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Abstract The Holder continuity of the solution X,(x) to a nonlinear stochastic
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Relat. Fields.). The method is to use the Malliavin calculus. The Hoélder continuity in
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Holder continuity result is sharp since the corresponding linear heat equation has the
same Holder continuity.
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28 Y. Hu et al.

1 Introduction

Consider a system of particles indexed by multi-indexes « in a random environment
whose motions are described by

t
xa(l)=Xa+B°’(l)+//h(y—xa(u))W(du,dy), (1.1)
0 R

where h € L2(R), (B*(t);t > 0), are independent Brownian motions and W is a
Brownian sheet on R x R independent of B*. For more detail about this model,
we refer to Wang ([10,11]) and Dawson et al. [2]. Under some specifications for the
branching mechanism and in the limiting situation, Dawson et al. [3] obtained that the
density of the branching particles satisfies the following stochastic partial differential
equation (SPDE):

t t

Xi(x) =M(x)+/AXu(X)dM—//Vx (h(y —x) Xy (x)) W (du, dy)
0 R

0

t
+ [V, (12)
0

where V is a Brownian sheet on R x R independent of W. The joint Holder continuity
of (¢, x) —> X;(x) was left as an open problem in [3].

Let HY(R) = {u € L*(R); u® € L2(R) fori = 1,2, ..., k}, the Sobolev space
with norm [|h7 , = Z?:o |2 % ”iz (- In a recent paper, Li et al. [4] proved that
X;(x) is almost surely jointly Holder continuous, under the condition that 4 € sz (R)
with ||h||i2 < 2and Xg = u € H2l (R) is bounded. More precisely, they showed
that for any € > 0, X;(x) is Holder continuous in x with exponent 1/2 — € and in ¢
with exponent 1/10 — €. Comparing to the Holder continuity for the stochastic heat
equation which has the Holder continuity of 1/4 — € in time, it is conjectured that the
Holder continuity of X, (x) should also be 1/4 — €.

The aim of this paper is to provide an affirmative answer to the above conjecture.
Here is the main result of this paper.

Theorem 1.1 Suppose that h € H%(]R) and Xo = € L*(R) is bounded. Then for
any p > l and T > 0, there exists a constant C depending on p, T, ||hll,, and
||M||L2(R) such that forany x,y e Rand0 <s <t <T,

EIX: () — Xy )P < Ct7P(x — y|P~2 + (t — 5)5 %), (13)

Moreover, if i is also Holder continuous with exponent ). > % then

P

EIX, () =X, 0P <CA+pnl)(x—ylP 2+ —)T73).  (14)
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Holder continuity for the solutions to a class of nonlinear SPDE’s 29

We remark here that the term #~7 in the right hand side of (1.3) implies that the
Holder norm of X, (x) blows up as + — 0. This problem arises naturally since we
only assume Xo = u € L>(R). By assuming that y is Hélder continuous as well, we
eliminate this singularity in (1.4).

Applying an anisotropic version of the Kolmogorov’s continuity criteria for para-
bolic metric (see [1], Corollary A.3; see also [7], p. 31) we can obtain the following
Holder continuity result:

Corollary 1.2 Under the assumptions of Theorem 1.1, X (x) has a Hélder continuous
version (still denoted by X;(x)). More precisely, if Xo = u € L*(R) is bounded, then
forany0 <§ < T,K > 0anda € (0, %), there exists a random variable Gt g o > 0
with E[GT ko] < 00 such that a.s.

1 1 o
1X,(0) = X, ()] = 872Gk (1t =512+ 1x = ¥]) (1.5)

foralls <s <t <T,x,y e [—K, K]. Furthermore, if i is also Holder continuous
with exponent ). > %, then

X () = X, = Gk (10 =512 + 1= y1) " (1.6)

When i = 0 Eq. (1.2) is reduced to the famous Dawson—Watanabe equation (pro-
cess). The joint Holder continuity for this equation has been studied by Konno and
Shiga [5] and Reimers [9]. The starting point is to interpret the equation (when 2 = 0)
in mild form with the heat kernel associated with the Laplacian A in (1.2). Then the
properties of the heat kernel (Gaussian density) can be fully used to analyze the Holder
continuity.

