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COMPARISON OF CONTINUOUS AND DISCRETE-TIME
DATA-BASED MODELING FOR HYPOELLIPTIC SYSTEMS

FEI LU, KEVIN K. LIN AND ALEXANDRE J. CHORIN

We compare two approaches to the predictive modeling of dynamical systems
from partial observations at discrete times. The first is continuous in time, where
one uses data to infer a model in the form of stochastic differential equations,
which are then discretized for numerical solution. The second is discrete in
time, where one directly infers a discrete-time model in the form of a nonlinear
autoregression moving average model. The comparison is performed in a special
case where the observations are known to have been obtained from a hypoelliptic
stochastic differential equation. We show that the discrete-time approach has
better predictive skills, especially when the data are relatively sparse in time. We
discuss open questions as well as the broader significance of the results.

1. Introduction

We examine the problem of inferring predictive stochastic models for a dynamical
system, given partial observations of the system at a discrete sequence of times.
This inference problem arises in applications ranging from molecular dynamics to
climate modeling (see, e.g., [10; 12] and references therein). The observations may
come from a stochastic or a deterministic chaotic system. This inference process,
often called stochastic parametrization, is useful both for reducing computational
cost by constructing effective lower-dimensional models, and for making prediction
possible when fully resolved measurements of initial data and/or a full model are
not available.

Typical approaches to stochastic parametrization start by identifying a continuous-
time model, usually in the form of stochastic differential equations (SDEs), then dis-
cretizing the resulting model to make predictions. One difficulty with this standard
approach is that it often leads to hypoelliptic systems [19; 22; 28], in which the noise
acts on a proper subset of state space directions. As we will explain, this degeneracy
can make parameter estimation for hypoelliptic systems particularly difficult [28;
33; 30], making the resulting model a poor predictor for the system at hand.
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Recent work [8; 21] has shown that fully discrete-time approaches to stochastic
parametrization, in which one considers a discrete-time parametric model and infers
its parameters from data, have certain advantages over continuous-time methods.
In this paper, we compare the standard, continuous-time approach with a fully
discrete-time approach, in a special case where the observations are known in
advance to have been produced by a hypoelliptic system whose form is known, and
only some parameters remain to be inferred. We hope that this comparison, in a
relatively simple and well-understood context, will clarify some of the advantages
and disadvantages of discrete-time modeling for dynamical systems. We note that
our discussion here leaves in abeyance the question of what to do in cases where
much less is known about the origin of the data; in general, there is no reason to
believe that a given set of observations was generated by any stochastic differential
equation or by a Markovian model of any kind.

A major difficulty in discrete modeling is the derivation of the structure, i.e., of
the terms in the discrete-time model. We show that when the form of the differential
equation giving rise to the data is known, one can deduce possible terms for the
discrete model, but not necessarily the associated coefficients, from numerical
schemes. Note that the use of this idea places the discrete and continuous models
we compare on an equal footing, in that both approaches produce models directly
derived from the assumed form of the model.

Model and goals. The specific hypoelliptic stochastic differential equations we
work with have the form

dxt = yt dt,

dyt = (�� yt � V 0(xt)) dt + � d Bt ,
(1-1)

where Bt is a standard Wiener process. When the potential V is quadratic, i.e.,

V (x) = ↵

2
x2, ↵ > 0,

we get a linear Langevin equation. When the potential has the form

V (x) = �

4
x4 � ↵

2
x2, ↵,� > 0,

this is the Kramers oscillator [20; 31; 3; 15]. It describes the motion of a particle
in a double-well potential driven by white noise, with xt and yt being the position
and the velocity of the particle; � > 0 is a damping constant. The white noise
represents the thermal fluctuations of a surrounding “heat bath”, the temperature
of which is connected to � and � via the Einstein relation T = � 2/(2� ). This
system is ergodic, with stationary density p(x, y) / exp(�(2� /� 2)(1

2 y2 + V (x))).
It has multiple time scales and can be highly nonlinear, but is simple enough to
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permit detailed numerical study. Parameter estimation for this system is also rather
well-studied [28; 30]. These properties make (1-1) a natural example for this paper.

