
e.g., [28,29] for the notion of physical invariant measures and
their connections to chaotic dynamics). That is, we assume that
numerical solutions of the KSE, sampled at regular space and time
intervals, form (modulo transients) multidimensional time series
that are stationary in time and homogeneous in space, and that
the resulting statistics are insensitive to the exact choice of initial
conditions. Exceptwhere noted, this assumption is consistent with
numerical observations. Hereafter we will refer to this as ‘‘the’’
ergodicity assumption, as this is the assumption of ergodicity
needed in the present paper.

The translation-invariance part of our ergodicity assumption
has the consequence, the Fourier coefficients cannot have a
preferred phase in steady state, i.e., the physical invariant measure
has the property that if we write the kth Fourier coefficient vk
(see below) as akei✓k , then the ✓k are uniformly distributed. The
theory of stationary stochastic processes also tells us that distinct
Fourier modes are uncorrelated [23], though they are generally
not independent: one can readily show this by, e.g., checking that
cov(|vk|2, |v`|2) 6= 0 numerically. (Such energy correlations are
yet another consequence of the nonlinear term acting to transfer
energy between modes.)

Numerical solution

For purposes of numerical approximation, the system can
be truncated as follows: the function v(x, t) is sampled at the
grid points xn = nL/N, n = 0, . . . ,N � 1, so that vN =
(v(x0, t), . . . , v(xN�1, t)), where the superscript N in vN is a
reminder that the sampled v varies as N changes. The Fourier
transform F is replaced by the discrete Fourier transform FN
(assuming N is even):

vN
k = FN [v(·, t)]k =

N�1X

n=0

vN(xn, t)e�iqkxn ,

and

vN(xn, t) = F �1
N [vN

· (t)] = 1
N

N/2X

k=�N/2+1

vN
k (t)eiqkxn .

Noting that v̂N
0 = 0 due to Galilean invariance, and setting v̂N

N/2 =
0, we obtain a truncated system
d
dt

vN
k = (q2k � q4k)v

N
k � iqk

2

X

1|l|N,
1|k�l|N

vN
l vN

k�l, (6)
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with k = �N/2 + 1, . . . ,N/2. This is a system of ODE (of the
real and imaginary parts of vN

k ) in RN�2, since vN
�k = vN,⇤

k and
vN
N/2 = vN

0 ⌘ 0.
Fourier modes with large wave numbers are typically small

and can be neglected, as can be seen from a linear analysis: vk

decreases at approximately the rate e(q2k�q4k )t , where qk = kL/2⇡
(see Fig. 1 (right)). A truncation with N � 8⌫ = 8bL/2⇡c can
be considered accurate. In the following, a truncated system with
N = 32⌫ = 32bL/2⇡c is considered to be the ‘‘full’’ system, and
we aim to construct reduced models for K < 2⌫ ⇡ L/⇡ . Except
when N is small, the system (6) is stiff (since qk grows rapidly
with k). To handle this stiffness and maintain reasonable accuracy,
we generate data by solving the truncated KSE by an exponential
time difference fourth order Runge–Kutta method (ETDRK4)
[30,31] with standard 3/2 de-aliasing (see, e.g., [32,33]). We
solve the full system with a small step size dt , and then make
observations of the modes with wave numbers k = 1, . . . , K at
a times separated by a larger time interval � > dt , and denote the
observed data by

{vk(tn), k = 1, . . . , K , n = 0, . . . , T } ,

where tn = n�.
To predict the evolution of K observed modes with wave

numbers k = 1, . . . , K , it is natural to start from the truncated
system that includes only these modes, i.e., the system (6) with
N = 2(K + 1). However, when one takes K to be relatively small
(as we do in the present paper), large truncation errors are present,
and the dynamics of the truncated system are very different from
those of the full system.

3. A discrete-time approach to stochastic parametrization and

the NARMAX representation

Suppose one is given a dynamical system

d�
dt

= F(�), (7)

where the variables are partitioned as � = (u, w), with u
representing a (possibly quite small) subset of variables of direct
interest. The problem of model reduction is to develop a reduced
dynamical system for predicting the evolution of u alone. That is,
one wishes to find an equation for u that has the form

du
dt

= R(u) + z(t), (8)

where R(u) is a function of u only, and z(t) represents the model
error, i.e., the quantity one should add to R(u) to obtain the correct
evolution. For example, if � represents the full state (vk, k 2
Z) of a KSE solution and u represents the low-wavenumber
modes (v�K , v�K+1, . . . , vK ), then R can correspond to a K -mode
truncation of the KSE. In general, the model error z must depend
on u, since the resolved variables u and unresolved variables w
typically interact.

The usual approach to stochastic parametrization and model
reduction as formulated above is to identify z as a stochastic
process in the differential equation (8) from data (see [3,4,6,8]
and references therein). This approach has major difficulties. First,
it leads to the challenging problem of statistical inference for a
continuous-time nonlinear stochastic system from partial discrete
observations [34,35]. The data are measurements of u, not of
z; to find values of z one has to use Eq. (8) and differentiate
x numerically, which may be inaccurate because z may have
high-frequency components or fail to be sufficiently smooth, and
because the data may not be available at sufficiently small time
intervals. Then, if one can successfully estimate values of z and

then identify it, Eq. (8) becomes a nonlinear stochastic differential
system, which may be hard to solve with sufficient accuracy (see
e.g [36,37]).