The straightforward extension of the mild solution concept and technique to gen-
eral nonzero & case in (1.2) meets a substantial difficulty. To overcome this difficulty,
Li et al. [4] replace the heat kernel by a random heat kernel associated with

t

t
/AXu(x)dr—//Vx(h (y—x) X, (x))W (du, dy).
0 R

0

The random heat kernel is given by the conditional transition function of a typical
particle in the system with W given. To be more precise, consider the spatial motion
of a typical particle in the system:

t
a=so+Bt+//h<y—su)W<du,dy), (17)
0 R

where (B;; t > 0) is a Brownian motion. For » < r and x € R, define the conditional
(conditioned by W) transition probability by

Ptr’x’W ()= PW (St S |$r = x). (1.8)
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30 Y. Hu et al.

Denote by pW (r, x; 1, y) the density of P/***" (-). It is proved that X;(y) has the
following convolution representation:

t

X (y) =/u(z)pw 0, z; t,y)dz+//pw (r,z;t,y) Z (dr,dz)
R 0 R

= Xl,l(y) +Xz,2()’), (1.9)

where Z (dr, dz) = /X, (z)V (dr, dz). Then they introduce a fractional integration
by parts technique to obtain the Holder continuity estimates, using Krylov’s L, theory
(cf. Krylov [6]) for linear SPDE.

In this paper, we shall use the techniques from Malliavin calculus to obtain more
precise estimates for the conditional transition function pW (r, x; t, y). This allows us
to improve the Holder continuity in the time variable for the solution X;(x).

The rest of the paper is organized as follows: In Sect. 2, we briefly recall some
notations and results on Malliavin calculus. Then we derive moment estimates for the
conditional transition function in Sect. 3. We study the Holder continuity in spatial
and time variables of X;(x) in Sects. 4 and 5 respectively. The proof of Theorem 1.1
is concluded in Sect. 5.

Along the paper, we shall use the following notation: |-|| y denotes the norm on
Hilbert space H = L2 ([0, TD, |IIl (and -l ,) denotes the norm on L? (R) (and on
L? (R2)). The expectation on (€2, F, P) is denoted by E and the conditional expecta-
tion with respect to the process W is denoted by E5.

We denote by C a generic positive constant depending only on p, T, ||kl|,, and

el z2)-

2 Preliminaries

Fix a time interval [0, T']. Let (B;;t > 0) be a standard Brownian motion. Let S
denote the class of smooth random variables of the form F' = f(By,, ..., B;,), where
t,...,t €[0,T],n > 1,and f € C;’f (R™), the set of smooth functions f such that
f itself and all its partial derivatives have at most polynomial growth. Given F =
f(By, ..., B;)in S, its Malliavin derivative D F is the H—valued (H = L? ([0, T]))
random variable given by

n
of
DiF=Y" o (Bus s Bu) o ).
i=1

The derivative operator D is a closable and unbounded operator on L?($2) taking val-
ues in Lz(Q, H) . For any p > 1, we denote by D'? the closure of S with respect to
the norm ||-||; ,, given by:

IDFIY , = E(FIP) + E(IDF|p).
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Holder continuity for the solutions to a class of nonlinear SPDE’s 31

We denote by § the adjoint operator of D, which is unbounded from a domain in
L*(Q2, H) to L*>(Q). In particular, if u € Dom(§), then §(u) is characterized by the
following duality relation:

E(w)F) = E(DF,u)y) forany F € D2

The operator § is called the diver gence operator. The following two lemmas are from
[81, Propositions 1.5.4 and 2.1.1 and are used frequently in this paper.

Lemma 2.1 The divergence operator § is continuous from DVP(H) to L? (), for
any p > 1. That is, there exists a constant C), such that

18 Lr ) < Cp (1Eully + 1 Dull Lo, nem)- 2.1
Lemma 2.2 Let F be a random variable in the space D2, and suppose that i DDFF”2
H

belongs to the domain of the operator 8 in L? (Q2). Then the law of F has a continuous
and bounded density given by

W =E 108 2E
p - {F>x} ||DF||%_1 .

From Lemma 2.2 we can deduce estimates for the density.
Lemma 2.3 Let F be a random variable and let u € D4 (H) with ¢ > 1. Then for

the conjugate pair p and q (i.e. % + % = 1) and for all x € R,

|E [1{r=xd)]| < (P (F| = D)7 186Gl La () - 2.2

Proof If x > 0, we have E [1{p=y}] = P(F >x) < P(|F| > |x|). Then (2.2)
follows from Holder’s inequality. If x < 0, we have E [1{ F<x}] = P(F<x) <
P (|F| = |x|). From the definition of 8, we have E [(L{psx + L{r=x)) 8w)]| =
ES(u) = 0. Then, E [1{p>8(u)| = —E [1{p<8(u)]. Then (2.2) follows again
from Holder’s inequality.