One of our goals is to construct a model that can make short-time forecasts of
the evolution of the variable x based on past observations {xnh}N

n=1, where h > 0
is the observation spacing, in the situation where the parameters � , ↵, �, and �
are unknown. (The variable y is not observed; hence, even when the parameters
are known, the initial value of y is missing when one tries to solve the SDEs to
make predictions.) We also require that the constructed model be able to reproduce
long-term statistics of the data, e.g., marginals of the stationary distribution. In
part, this is because the form of the model (either continuous or discrete-time)
is generally unknown, and reproduction of long-term statistics provides a useful
criterion for selecting a particular model. But even more important, in order for a
model to be useful for tasks like data assimilation and uncertainty quantification,
it must faithfully capture relevant statistics on time scales ranging from the short
term (on which trajectorywise forecasting is possible) to longer time scales.

Our main finding is that the discrete-time approach makes predictions as reliably
as the true system that gave rise to the data (which is of course unknown in general),
even for relatively large observation spacings, while a continuous-time approach is
only accurate when the observation spacing h is small, even in very low-dimensional
examples such as ours.
Paper organization. We briefly review some basic facts about hypoelliptic systems
in Section 2, including the parameter estimation technique we use to implement
the continuous-time approach. In Section 3, we discuss the discrete-time approach.
Section 4 presents numerical results, and in Section 5 we summarize our findings
and discuss broader implications of our results. For the convenience of the reader,
we collect a number of standard results about SDEs and their numerical solutions
in the appendices.

2. Brief review of the continuous-time approach

2A. Inference for partially observed hypoelliptic systems. Consider a stochastic
differential equation of the form

d X = f (X, Y ) dt,

dY = a(X, Y ) dt + b(X, Y ) dWt .
(2-1)

Observe that only the Y equation is stochastically forced. Because of this, the
second-order operator in the Fokker–Planck equation
@

@t
p(x, y, t) = � @

@x
[ f (x, y)p(x, y, t)] � @

@y
[a(x, y)p(x, y, t)]

+ 1
2
@2

@y2 [b2(x, y)p(x, y, t)] (2-2)
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for the time evolution of probability densities is not elliptic. This means that without
any further assumptions on (2-1), the solutions of the Fokker–Planck equation, and
hence the transition probability associated with the SDE, might be singular in
the X direction. Hypoellipticity is a condition that guarantees the existence of
smooth solutions for (2-2) despite this degeneracy. Roughly speaking, a system is
hypoelliptic if the drift terms (i.e., the vector fields f (x, y) and a(x, y)) help to
spread the noise to all phase space directions, so that the system has a nondegenerate
transition density. Technically, hypoellipticity requires certain conditions involving
the Lie brackets of drift and diffusion fields, known as Hörmander’s conditions [26];
when these conditions are satisfied, the system can be shown to possess smooth
transition densities.

Our interest is in systems for which only discrete observations of x are available,
and we use these observations to estimate the parameters in the functions f , a,
and b. While parameter estimation for completely observed nondegenerate systems
has been widely investigated (see e.g., [29; 33]), and there has been recent progress
toward parameter estimation for partially observed nondegenerate systems [16],
parameter estimation from discrete partial observations for hypoelliptic systems
remains challenging.

There are three main categories of methods for parameter estimation (see, e.g.,
the surveys [32; 33]):

• Likelihood-type methods, where the likelihood is analytically or numerically
approximated, or a likelihood-type function is constructed based on approxi-
mate equations. These methods lead to maximum likelihood estimators (MLE).

• Bayesian methods, in which one combines a prior with a likelihood, and one
uses the posterior mean as estimator. Bayesian methods are important when
the likelihood has multiple maxima. However, suitable priors may not always
be available.

• Estimating function methods, or generalized moments methods, where estima-
tors are found by estimating functions of parameters and observations. These
methods generalize likelihood-type methods, and are useful when transition
densities (and hence likelihoods) are difficult to compute. Estimating functions
can be constructed using associated martingales or moments.