To avoid these difficulties, a purely discrete-time approach to
stochastic parametrization was proposed in [1]. This approach
avoids the difficult detour through a continuous-time stochastic
system followed by its discretization, by working entirely in a
discrete-time setting. It starts from the truncated equation
dy
dt

= R(y).

(y differs from u in that its evolution equation is missing the
information represented by the model error z(t) in Eq. (8), and
so is not up to the task of computing u.) Fix a step size � > 0,
and choose a method of time-discretization, for example fourth-
order Runge–Kutta. Then discretize the truncated equation above
to obtain a discrete-time approximation of the form

yn+1 = yn + �R�(yn).

(The function R� depends on the numerical time-stepping scheme
used.) To estimate the model error, write a discrete analog of
Eq. (8):

un+1 = un + �R�(un) + �zn+1. (9)

Note that a sequence of values of zn+1 can be computed from data
using

zn+1 = un+1 � un

�
� R�(un), (10)

where the values of u are the observed values; the resulting values
of z account for both themodel error in (8) and the numerical error
in the discretization R�(un). The task at hand is to identify the time
series {zn} as a discrete stochastic process which depends on u.
Once this is done, Eq. (9) will be used to predict the evolution of
u. There is no need to approximate or differentiate, and there is no
stochastic differential equations to solve. Note that the zn depend
on the numerical error as well as on the model error, and may
not be good representations of the continuummodel error; we are
not interested in the latter, we are only interested in modeling the
solution u.

The sequence {zn} is a stationary time series, which we rep-
resent via a NARMAX representation, with u as an exogenous in-
put. This representation makes it possible to take into account
efficiently the non-Markovian features of the reduced system as
well asmodel andnumerical errors. TheNARMAX representation is
versatile, easy to implement and reliable. The model inferred from
data is exactly the same as the one used for prediction, which is
not the case for a continuous-time system because of numerical
approximations. The disadvantage of the discrete approach is that
the discrete system depends on both the spacing of the observed
data and the method of time-discretization, so that data sets with
different spacing lead to different discrete systems.

The NARMAX representation has the form:

un+1 = un + �R�(un) + �zn+1,

zn = �n + ⇠ n, (11)

for n = 1, 2, . . ., where {⇠ n} is a sequence of independent
identically distributed random variables, the first equation repeats
Eq. (9), and�n is a functional of current and past values of (u, z, ⇠),
of the parametrized form:

�n = µ +
pX

j=1

Ajzn�j +
rX

j=1

BjQj(un�j) +
qX

j=1

Cj⇠
n�j, (12)

where
�
Qj, i = 1, . . . , r

�
are functions to be chosen appropriately

and
�
µ, Aj, Bj, Cj

�
are constant parameters to be inferred from
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data. Here we assume that the real and complex parts of ⇠ n are
independent and have Gaussian distributions with mean zero and
diagonal covariance matrix � 2.

We call the above equations a NARMAX representation because
the time series {zn} in Eqs. (11)–(12) resemble the nonlinear
autoregression moving average with exogenous input (NARMAX)
model in e.g., [38–40]. In (12), the terms in z are the autoregression
part of order p, the terms in ⇠ are the moving average part of
order q, and the terms Qj which depend on u are the exogenous
input terms. One should note that our representation is not quite
a NARMAXmodel in the usual sense, because the exogenous input
in NARMAX is supposed to be independent of the output z, while
here it is not. The system (11)–(12) is a nonlinear autoregression
moving average (NARMA) representation of the time series {un}:
by substituting (10) into (12) we obtain a closed system for u:

un+1 = un + �R�(un) + � n + �⇠ n+1, (13)

where  n is a functional of the past values of u and ⇠ .
The form of the system (11)–(12) is quite general. �n can be

a more general nonlinear functional of the past values of (u, z, ⇠)
than the one in (12). The additive noise ⇠ can be replaced by
a multiplicative noise. We leave these further generalizations
to future work. The main task in identification of a NARMAX
representation is to determine the structure of the functional �n,
that is, determine the terms that are needed, then determine the
orders (p, r, q) in (12) and estimate the parameters.

4. Determination of the NARMAX representation

To apply NARMAX to the KSE, one must first decide on the
structure of the model for zn. In particular, one must decide which
nonlinear terms to include in the ansatz. We note that a priori,
it is clear that some nonlinear terms are necessary, as a simple
linear ansatz is very unlikely to be able to capture the dynamics
of the KSE. This is because distinct modes are uncorrelated (see
Section 2), so that if the ansatz for zn contains only linear terms,
then the different components of our stochasticmodel for zn would
be independent, and onewould not expect such amodel to capture
the energy balance between the unresolved modes (see e.g. [8]).