3 Moment estimates
In this section, we derive moment estimates for the derivatives of & and the conditional

transition function p% (r, x; 1, y).
Recall that & = & with initial value & = x is given by

f=x+B +I'(h), 0<r<t<T, 3.1)
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32 Y. Hu et al.

where we introduced the notations
t
Bi=b - Bad f= [ [ho-g) W@y, 62
r R

Since h € H22 (R), by using the standard Picard iteration scheme, we can prove that
such a solution &, to the stochastic differential equation (3.1) exists, and by a regular-
ization argument of 4 we can prove that £ € D?? (here the Malliavin derivative is
with respect to B). Taking the Malliavin derivative Dy with respect to B, we have

t
Dot = 15 (0) | 1 = / / W (v — £0) Dot W (du, dy) | (33)
0 R
Note that

t
Mo, = / / W (y — £ W (du, dy)
0 R

is a martingale with quadratic variation (M)g ; = Hh’ H2 (t —0) fort > 6. Thus

1
Dg& = 11,4 (0) exp (Me,z 3 Hh’Hz (t— 9)) . (3.4)

As a result, we have

1 2
Dy Do& = 11,41 () exp (Me,z -3 (1 9)) Dy, My, = Dg&, - DyMp,;,

(3.5)
where Dy Mg, = 1. (1) [, [ i (v — &) Dyu W (du, dy).
The next lemma gives estimates for the moments of D& and D?&.
Lemma 3.1 Forany0 <r <t <T and p > 1, we have
2 1
[1D& 1], = exp (@p =D 0> ¢ =n) =7, (3.6)
D> <, |n” (4 —ynPa- )t— 3, (37
78] 00, = Colto (@D P e-n)e-ni. 67
and for any y > 0,
-2 2 _
EQD&N;) sexp (272 +7) WP e =n)a=n7. 38)
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Holder continuity for the solutions to a class of nonlinear SPDE’s 33

Proof Note that forany p > landr <0 < ¢,

1

) 1 12 P
I Do 13, = (E exp [2p (Me,z —s Il e- 9))})

2
=exp (Cp = D] ¢ - 0). (3.9)
Then (3.6) follows from Minkowski’s inequality and (3.9) since

p

t P t
2
lD&lal?, = | E /|D9€z|2d9 s/nD@sfu%pde.
r r

Applying the Burkholder-Davis-Gundy inequality we have forr <6 <n <1t
t p
2 2
| DyMo.|3, < Cp | E // |h" (v — &) Dyku|” dydu
n R

t
<C, ||h//||2/||13,,gu||§pdu. (3.10)
n

Combining (3.5), (3.9) and (3.10) yields forany r <6 <n <t

| Dy Dot |3, = | Do DyMo |15, < IDe&N3, | DyMos3,

< Cp |[n"] exp (2 Gp—ny|n|* @ - 9)) t—mn). (3.11)

An application of Minkowski’s inequality implies that

2 ot
H |, < / / | Dy Dot |3, dban.
2[7 r r

H®H
This yields (3.7).
For the negative moments of || D& ||y , by Jensen’s inequality we have

—y P

t
E(HD&HZM) =E /IDeézlzde < (t—r)_y_l/E|D9$,|‘2V do.
r

4
Then, (3.8) follows immediately. O

The moment estimates of the Malliavin derivatives of the difference & — & can
also be obtained in a similar way. The next lemma gives these estimates.
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34 Y. Hu et al.

Lemma3.2 For0 <s <t <Tand p > 1, we have
1
1D & = &dllul,, <C@—s92, (3.12)
and

H IEHCEES <C(—9)7. (3.13)

H®H ||,

Proof Similar to (3.3), we have

t
Dot = Doty + 1p5.(6) — / / I (v — £4) DokaW (du, dy)
ovs R
— Dyt + 145.1(0) — I} (W DyE). (3.14)

where henceforth for any process ¥ = (Y;,0 <t <T)and f € L%(R), we denote

t
I (fY) = l[s,z](G)//f(y — &) Yy W (du, dy).
o R

Applying the Burkholder-Davis-Gundy inequality with (3.9), we obtain fors <6 <1t

t p
I15 0Du) 13, = (E| [ [ 100~ &) Dot dudy
0 R
< [P exp (@p = D] ¢ ~0)) ¢ —0).  (315)