Because projections of Markov processes are typically not Markov, and the system is
hypoelliptic, all three of the above approaches face difficulties for systems like (1-1):
the likelihood function is difficult to compute either analytically or numerically,
because only partial observations are available, and likelihood-type functions based
on approximate equations often lead to biased estimators [11; 28; 30]. There are
also no easily calculated martingales on which to base estimating functions [9].
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There are two special cases that have been well-studied. When the system is
linear, the observed process is a continuous-time autoregression process. Parameter
estimation for this case is well-understood; see, e.g., the review papers [4; 7]. When
the observations constitute an integrated diffusion (that is, f (x, y) = y and the
Y equation is autonomous, so that X is an integral of the diffusion process Y ),
consistent, asymptotically normal estimators are constructed in [9] using prediction-
based estimating functions, and in [11] using a likelihood-type method based
on Euler approximation. However, these approaches rely on the system being
linear or the unobserved process being autonomous, and are not adapted to general
hypoelliptic systems.

To our knowledge, for general hypoelliptic systems with discrete partial ob-
servation, only Bayesian-type methods [28] and a likelihood-type method [30]
have been proposed when f (x, y) is such that (2-1) can be written in the form of
(1-1) by a change of variables. In [28] Euler and Itô–Taylor approximations are
combined in a deterministic scan Gibbs sampler alternating between parameters
and missing data in the unobserved variables. The reason for combining Euler
and Itô–Taylor approximation is that Euler approximation leads to underestimated
MLE of diffusion but is effective for drift estimation, whereas Itô–Taylor expansion
leads to unbiased MLE of diffusion but is inappropriate for drift estimation. In [30]
explicit consistent maximum likelihood-type estimators are constructed. However,
all these methods require the observation spacing h to be small and the number of
observations N to be large. For example, the estimators in [30] are only guaranteed
to converge if, as N ! 1, h ! 0 in such a way that Nh2 ! 0 and Nh ! 1. In
practice, the observation spacing h > 0 is fixed, and large biases have been observed
when h is not sufficiently small [28; 30]. We show in this paper that the bias can be
so large that the prediction from the estimated system may be unreliable.

2B. Continuous-time stochastic parametrization. The continuous-time approach
starts by proposing a parametric hypoelliptic system and estimating parameters
in the system from discrete partial observations. In the present paper, the form
of the hypoelliptic system is assumed to be known. Based on the Euler scheme
approximation of the second equation in the system, Samson and Thieullen [30]
constructed the likelihood-type function, or “contrast”,

L N (✓) =
N�3X

n=1

3
2

[ŷ(n+2)h � ŷ(n+1)h + h(� ŷnh + V 0(xnh))]2

h� 2 + (N � 3) log � 2,

where ✓ = (� ,�,↵, � 2) and

ŷn = x(n+1)h � xnh

h
. (2-3)
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Note that a shift in time in the drift term, i.e., the time index of � ŷnh +V 0(xnh) is nh
instead of (n+1)h, is introduced to avoid a

p
h correlation between ŷ(n+2)h� ŷ(n+1)h

and � ŷ(n+1)h + V 0(x(n+1)h). Note also that there is a weighting factor 3
2 in the

sum, because the maximum likelihood estimator based on Euler approximation
underestimates the variance (see, e.g., [11; 28]).

The estimator is the minimizer of the contrast:

✓̂N = arg min
✓

L N (✓). (2-4)

The estimator ✓̂N converges to the true parameter value ✓ = (� ,�,↵, � 2) under the
condition that h ! 0, Nh ! 1, and Nh2 ! 0. However, if h is not small enough,
the estimator ✓̂N can have a large bias (see [30] and the later sections), and the bias
can be so large that the estimated system may have dynamics very different from
the true system, and its prediction becomes unreliable.

Remark 2.1. In the case V 0(x) = ↵x , the Langevin system (1-1) is linear. The
process {xt : t � 0} is a continuous-time autoregressive process of order 2, and there
are various ways to estimate the parameters (see the review [5]), e.g., the likelihood
method using a state-space representation and a Kalman filter [17], or methods for
fitting discrete-time autoregression moving average (ARMA) models [27]. However,
none of these approaches can be extended to nonlinear Langevin systems. In this
section we focus on methods that work for nonlinear systems.