But the question remains: which nonlinear terms? One option
is to include all nonlinear terms up to some order. This leads to
a difficult parameter estimation problems because of the large
numbers of parameters involved. Moreover, a model with many
terms is likely to overfit, which complicates the model and leads
to poor predictive performance (see e.g. [38]). What we do here
instead is use inertial manifolds as a guide to selecting suitable
nonlinear terms. We note that our construction satisfies the
physical realizability constraints discussed in [8].

4.1. Approximate inertial manifolds

We begin with a quick review of approximate inertial
manifolds, following [2]. Write the KSE (1) in the form
dv
dt

= Av + f (v), v(x, 0) = g(x) 2 H,

where the linear operator A is the fourth derivative operator
�@4/@x4 or, in Fourier variables, the infinite-dimensional di-
agonal matrix with entries �q4k in (2), and where f (v) =
�v@v/@x � @2v/@x2 or its spectral analog, and where H =�
v 2 L2[0, L]|v(x) = v(x + L), x 2 R

 
. An inertial manifold is a

positively-invariant finite-dimensional manifold that attracts all
trajectories exponentially; see e.g. [24,41] for its existence, and see
e.g. [42,43] for estimates of its dimension. It can be shown that in-
ertial manifolds for the KSE are realizable as graphs of functions

 : PH ! QH , where P is a suitable finite-dimensional projection
(see below), and Q = I � P . The inertial form (the ordinary dif-
ferential equation that describes motion restricted to the inertial
manifold) can be expressed in terms of the projected variable u by

du
dt

= PAu + Pf (u +  (u)), (14)

where u = Pv. Different methods for the approximation of
inertial manifolds have been proposed [2,44,45]. These methods
approximate the function w =  (u) by approximating the
projected system on QH ,

dw
dt

= QAw + Qf (u + w), w(0) = Qg. (15)

In practice, P is typically taken to be the projection onto the span of
the first m eigenfunctions of A, for example, one can set u = Pv =
(v�m, v�m+1, . . . , vm), the first 2m Fourier modes. The dimension
of the inertial manifold is generally not known a priori [43], so
m is usually taken to be a large integer. It is shown in [46] that
for large enough m and for v = u + w on the inertial manifold,
dw/dt is relatively small. Neglecting dw/dt in (15) we obtain an
approximate equation for w:

w = �A�1Qf (u + w). (16)

Approximations of can then be obtained by setting up fixed point
iterations,

 0 = 0,  n+1 = �A�1Qf (u +  n), (17)

and stopping at a particular finite value of n, which yields an ‘‘ap-
proximate inertial manifold’’ (AIM). The accuracy of AIM improves
as its dimension m increases, in the sense that the distance be-
tween the AIM and the global attractor of the KSE decreases at the
rate |qm|�� for some � > 0 [2].

In the application to our reduced KSE equation, one may try to
set m = K . However, our cutoff K < 2⌫ ⇡ L

⇡
is too small for there

to be a well-defined inertial form, since this is relatively close to
the number ⌫ = bL/2⇡c of linearly unstable modes, and we gen-
erally expect any inertial manifold to have dimension much large
than 2⌫. Nevertheless, we will see that the above procedure for
constructing AIMs provides a useful guide for selecting nonlinear
terms for NARMAX. This is unsurprising, since inertial manifolds
arise from the nonlinear energy transfer between low and high
modes and the strong dissipation at high modes, which is exactly
what we hope to capture.

4.2. Structure selection

We now determine the structure of the NARMAX model,
i.e., decide what terms should appear in (12). These terms should
correctly reflect how z depends on u and ⇠ . Once the terms are
determined, parameter estimation is relatively easy, as we see in
the next subsection. The number of terms should be as small as
possible, to save computing effort and to reduce the statistical error
in the estimate of the coefficients. One could try to determine the
terms to be kept by looking for the terms that contribute most
to the output variance, see [38, Chapter 3] and the references
there. This approach fails to identify the right terms for strongly
nonlinear systems such as the one we have. Other ideas based on a
purely statistical approach have been explored e.g. in [38, Chapter
9]. In the present paper, we design the nonlinear terms in (12)
in the NARMAX model, which represents the model error in the
K -mode truncation of the KSE, using the theory of inertial
manifolds sketched above.

In our setting, u = (v�K , . . . , vK ). Because of the quadratic
nonlinearity, only the modes with wave number |k| = K + 1, K +
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2, . . . , 2K interact directlywith the observedmodes in u; hencewe
set w = (v�2K , . . . , v�K�1, vK+1, . . . , v2K ) in Eq. (16). Using the
result of a one-step iteration  1 = �A�1Qf (u) in (17) we obtain
an expression for the high mode vk as a function of the low modes
u:

 1,k = � �A�1Qf (u)
�
k = � i

2
q�4
k

X

1|l|K ,1|k�l|K

vlvk�l,

for |k| = K + 1, K + 2, . . . , 2K .
Our goal is to approximate the model error of the K -mode

Galerkin truncation, Pf (u +  (u)) � Pf (u), so that the reduced
model is closer to the attractor than the Galerkin truncation. In
standard approximate inertial manifold methods, the model error
is approximated by Pf (u +  1(u)) � Pf (u). Since K is relatively
small in our setting, we do not expect the AIM approximation
to be effective. However, in stochastic parametrization, we only
need a parametric representation of the model error, and more
specifically, to derive the nonlinear terms in the NARMAX model.
As the AIM procedure implicitly takes into account energy transfer
between Fourier modes due to nonlinear interactions as well as
the strong dissipation in high modes, it can be used to suggest
nonlinear terms to include in our NARMAX model. That is, the
above expressions of  1, Pf (u +  1(u)) � Pf (u) provide explicit
nonlinear terms {�1,k�1,l,�1,kvj} we need (with K < |k|, |l| 
2K , |j|  K ); we simply leave the coefficients of these terms as
free parameters to be determined from data. Roughly speaking,
the NARMAX can be viewed as a regression implementation of a
parametric version of AIM.