Then (3.12) follows from (3.14) and (3.15) since

! T P
(£108 ~ D3f)" = [ £ [ 1100) + 1 (Do) a0
0

T
1
< / (E 1.0 0) + 1 (h/Dgs,)|2”)" d6
0

t

<20—-9)+ 2/ (E115 (' Dog)[*")" ao

s

<2(1+ ||h/||2;xp (Cr=D WP -9))c-s.
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Holder continuity for the solutions to a class of nonlinear SPDE’s 35

For moments of D? (¢, — &), from (3.14) we have
D2y (& — &) = =Dyl (WDek) = I} (W Dg.Dy&) — I (h’DE,ﬁg.). (3.16)

In a similar way as above we can get (3.13). O

Next we derive some estimates for the density pW (r, x; t, y) of the conditional
transition probability defined in (1.8). Denote

L _ D&
t = .
I D& 1%,

(3.17)

The next two lemmas give estimates of the divergence of u; and u; — u;, which are
important to derive the moment estimates of p" (r, x; 1, y).

Lemma 3.3 Forany p > 1and0 <r <t < T, we have
1
16 uoll, <C@—r)y"2. (3.18)
Proof Using the estimate (2.1) we obtain
1 1
18 @oll, = (E16 wnl?)7 = [ £ (E 18 @l”)]”

P
o+ (E2 10w ) ])

< Cp (Maellall, + 1Dl e |, ).

S =

<6 e[

We have

Dzst Z(ngtsD§t®Dgl)H®H

A I D14,

U

3|10 | you
1 D& 113
1 such that 1 + % = % applying (3.7) and (3.8) we obtain (3.18):

and consequently || Du; || ggpn < . Hence, for any positive numbers «, f >

sanl, = ¢, ([10siy], +3]? [ty
18 @)l < p( D&y | +3|0% ], o (1060,

<c(p.|n|.|n"]. 1) ((t—r)—%+(z—r)%(t—r)—1).

)

This proves the lemma. O

Lemma34 Forp>1,and0<r <s <t <T,

18 (ur — ug)lap <C (Ut —9)3 (s—r) 2 (t—r)77 . (3.19)
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36 Y. Hu et al.

Proof Using (3.14) we can write

D DE&;
Uy —uUsg = étz - ss2 =_A1+A2_A3’
D&% I1D&s|I%
where
1 1 11.1(6) I} (W Dyk.
Ay = DE ). A= a4y = S (Do) 2).
D&Ml D&% D& Il D& |l
As a consequence, we have
3
18 Gty = u)llap < D NS A 2, - (3.20)
i=1

For simplicity we introduce the following notation

_ _ | n2 e S
Ve=ID&ly Ne= D%, =D @ -8 L i=12
Note that
D& — D&, D& + D§, _ “1y,—
Ay = UDE D8 DEEDEI _y (2 i)
1 D& 11 11 D& 1,
and

DSA‘(DSI - D%}, Dél + ng)
DA nen = |D
e H ( 1 D& I D& 1%, )

= YN (Vs_zvt_1 + Vs_lvt_2) +1 (Vs_lvt_l + Vt_z)

H®H

+Y1 (N + No) V7 v?
+2v, [NS (V;ZV;1 +v! V;z) + N, (V;3 + v, V;Z)] .

As a consequence, applying Lemma 2.1 and Holder’s inequality we get

18 (A0l = € (1A 12y + [1DA 5o,

< Cltilly | v[,,)

-1 -2
+C IY1llgp [INsllgp (‘ Vi Hsp ”VS Hsp + )

-1 -1 -2
by 17, + 17,)

v, +
4p

v

Sp’

v

v
N P

Sp‘

+C 21l (\
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Holder continuity for the solutions to a class of nonlinear SPDE’s 37

+C ¥1lsp (INsllsp + IN:ls,) Vi ng | Hg,,
+2C [IY1llgp INsllgp (H V’_1H8p ‘ VS_Z Hsp + H Vt_z Hsp ‘ Vs_l HSp)
+2C ¥ils, Vi1l (\ v, vl v ng) .
From Lemma 3.1 and Lemma 3.2 it follows that
18 (ADllap <C =92 (s—r) 3 —r)2. (3.21)
Note that | Aallyy = | {5052 | = ID& ;" (1 =) and