Once the parameters have been estimated, one numerically solves the estimated
system to make predictions. In this paper, to make predictions for time t > Nh
(where N is the number of observations), we use the initial condition (xNh, ŷN )

in solving the estimated system, with ŷN being an estimate of yNh based on ob-
servations x . Since the system is stochastic, we use an “ensemble forecasting”
method to make predictions. We start a number of trajectories from the same initial
condition, and evolve each member of this ensemble independently. The ensemble
characterizes the possible motions of the particle conditional on past observations,
and the ensemble mean provides a specific prediction. For the purpose of short-term
prediction, the estimated system can be solved with small time steps; hence, a low
order scheme such as the Euler scheme may be used.

However, in many practical applications, the true system is unknown [8; 21],
and one has to validate the continuous-time model by its ability to reproduce the
long-term statistics of data. For this purpose, one has to compute the ergodic limits
of the estimated system. The Euler scheme may be numerically unstable when the
system is not globally Lipschitz, and a better scheme such as implicit Euler (see,
e.g., [23; 34; 24]) or the quasisymplectic integrator [25] is needed. In our study,
the Euler scheme is numerically unstable, while the Itô–Taylor scheme of strong
order 2.0 (Scheme C.2) produces long-term statistics close to those produced by the
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implicit Euler scheme. We use the Itô–Taylor scheme, since it has the advantage of
being explicit and was used in [28].

In summary, the continuous-time approach uses the following algorithm to
generate a forecasting ensemble of trajectories.

Algorithm 2.2 (continuous-time approach). With data {xnh}N
n=1,

Step 1. estimate the parameters using (2-4),

Step 2. select a numerical scheme for the SDE, e.g., the Itô–Taylor scheme in the
appendix, and

Step 3. solve the SDE (1-1) with estimated parameters, using small time steps dt and
initial data (xNh, (xNh � xNh�h)/h), to generate the forecasting ensemble.

3. The discrete-time approach

3A. NARMA representation. In the discrete-time approach, the goal is to infer
a discrete-time predictive model for x from the data. Following [8], we choose
a discrete-time system in the form of a nonlinear autoregression moving average
(NARMA) model of the form

Xn =8n + ⇠n, (3-1)

8n := µ +
pX

j=1

a j Xn� j +
rX

k=1

bk Qk(Xn�p:n�1, ⇠n�q:n�1) +
qX

j=1

c j⇠n� j , (3-2)

where p is the order of the autoregression, q is the order of the moving average,
and the Qk are given nonlinear functions (see below) of (Xn�p:n�1, ⇠n�q:n�1). Here
{⇠n} is a sequence of i.i.d. Gaussian random variables with mean 0 and variance c2

0
(denoted by 1(0, c2

0)). The numbers p, q, and r as well as the coefficients a j , b j ,
and c j are to be determined from data.

A main challenge in designing NARMA models is the choice of the functions Qk ,
a process we call “structure selection” or “structure derivation”. Good structure
design leads to models that fit data well and have good predictive capabilities.
Using too many unnecessary terms, on the other hand, can lead to overfitting or
inefficiency, while too few terms can lead to an ineffective model. As before, we
assume that a parametric family containing the true model is known, and we show
that suitable structures for NARMA can be derived from numerical schemes for
solving SDEs. We propose the following practical criteria for structure selection:
the model should be numerically stable, we select the model that makes the best
predictions (in practice, the predictions can be tested using the given data), and the
large-time statistics of the model should agree with those of the data. These criteria
are not sufficient to uniquely specify a viable model, and we shall return to this
issue when we discuss the numerical experiments.
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Once the Qk have been chosen, the coefficients (a j , b j , c j ) are estimated from
data using the following conditional likelihood method. Conditional on ⇠1, . . . , ⇠m ,
the log-likelihood of {Xn = xnh}N

n=m+1 is

L N (# | ⇠1, . . . , ⇠m) =
NX

n=m+1

(Xn �8n)
2

2c2
0

+ N � q
2

log c2
0, (3-3)

where m = max{p, q} and # = (a j , b j , c j , c2
0), and 8n is defined in (3-2). The log-

likelihood is computed as follows. Conditionally on given values of {⇠1, . . . , ⇠m},
one can compute 8m+1 from data {Xn = xnh}m

n=1 using (3-2). With the value
of ⇠m+1 following from (3-1), one can then compute8m+2. Repeating this recursive
procedure, one obtains the values of {8n}N

n=m+1 that are needed to evaluate the
log-likelihood. The estimator of the parameter # = (a j , b j , c j , c2