Implementing the above observations in discrete time, we ob-
tain the following terms to be used in the discrete reduced system:

eun
j =

8
><

>:

un
j , 1  j  K ;

i
KX

l=j�K

un
l u

n
j�l, K < j  2K .

(18)

Themodes with negative wave numbers are defined byeun
�j =eun,⇤

j .
This yields the discrete stochastic system

un+1
k = un

k + �R�k(u
n) + �zn+1

k ,

znk = �n
k + ⇠ nk ,

where the functional�n
k has the form:

�n
k (✓k) = µk +

pX

j=1

ak,jz
n�j
k +

rX

j=0

bk,ju
n�j
k +

KX

j=1

ck,jeun
j+Keu

n
j+K�k

+ ck,(K+1)R�k(u
n) +

qX

j=1

dk,j⇠
n�j
k , (19)

for 1  k  K . Here ✓k = �
µk, ak,j, bk,j, ck,j, dk,j

�
are real parame-

ters to be estimated from data. Note that each one of the random
variables ⇠ nk affects directly only onemode un

k , as is consistent with
the vanishing of correlations between distinct Fourier modes (see
Section 2).

We set �n
�k = �

n,⇤
k so that the solution of the stochastic

reduced system satisfies un
�j = un,⇤

j . We include the terms in
R�k(u

n) because theway theywere introduced in the above reduced
stochastic system does not guarantee that they have the optimal
coefficients for the representation of z; the inclusion of these terms
in �n

k makes it possible to optimize these coefficients. This is
similar in spirit to the construction of consistent reduced models
in [13], though simpler to implement.

4.3. Parameter estimation

Weassume in this section that the terms and the orders (p, r, q)
in the NARMAX representation have been selected, and estimate
the parameters as follows. To start, assume that the reduced
system has dimension K , that is, the variables un, zn, �n and ⇠ n
have K components. Denote by ✓k = (µk, Ak,j, Bk,j, Ck,j) the set of
parameters in the kth component of�n, and ✓ = (✓1, ✓2, . . . , ✓K ) .
We write�n

k as�n
k (✓k) to emphasize that� depends on ✓k.

Recall that the real and complex parts of the components of
⇠ n are independent N(0, � 2

k ) random variables. Then, following
(11), the log-likelihood of the observations {un, q + 1  n  N}
conditioned on {⇠ 1, . . . , ⇠ q} is (up to a constant)

l(✓ , � 2|⇠ 1, . . . , ⇠ q)

= �
KX

k=1

 
NX

n=q+1

��znk � �n
k (✓)

��2

2� 2
k

+ (N � q) ln � 2
k

!

. (20)

If q = 0, this is the standard likelihood of the data {un, 1  n  N},
and the values of zn and �n(✓) can be computed from the data un

using (10) and (19), respectively. However, if q > 0, the sequence
{�n

k (✓)} cannot be computed directly from data, due to its
dependence on the noise sequence {⇠ n}, which is unknown. Note
that once the values of {⇠ 1, . . . , ⇠ q} are available, one can compute
recursively the sequence {�n

k (✓)} for n � q + 1 from data. Hence
we can compute the likelihood of {un, q + 1  n  N} conditional
on {⇠ 1, . . . , ⇠ q}. If the stochastic reduced system is ergodic and the
data come from this system, the MLE is asymptotically consistent
(see e.g. [47,39]), and hence the values of ⇠ 1, . . . , ⇠ q do not affect
the result if the data set is long enough. In practice, we can simply
set ⇠ 1 = · · · = ⇠ q = 0, the mean of these variables.

Taking partial derivatives with respect to � 2
k and noting that��znk � �n

k (✓k)
�� is independent of � 2

k , we find that the maximum
likelihood estimators (MLE) ✓̂ , �̂ 2 satisfy the following equations:

✓̂k = argmin
✓k

Sk(✓k), �̂ 2
k = 1

2(N � q)
S(✓̂k), (21)

where

Sk(✓k) :=
NX

n=q+1

��znk � �n
k (✓k)

��2 .

Note first that in the case q = 0, the MLE ✓̂k follows directly
from least squares, because �n

k is linear in the parameter ✓k and
its terms can be computed from data. If q > 0, the MLE ✓̂k can
be computed either by an optimizationmethod (e.g. quasi-Newton
method), or by iterative least squares method (see e.g. [48]). With
eithermethod, one first computes�n

k (✓k)with the current value of
parameter ✓k, and then one updates ✓k (by gradient searchmethods
or by least squares), and repeats until the error tolerance for
convergence is reached. The starting values of ✓k for the iterations
for either method are set to be the least square estimates using the
residual of the corresponding q = 0 model.