IDA2llnen = 210615 | D%

(t —5)? .
H®H
Then, by Lemma 2.1, Holder’s inequality and Lemma 3.1 we see that

18 (A2 < € (A2l g1l + 1D A2IL,)

sca—sﬂ(\

v, + o
2p

v H4p)

<2C (1 —s)? ((r 7y 1). (3.22)

4p‘

For the term A3, we apply Minkowski’s inequality and the Burkholder-Davis-Gundy
inequality and use (3.15). Thus for any p > 1,

1
t P\ 35
175 058 11, = | [ 1501 Dot a0

N

2

IA

t
Co ( [ 115 ()3, a0
S
=yl exp (@p =D [1]* ¢ =n) =97 (323)
From (3.16) it follows that

1DAslnen < D& — &)

-2
D
HoH D&l

2|1 (' De )| | P36

-3
D .
HeH D&
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38 Y. Hu et al.

Combining this with Lemma 2.1, Holder’s inequality, Lemma 3.2 and (3.23) we deduce

18(A3)ll2p < Cp (AN 1112 + 1D A3]L2,)

< Cp 1 Do) L by, [ V], + 072l [V,
+2C, |11 (WDo8) g, [ Vi, 1000,
<CU—-5)7(—r". (3.24)
Substituting (3.21), (3.22) and (3.24) into (3.20) yields (3.19). O

Now we provide the moment estimates for the conditional transition probability
density pW (r, x; ¢, v).

Lemma 3.5 Letc =1V ||h||2. Forany0<r <t <T,yeRandp > 1,

|
W PPY o —)°
(E‘P (r,x,t,y)‘ ) = ZCXP(—W)M (ullap - (3.25)

Proof By Lemma 2.2 we can write
pY (roxity) = EP (g8 () = EP (L pysy—x)d )], (3.26)
where B! and I/ (h) are defined in (3.2). Then, (2.2) implies

(e o) < (£[( (884 0] = 1= a0 (28 b))

1L
4p

2
< 18 ()l (E (PE(|BL+ 1 00| = 1y = x1)) ”)
(3.27)

Applying Chebyshev and Jensen’s inequalities, we have for p > 1,

B (1pt o 2 “2p =2\ | s (B pw) [T
E]P (|B,+1,(h>|z|y—xl)\ 56Xp(32pc(t—r))EE 32pe(t —r)
— G —y) (BE+ 1/ ()’
fp(ma_))’fpmg_) (3-28)

Using the fact that for 0 < v < 1/8 and Gaussian random variables X, Y,
EeU(X+Y)2 5 Ee2U(X2+Y2) S (Ee4vX2)%(Ee4uY2)% — (1 _ 81))_%
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Holder continuity for the solutions to a class of nonlinear SPDE’s 39

and noticing that B! and I (h) are Gaussian, we have

(B! + 1! () 1\"2

E ~r 7 <(1-—= < 2. 3.29
P et —r) - ( 2c) =2 (3:29)
Combining (3.27)-(3.29), we get (3.25). m]

4 Holder continuity in spatial variable

In this section, we obtain the Holder continuity of X,;(y) with respect to y. More
precisely, we show that for r > 0 fixed, X;(y) is almost surely Holder continuous
in y with any exponent in (0, 1/2). This result was proved in [4]. Here we provide
a different proof based on Malliavin calculus. We continue to use the notations Bﬁ,
I} (h) defined by (3.2) and u, defined by (3.17).

Proposition 4.1 Suppose that h € H;(R) and Xo = u € L*(R) is bounded. Then,
forany p > 1, € (0, 1) and T > 0, there exists a constant C depending only on «,
P, T, lIhlla o and |l 2wy such that for any t € (0, T1, y1, y2 € R,

E X/ (y) = X DI < CU+17P) |y2 = n1|*7 4.1

Moreover, the term t P can be replaced by ||i1||;. if we also assume that  is Holder
continuous with exponent A > %

Proof Suppose y; < y». We will use the convolution representation (1.9), where the
two terms X; 1 (y) and X, (y) will be estimated separately.
We start with X; > (y). Note that 1, >y} — L{g,>y,} = 1{y;<¢<y,) and

»
EBl{y1<s,5yz} =pP? v <& <y} = /pw (r,x;t,z)dz.

yi
Therefore by (3.26) and the Cauchy-Schwartz inequality we have
w w 2 B 2
PV sty = 0" x| = (BB (1220 @]
»2
<E° |5(u,)|z/,,w (r, x;1,2) dz.

y1
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40 Y. Hu et al.

Then, applying Jensen, Holder and Minkowski’s inequalities we have

22p—1)\ T
(E ‘PW (r,x;t,y1) — pV (rxs 1, yz)‘ )

1
v @p=D\ 2p-T

< | EEB |8 (u,)??r~D /pW(r,x;z,z)dz
V1
2
<118 ()2 [p" x| dz. 4.2)
- Hep=h " a@p-1)

V1

Lemma 3.3 and Lemma 3.5 yield

1
22p—1)\ 2p—1
X

/(E\pW roxit ) = p¥ (it 1)
R

y2 2
= C/ ”8(”””‘3‘@”‘”/“1’(32 (2p(—zl)j)(t —r))dde
R

1
<C@t-r""0—y. (4.3)

On the other hand, the left hand side of (4.3) can be estimated differently again by
using Lemma 3.5:

1
22p—D\ =T
/(E\pw(r,x;r,yn—pW(r,x;r,yz)\ ) dx
R
W 22p—1)\ =T
S2/2,'=1,2 (E’p (V,X;f,)’i)) ) dx
R
2 —(yi —x)? _1
< Cp Ei:l,Z ||(S (M[)||4(2p_1) exXp m dx < C (f — }") 2, (44)
R

Then (4.3) and (4.4) yield that forany ¢, 8 > O witha + 8 =1

1
202p—D)\ 25T
/(E‘pw rox;t,y) —pV (o x; t,yz)) ) dx
R

<C—r"2F (- ). (4.5)
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Holder continuity for the solutions to a class of nonlinear SPDE’s 41

Since p is bounded, it follows from [4, Lemma 4.1] that
2p

t
E //(PW (V,X;t,yz)—pw (r,x;s,yl))ZZ(drdx)

2p—1 2p’11

t
2
<C|E //(pW(r,x;t,yg)—pW(r,x;s,yl)) drdx , (4.6)

forany p > 1,0 <s <t < T and y1, y» € R. Then, applying Minkowski’s inequality
we obtain forany 0 < o < 1,

=

2
(E[Xi2 02) = Xi2 G0 [)
t 22p—1)\ T
1)\ 2p=1
s//(E\pw(r,x;r,yo—pW(r,x;r,yz)\ ’ ) dxdr
0 R

<c / (t =) (33 — y)%dr < C (2 — 1)" @)

since (¢t — r)_‘)‘_%/3 = (t — r)”"1+®/2 js integrable for all 0 < o < 1.
Now we consider X; 1(y) in (1.9). Applying Minkowski’s inequality and using
(4.2) with 2p — 1 replaced by p we get

1 2p
E[Xi1 02) = Xea o] = (/ (E\p(o xityn = p" x| ) M(X)dX>
R

» 172
<C /(/ pr(O,x;t,z)”2pdz> 16 ()l 1 () dx
R V1
p
2
//exp( @ x) )dzdx)

R i

2p

< C IS )3 1l (
2 _
< Cliulifh gy ™" 2= yn?.

Combining the above estimate with (4.7) we get (4.1).
If in addition to that u € L?(R), we assume u is Holder continuous, then

E X1 (y2) — X1 )|

2p
=E (EBu(yz — Bl — I} () — E® u(y1 — B] — I/ (h))
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2
< EE® |u(y2 — Bl — I} (h)) — u(y1 — B] — I} ()| "

< llullx G2 =y,
where in the first equality we used the fact that
p" (roxit,y) = EPSy(x + Bl + 1) = E®8,.(y — Bl — I]),

where §, is the Dirac function at x. Combining the above inequality with (4.7) we
complete the proof. O

5 Holder continuity in time variable

In this section we show that for any fixed y € R, X;(y) is Holder continuous in ¢ with
any exponent in (0, 1/4).