The simple forms of the log-likelihood in (20) and the MLEs
in (21) are based on the assumption that the real and complex
parts of the components of ⇠ n are independent Gaussians. One
may allow the components of ⇠ n to be correlated, at the cost of
introducingmore parameters to be estimated. Also, similar to [48],
this algorithm can be implemented online, i.e. recursively as the
data size increases, and the noise sequence {⇠ n} can be allowed to
be non-Gaussian (on the basis of martingale arguments).

Fei Lu
i

Fei Lu
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4.4. Order selection

In analogy to the earlier discussion, it is not advantageous to
have large orders (p, r, q) [38,49], because, while large orders
generally yield small noise variance, the errors arising from
the estimation of the parameters accumulate as the number of
parameters increases. The forecasting ability of the reduced model
depends not only on the noise variance but also on the errors in
parameter estimation. For this reason, a penalty factor is often
introduced discourage the fitting of linear models with too many
parameters. Many criteria have been proposed for linear ARMA
models (see e.g. [49]). However, due to the nonlinearity of NARMA
and NARMAX models, these criteria do not work for them.

Here we propose a number of practical, qualitative criteria for
selecting orders by trial and error. We first select orders, estimate
the parameters for these orders, and then analyze how well the
estimated parameters and the resulting reduced system reach our
goals. The criteria are:

1. The variance of the model error should be small.
2. The stochastic reduced system should be stable, and its long-

term statistical properties should be well-defined (i.e., the
reduced system should have a stationary distribution), and
should agree with the data. Especially, the autocorrelation
functions (which are computed by time averaging) of the
reduced system and of the data should be close.

3. The estimated parameters should converge as the size of the
data set increases.

These criteria do not necessarily produce optimal solutions. As
in most statistics problems, one is aiming at an adequate rather
than a perfect solution.

5. Numerical results

5.1. Estimated NARMAX coefficients

We now determine the coefficients and the orders in the
functional � of Eq. (12) in the case L = 2⇡/

p
0.085, K = 5;

for this choice of L, the number of linearly unstable modes is ⌫ =
b1/p0.085c = 3. This setting is the same as in Stinis [20], up to a
change of variables in the solution. We obtain data by solving the
full Eq. (6) with N = 32bL/2⇡c and with time step dt = 0.001,
and make observations of the first K modes with wave number
k = 1, . . . , K , with time spacing � = 0.1. As initial value we
take v0(x) = (1 + sin x) cos x. Recall that we denote by {v(tn)}Tn=1
the observations of the K modes. We choose the length of the data
set to be large enough so that the statistics can be computed by
time averaging. The means and variances of the real parts of the
observed Fouriermodes settle down after about 5⇥104 time units.
Hence we drop the first 104 time units, and use observations of the
next 5 ⇥ 104 time units as data for inferring a reduced stochastic
system; with (estimated) integrated autocorrelation times of the
Fourier modes ranging from ⇡10 to ⇡35 time units, this amount
of data should be sufficient for estimating the coefficients. (Because
� = 0.1, the length of data is T = 5 ⇥ 105.)

We consider different orders (p, r, q): p = 0, 1, 2; r =
1, 2; q = 0, 1. We first estimate the parameters by the conditional
likelihood method described in Section 4.3. Then we numerically
test the stability of the stochastic reduced system by generating a
long trajectory of length T , starting from an arbitrary point in the
data (for example v(t20000)). We then drop the orders that lead to
unstable systems, and select, among the remaining orders, the ones
with smallest noise variances.

The orders (2, 1, 0), (2, 2, 0) lead to unstable reduced system,
though their noise variances are the smallest, see Table 1. This
suggests that large orders p, r, q are not needed. Among the other

Table 1

The noise variances in the NARMAX with different orders (p, r, q).

(p, r, q) scale � 2
1 � 2

2 � 2
3 � 2

4 � 2
5

010 ⇥10�3 0.0005 0.0061 0.0217 0.1293 0.1638
020 ⇥10�3 0.0005 0.0051 0.0187 0.0968 0.1612
110 ⇥10�4 0.0047 0.0587 0.1664 0.4290 0.5640
120 ⇥10�4 0.0044 0.0509 0.1647 0.4148 0.3259
021 ⇥10�4 0.0012 0.0129 0.0472 0.2434 0.4056
111 ⇥10�4 0.0012 0.0148 0.0421 0.1079 0.1426
210 ⇥10�5 0.0020 0.0307 0.1533 0.3921 0.3234
220 ⇥10�5 0.0019 0.0304 0.1450 0.2858 0.1419

Table 2

The average of mean square distances between the autocorrelation functions of the
data and the autocorrelation functions NARMAX trajectory with different orders
(p, r, q).