Proposition 5.1 Suppose that h € sz(R) and Xo = p € L*(R) is bounded. Then,
foranyp>1,yeRand0<s <t <T,

EIX, () =X, (WI¥ <Ct7P (1t —s)T7 7, (5.1)

where the constant C depends only on p, T, ||hll2 > and |||l 2r)- Moreover, if w is
also Holder continuous with exponent ). > %, then

1

E|X; () = X I < C 1+ llul) (¢t — )77 (5.2)

Suppose i € L%(R) is bounded. Recall that we write X, (y) = X1 )+ Xi20Q)
in (1.9). We start by estimating X. » (y). We write

X2 () = Xe2 () = / / (P" oxit) = p¥ (nxi5.3) Z (@rdx)
0 R

t
+//pW(r,x;t,y)Z(drdx). (5.3)
s R

We are going to estimate the two terms separately.
Lemma 5.2 Forany0 <s <t <T,y e Rand p > 1, we have

2p

E // (pW (roxit,y) — p¥ (r.xss, y)) Z (drdx) <C(-— S)g—i _
0 R

(5.4)
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Proof From (3.26), we have forO <r <s <t < T,

Y rxity) = pV (rxis.y) = EP (158 () — 1ig,= 098 (uy)]
= EP [(g=y) — Ligy=0)) 8 (o) + Ligy= 08 (0 — )],

Let ) = (1{§[>y} — 1{5.v>y}) 8 (u;) and I = 1(g;~ )6 (u; — uy). Then (4.6) implies

2p

N
E //(pW(r,x;t,y)—pW(r,x;s,y))Z(drdx)
0 R

2p—17 21

E j/(EB[11+12])2drdx

0 R

IA

P
2p—11]2p—1

c> |E /S/(EBIi)zdrdx . (5.5)
0 R

i=1,2

IA

First, we study the term /7. Note that

2
(Lg >y — Lgo>n) " = Ngy<y<e) + Lg<y<g) =2 A1 + A

Then we can write

S
E / / EBI}drdx
0 R

1
2p—11]2p-1

1
2p—11]2p=1

= |E //EB [(A] + A2) § (u))? drdx
L \0R
S 2p—1T T
<2 Z E //EB [A;8 (u)]? drdx ) (5.6)
i=1.2 0 R

Applying Minkowski, Jensen and Holder’s inequalities we deduce that fori = 1,2
and for any conjugate pair (pi, g1)
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1
2[77] 2p—1

N
E //EB [A;8 (u)]? drdx
0 R
s 2p—1 ﬁ
5/ E /Ai 18 (u)|? dx dr
0 R
€ 1
S Pl q1
5/ /Aidx (R/Ai 18 (u)?? dx dr
0 R 2p—1
1 1
s 71 q1
5/ /A,-dx /Al- |8 (u)|%9" dx dr. (5.7)
U S 20p—1) | \R 22p—1)

Notice that

& <y<&)={y—-B.—Il(h) <x <y— B — (W)},
G <y<é&y={y—B —IS(h) <x <y— B —I'(W)}.

Then, fori = 1, 2, we have

/Aidx = |BL+ 1L (h)|.
R

Hence for p; =1 — #,

/A,-dx <C(t—s)2 . (5.8)

202p—1)

On the other hand, we have

& <y<&y={B +1I')(h) <y—x < B+ I(h)}
c{lx =yl < [BL+ I}(W)| + |B} + I} ()]}

Similarly
& <y<&yc{lx—yl < |BL+ I ()| +|B + I ()]}
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Applying Chebyshev’s inequality and (3.29), we deduce that fori = 1, 2,

E(A) < EPP{|x —y| < |Bl + I!(W)| + | B + I} (W)}

—(x —y)? B+ 1”8+ L[
Sexp(—3zc(t_r))Eexp( 16¢(t — 1) + 16¢G — 1)
(x —y)?
< 2exp (——320 = r)). 5.9)

Using Minkowski and Holder’s inequalities, from (5.9) and Lemma 3.3 we obtain that
forqy =2p <2Q2p—1),

1 1

q1 a1
[ Asto P dx <[] o g 4
R 22p—1) R
ﬁ
< [ Ea T 1wl a
<ca-nu" (5.10)

Substituting (5.8) and (5.10) into (5.7) we obtain

1
2p—1 1 2p=1

S s
//EB [A;8 (u)]* drdx < C(t—s)%‘ﬁ/(t—r)%ﬁ‘ldr
0
1 1
<C(t—s)2 %, (5.11)
Combining (5.6) and (5.11), we have
1
s 2p—1"]2p—T1
//EBllzdrdx <C(t—s)2 . (5.12)