(p, r, q) D1 D2 D3 D4 D5

020 0.0012 0.0013 0.0008 0.0004 0.0009
021 0.0010 0.0010 0.0007 0.0004 0.0008
111 0.0013 0.0019 0.0010 0.0004 0.0010
110 0.0011 0.0018 0.0008 0.0005 0.0010
120 0.0013 0.0022 0.0010 0.0004 0.0011

orders, the choices (0, 2, 1) and (1, 1, 1) have the smallest noise
variances (see Table 1). The orders (1, 1, 1) seems to be better
than (0, 2, 1), because the former has four out of the five variances
smaller than the latter.

For further selection, following the second criterion in Sec-
tion 4.4, we compare the empirical autocorrelation functions
of the NARMAX reduced system with the autocorrelation func-
tions of data. Specifically, first we take N0 pieces of the data,
{(v(tn), n = ni, ni + 1, . . . , ni + T )}N0

i=1 with ni+1 = ni + Tlag/�,
where T is the length of each piece and Tlag is the time gap between
two adjacent pieces. For each piece (v(tn), n = ni, . . . , ni + T ), we
generate a sample trajectory of length T from the NARMAX re-
duced system using initial

�
v(tni), v(tni+1), . . . , v(tni+m)

�
, where

m = max {p, r, 2q} + 1, and denote the sample trajectory by�
uni+n, n = 1, . . . , T

�
. Here an initial segment is used to estimate

the first few steps of the noise sequence,
�
⇠ q+1, . . . , ⇠ 2q

�
(recall

that we set ⇠ 1 = · · · = ⇠ q = 0). Then we compute the auto-
correlation functions of real parts each trajectory by

�v,k(h, i) = 1
T � h

T�hX

n=1

Re vk(tni+n+h) Re vk(tni+n);

�u,k(h, i) = 1
T � h

T�hX

n=1

Re uni+n+h
k Re uni+n

k ,

for h = 1, . . . , Tlag/�, i = 1, . . . ,N0, k = 1, . . . , K , and compute
the average of mean square distances between the autocorrelation
functions by

Dk = 1
N0

N0X

i=1

 
�

Tlag

Tlag/�X

h=1

���v,k(h, i) � �u,k(h, i)
��2
!

.

The orders (p, r, q) with the smallest average mean square dis-
tances will be selected. Here we only consider the autocorrelation
functions of the real parts, since the imaginary parts have statistical
properties similar to those of the real parts.

Table 2 shows the average of mean square distances between
the autocorrelation functions for different orders and the autocor-
relation functions of the data, computedwithN0 = 100, Tlag = 50.
The orders (1, 1, 1) have larger distances than (0, 2, 1). We select
the orders (0, 2, 1) because they have the smallest average ofmean
square distances. The estimated parameters for the orders (0, 2, 1)
are presented in Table 3.
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Table 3

The estimated parameters in the NARMAX with orders (p, r, q) = (0, 2, 1).

k µk(⇥10�4) bk,0 bk,1 dk,1 � 2
k (⇥10�4)

1 0.0425 0.0909 �0.0910 0.9959 0.0012
2 �0.0073 0.1593 �0.1600 0.9962 0.0138
3 0.3969 0.2598 �0.2617 0.9942 0.0520
4 �0.9689 0.7374 �0.7408 0.9977 0.2544
5 �0.1674 0.3822 �0.3799 0.9974 0.4056

k ck,1 ck,2(⇥10�3) ck,3(⇥10�3) ck,4(⇥10�3) ck,5(⇥10�3) ck,6
1 0.0002 0.0000 0.0010 0.0013 �0.0003 �0.0082
2 0.0005 0.2089 0.0015 0.0007 0.0001 �0.0157
3 0.0008 0.3836 0.1055 �0.0013 �0.0040 �0.0283
4 0.0010 0.5841 0.2971 �0.4104 0.0449 �0.0800
5 0.0012 0.6674 0.4763 0.2707 0.1016 �0.0710

(a) The truncated system. (b) NARMAX.

Fig. 2. Semilog plot of the probability density functions reproduced by the truncated system and by the NARMAX system (red ⇥’s), compared to the full system (blue dots).
Here we only plot the real parts of the paths of the Fourier modes (from top to bottom, the wave numbers are k = 1, 2, . . . , 5). Note the distributions of the truncated system
are not symmetric because solutions appear to converge to a fixed point, so that our ergodicity assumption is invalid. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

For comparison, we also carried out a similar analysis for � =
0.01. We found (data not shown) that (i) the best choices of
(p, r, q) are different for � = 0.1 and for � = 0.01; and (ii) the
coefficients do not scale in a simple way, e.g., all as some power of
�. Presumably, there is an asymptotic regime (as � ! 0) in which
the coefficients do exhibit some scaling, but � = 0.1 is too large
to exhibit any readily-discernible scaling behavior. We leave the
investigation of the scaling limit as � ! 0 for future work.

We observed that for all the above orders,most of the estimated
parameters show a clear trend of convergence as the length of
the data set increases, but some parameters keep oscillating (data
not shown). For example, for NARMAX with orders (0, 2, 1), the
coefficients bk,j are more oscillatory than the coefficients ck,j, and
the parameters of the mode with wave number k = 5 are more
oscillatory than the parameters of other modes. This indicates
that the structure and the orders are not yet optimal, and we
leave the task of developing better structures and orders to future
work. Here we select the orders simply based on the size of
noise variances and on the ability to reproduce the autocorrelation
functions. Yetwe obtain a reduced systemwhich achieves both our

goals of reproducing the long-term statistics and making reliable
short-term forecasting, as we show in the following sections.

In the following, we select the orders (0, 2, 1) for the NARMAX
reduced system.

5.2. Long-term statistics

We compare the statistics of the truncated system and the
NARMAX reduced system with the statistics of the data. We
calculate the following quantities for the reduced systems as
well as for data: the empirical probability density functions (pdf)
and the empirical autocorrelation functions for each of the K
components. All these statistics are computed by time-averaging
long sample trajectories, as we did for the autocorrelation
functions in the previous subsection.

The pdfs and autocorrelation functions of data are reproduced
well by the NARMAX reduced system, as shown in Figs. 2 and 3.
The NARMAX system reproduces almost exactly the pdfs and the
autocorrelation functions of the data, a significant improvement
over the truncated system.



54 F. Lu et al. / Physica D 340 (2017) 46–57

(a) The truncated system. (b) NARMAX.

Fig. 3. The autocorrelation functions reproduced by the truncated system and the NARMAX system (dot–dash line), compared to the full system (solid line). Here we only
plot the real parts of the paths of the Fourier modes (from top to bottom, the wave numbers are k = 1, 2, . . . , 5).

We also computed energy covariances cov(|vk|2, |v2
` |) for some

pairs (k, `) with k 6= `. (Recall from Section 2 that this is expected
to be nonzero.) In particular, testswith k = 2 and ` 2 {1, 2, 3, 4, 5}
show that the NARMAX reduced system can correctly capture
these energy–energy covariances, whereas the truncated system
does not (data not shown).

5.3. Short-term forecasting

We now investigate how well the NARMAX reduced system
predicts the behavior of the full system.

We start from single path forecasts. For the NARMAX with
orders (p, r, q), we start the multistep recursion by using an initial
segment with m = 2max{p, r, q} + 1 steps as follows. We set
⇠ 1 = · · · = ⇠ q = 0, and estimate ⇠ q+1, . . . , ⇠m using Eq. (11).
Then we follow the discrete system to generate an ensemble
of trajectories from different realizations, with all realizations
using the same initial condition. We do not introduce artificial
perturbations into the initial conditions, because the exact initial
conditions are known. A typical ensemble of 20 trajectories, aswell
as its mean trajectory and the corresponding data trajectory, is
shown in Fig. 4(b). As a comparison, we also plot a forecast using
the truncated system. Since the observations provide the exact
initial condition, the truncated system produces a single forecast
path, see Fig. 4(a). We observe that the ensemble of NARMAX
follows the true trajectory well for about 50 time units, and the
spread becomes wide quickly afterwards, while the ensemble
mean can follow the true trajectory to 55 time units. Compared to
the truncated system which can make forecast for about 20 time
units, NARMAX canmake forecast for about 55 time units, which is
a significant improvement. We comment that the prediction time
in [20], in which used the Mori–Zwanzig formalism, was about 35
time units.

To measure the reliability of the forecast as a function of lead
time, we compute two commonly-used statistics, the root-mean-
square-error (RMSE) and the anomaly correlation (ANCR). Both

statistics are based on generating a large number of ensembles of
trajectories of the reduced system starting from different initial
conditions, and comparing the mean ensemble predictions with
the true trajectories, as follows.

First we take N0 short pieces of the data, {(v(tn), n = ni, ni

+1, . . . , ni+T )}N0
i=1 with ni+1 = ni+Tlag/�, where T = Tlag/� is the

length of each piece and Tlag is the time gap between two adjacent
pieces. For each short piece of data (v(tn), n = ni, . . . , ni + T ), we
generate Nens trajectories of length T from the NARMAX reduced
system, starting all ensemble members from the same several-
step initial condition

�
v(tni), v(tni+1), . . . , v(tni+m)

�
, where m =

2max {p, r, q} + 1, and denote the sample trajectories by
(un(i, j), n = 1, . . . , T ) for i = 1, . . . ,N0 and j = 1, . . . ,Nens.
Again, we do not introduce artificial perturbations into the initial
conditions, because the exact initial conditions are known, and by
initializing from data, we preserve the memory of the system so as
to generate better ensemble trajectories.

We then calculate the mean trajectory for each ensemble,
ūn(i) = 1

Nens

PNens
j=1 un(i, j). The RMSE measures, in an average

sense, the difference between the mean ensemble trajectory,
i.e., the expected path predicted by the reducedmodel, and the true
data trajectory:

RMSE(⌧n) :=
 

1
N0

N0X

i=1

��Re v(tni+n) � Re ūn(i)
��2
!1/2

,

where ⌧n = n�. The anomaly correlation (ANCR) shows the average
correlation between the mean ensemble trajectory and the true
data trajectory (see e.g. [6]):

ANCR(⌧n) := 1
N0

N0X

i=1

a

v,i(n) · au,i(n)
q

|av,i(n)|2 ��au,i(n)��2
,

where av,i(n) = Re v(tni+n)�Re hvi and a

u,i(n) = Re ūn(i)�Re hvi
are the anomalies in data and the ensemble mean. Here a · b =
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(a) The truncated system. (b) NARMAX.