We turn into the term /. From Lemma 2.3 we can deduce as in Lemma 3.5 that

1
202p—D)\ 2p-1 —(x —y)?
<E (EBI2) ) < 26Xp(32 (Zp — I)C(S _r) ||8(M[ _My)”ﬁ(zp_l)
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Then applying Minkowski’s inequality and Lemma 3.4, we obtain

2p71 2]7 I

[ 1
//(EBlz)zdrdx //( 2(217—1)) 2p—1 rd
x—y? )
< 2//exp %) (zp D= JI8 W = udlag,—) dxdr

<C(t—s)/(s—r)2 (t—r)"'d r<C(t—s)7ﬁ, (5.13)

where in the last step we used that (f — Hl < @ — s)_%_s (s — r)_%+£ for any
e > 0.

Substituting (5.12) and (5.13) in (5.5) we obtain (5.4). O
Lemma 5.3 ForanyO0 <s <t <T andanyy € Rand p > 1, we have
t 2p
E //pW (r,x;t,y) Z(drdx)| <C(t— s)% . (5.14)

Proof Since u is bounded, it follows from [4, Lemma 4.1] that
2p p 2p—1 Zp%l

t
E //pW(r,x;t,y)ZZ(drdx) <C|E //pW(r,x;t,y)2drdx

for any p > 1 and y € R. Applying Minkowski’s inequality, Lemma 3.5 and
Lemma 3.3 we obtain

t
// ‘pW (r,x;t,y)‘zdrdx
s R
t 1
< C// (E ‘pW (ryx; t, y)‘zap_l)) v drdx
s R
! 2
< C//exp(—%)llé(ul)lli(zp_l)drdx
s R

gc/(z—r)%—ldrgca—s)%.

1
2p—17] 2p—1
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Then (5.14) follows immediately. O
In summary of the above two lemmas, we get

Proposition 5.4 Foranyp>1,0<s <t <T andy € R, we have
2p p_1
E|Xi2() = Xsa)| P =C—9)277. (5.15)

Now we consider X; 1 (). Note that
2p

E|Xi1 )= Xsa [ = E / (P" © 209 = p¥ O.z1.9)) n2dz

R
2p

=k / (EB [Lig> 18 ) = Lig> )8 (Ms)]) wu(z)dz
R

Then, similar to the proof for X. > (y) we get estimates for X. 1 (y).

Proposition 5.5 Suppose Xo = u € L*(R) is bounded. Then, for any p > 1, 0 <
s <t <Tandy e R, we have

E|Xi1(y) = X 0| <CtP(t—s)27. (5.16)

Proof Let I} = (1ig,>y) — 1{g,>y}) 8 (u;) and I = 1(g - )8 (u; — uy). Then,
2p
2
E|X1 ()= X" =E / n)EPL + hldx
R

Noticing that |1ig, >y} — Lig,=y}| = lig,<y<) + Lig <y<g,) =3 A1+ Az, and apply-
ing Fubini’s theorem, Jensen, Holder and Minkowski’s inequalities, we obtain

2p 2p
E|[uwrs inidx| = 3 E| [ neoE 143
R i=1,2 R
p p
< > El /m(x)a (un)l* dx /Aidx ]
i=1,2 R R
P 1
= 3 ([P s @i, ax) (£1s+ )
i=1,2 R

IA

2p — 1
C (14 1n12) Il =7 = 92
where in the last inequality we have applied (3.18) with r = 0.
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For the term I, using Minkowski’s inequality, (3.25) and (3.19) with r = 0 we
have

2p 2p

20\ %
P\ 2p
/ |u<x>|(E\EBl{spy}a(u,—us) ) dx
R

E //L(x)EB |I>| dx

R
2p
2 (x—y)?°
< Cliplls R 6 (ur — us)llap dx
cs
R
2p
< Cluld 7P @ —9)P.
Then we can conclude (5.16). O

Proof of Proposition 5.1 If u € L?(R) is bounded, then (5.1) follows from Proposi-
tion 5.4 and Proposition 5.5. Now assume that p is Holder continuous. Then the left
hand side of (5.16) can be estimated as follows

2 ‘ 2p
E[Xi1 ) = Xo1 O = E[EPu(y = By = 1) = EPu(y = By = 1)

2
< lull, EE® (1B + 1)

Combining the above estimate with (5.15) we obtain (5.2). O
Proof of Theorem 1.1 Tt follows from Proposition 4.1 and Proposition 5.1. O
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