Fig. 4. A typical path forecast made by the reduced systems compared to the data (solid line). (a) the truncated system (dot–dashed line); (b) ensemble trajectories (cyan
line) and the mean trajectory of the ensemble (dot–dashed line) of the NARMAX system. Here we only plot the real parts of the paths of the Fourier modes (from top to
bottom, the wave numbers are k = 1, . . . , 5). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) RMSE. (b) ANCR.

Fig. 5. Root-mean-square-error (RMSE) and Anomaly correlations (ANCR) of ensemble forecasting, produced by the NARMAX system (solid lines) and the truncated system
(dot–dashed line), for different ensemble sizes: Nens = 1 (circle marker), Nens = 5 (cross marker), and Nens = 20 (asterisk marker).

PK
k=1 akbk, |a|2 = a · a, and hvi is the time average of the long

trajectory of v. Both statistics measure the accuracy of the mean
ensemble prediction; RMSE = 0 and ANCR = 1 would correspond
to a perfect prediction, and small RMSEs and large (close to 1)
ANCRs are desired.

Results for RMSE and ANCR for N0 = 1000 ensembles are
shown in Fig. 5, where we tested three ensemble sizes: Nens =
1, 5, 20. The forecast lead time at which the RMSE keeps below 2
is about 50 time units, which is about 10 times of the forecast lead
time of the truncated system. The forecast lead time at which the
ANCR drops below 0.9 is about 55 time units, which is about five
times of number of the truncated system. We also observe that a
larger ensemble size leads to smaller RMSEs and larger ANCRs.

5.4. Importance of the nonlinear terms in NARMAX

Finally, we examine the necessity of including nonlinear terms
in the ansatz, by comparing NARMAX to ARMAX, i.e., stochastic
parametrization keeping only the linear terms in the ansatz.
We performed a number of numerical experiments in which we
fitted an ARMAX ansatz to data. We found that for (p, r, q) =
(0, 2, 1), which was the best order we found for NARMAX, the
corresponding ARMAX approximation was unstable.

We also found the best orders for ARMAX to be stable, which
were (p, r, q) = (2, 1, 0), and compared the results to those
produced by NARMAX. The results are shown in Fig. 6. In (a), the
pdfs are shown for each resolved Fourier mode, and compared
to those of the full model. Clearly, the Fourier modes for ARMAX
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(a) Probability density functions. (b) Autocorrelation functions.

Fig. 6. Results produced by ARMAX, i.e., using only linear terms in the ansatz for zn . In (a), we compare the probability density functions of different modes produced by
ARMAX (red⇥’s) to that of the full model (blue dots). In (b), we compare the autocorrelation functions (solid line for full model, dashed line for ARMAX). Compare to Figs. 2(b)
and 3(b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

experience much larger fluctuations, presumably because of the
build-up of energy in the resolved modes. In contrast, the results
produced by NARMAX match reality much better (see Fig. 2(b)),
as it more correctly models the nonlinear interactions between
different modes. A consequence of these larger fluctuations is
that ARMAX cannot even capture the mean energy spectrum: the
ARMAX model leads to mean energies that are about 5 times
larger than the true energy spectrum, which NARMAX is able to
reproduce (data not shown).

Fig. 6(b) shows the corresponding autocorrelations.We see that
ARMAX does not correctly capture the temporal structure of the
dynamics. Again, this is consistent with the fact that in ARMAX the
components of zn are independent, which do not correctly capture
the energetics the KSE. In contrast, the NARMAX results in Fig. 3(b)
show a much better match.

6. Conclusions and discussion

We performed a stochastic parametrization for the KSE equa-
tion in order to use it as a test bed for developing such parametriza-
tions for more complicated systems. We estimated and identified
the model error in a discrete-time setting, which made the infer-
ence from data easier, and avoided the need to solve nonlinear
stochastic differential systems; we then represented themodel er-
ror as a NARMAX time series. We found an efficient form for the
NARMAX series with the help of an approximate inertial manifold,
which we determined by a construction developed in a continuum
setting, and which we improved by parametrizing its coefficients.

A number of dimensional reduction techniques have been
developed over the years in the continuum setting, e.g., inertial
manifolds, renormalization groups, the Mori–Zwanzig formalism,
and a variety of perturbation-based methods. In the present paper
we showed, in the Kuramoto–Sivashinsky case, that continuum
methods could be adapted for use in the more practical discrete-
time setting,where they couldhelp to find an effective structure for

the NARMAX series, and could in turn be enhanced by estimating
the coefficients that appear, producing an effective and relatively
simple parametrization. Another example in a similar spirit was
provided by Stinis [50], who renormalized coefficients in a series
implementation of the Mori–Zwanzig formalism.

Such continuous/discrete, analytical/numerical hybrids raise
interesting questions. Do there exist general, systematic ways
to use continuum models to identify terms in NARMAX series?
Does the discrete setting require in general that the continuum
methods be modified or discretized? What are the limitations of
this approach? The answers await further work.
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