0) is the minimizer
of the log-likelihood

#̂N = arg min
#

L N (# | ⇠1, . . . , ⇠m).

If the system is ergodic, the conditional maximum likelihood estimator #̂N can be
proved to be consistent (see, e.g., [1; 13]), which means that it converges almost
surely to the true parameter value as N ! 1. Note that the estimator requires the
values of ⇠1, . . . , ⇠m , which are in general not available. But ergodicity implies
that if N is large, #̂N forgets about the values of ⇠1, . . . , ⇠m quickly anyway, and in
practice, we can simply set ⇠1 = · · · = ⇠m = 0. Also, in practice, we initialize the
optimization with c1 = · · · = cq = 0 and with the values of (a j , b j ) computed by
least squares.

Note that in the case q = 0, the estimator is the same as the nonlinear least-
squares estimator. The noise sequence {⇠n} does not have to be Gaussian for the
conditional likelihood method to work, so long as the expression in (3-3) is adjusted
accordingly.

In summary, the discrete-time approach uses the following algorithm to a generate
a forecasting ensemble.

Algorithm 3.1 (discrete-time approach). With data {xnh}N
n=1,

Step 1. find possible structures for NARMA,

Step 2. estimate the parameters in NARMA for each possible structure,

Step 3. select the structure that fits the data best, in the sense that it reproduces best
the long-term statistics and makes the best predictions, and

Step 4. use the resulting model to generate a forecasting ensemble.
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3B. Structure derivation for the linear Langevin equation. The main difficulty
in the discrete-time approach is the derivation of the structure of the NARMA model.
In this section we discuss how to derive this structure from the SDEs, first in the
linear case.

For the linear Langevin equation, the discrete-time system should be linear.
Hence, we set r = 0 in (3-1) and obtain an ARMA(p, q) model. The linear
Langevin equation

dx = y dt,

dy = (�� y �↵x) dt + � d Bt
(3-4)

can be solved analytically. The solution xt at discrete times satisfies

x(n+2)h = a1x(n+1)h + a2xnh � a22Wn+1,1 + Wn+2,1 + a12Wn+1,2 (3-5)

(see Appendix A), where {Wn,i } are defined in (A-1), and

a1 = trace(eAh), a2 = �e�� h, ai j = (eAh)i j for A =
✓

0 1
�↵ ��

◆
. (3-6)

The process {xnh} defined in (3-5) is, strictly speaking, not an ARMA process
(see Appendix B for all relevant, standard definitions used in this section), because
{Wn,1}1n=1 and {Wn,2}1n=1 are not linearly dependent and would require at least two
independent noise sequences to represent, while an ARMA process requires only
one. However, as the following proposition shows, there is an ARMA process with
the same distribution as the process {xnh}. Since the minimum mean-square-error
state predictor of a stationary Gaussian process depends only on its autocovariance
function (see, e.g., [6, Chapter 5]), an ARMA process equal in distribution to the
discrete-time Langevin equation is what we need here.

Proposition 3.2. The ARMA(2, 1) process

Xn+2 = a1 Xn+1 + a2 Xn + Wn + ✓1Wn�1, (3-7)

where a1 and a2 are given in (3-6) and the {Wn} are i.i.d. 1(0, � 2
W ), is the unique

process in the family of invertible ARMA processes that has the same distribution as
the process {xnh}. Here � 2

W and ✓1 (✓1 < 1 so that the process is invertible) satisfy
the equations

� 2
W (1 + ✓2

1 + ✓1a1) = �0 � �1a1 � �2a2,

� 2
W ✓1 = �1(1 � a2) � �0a1,

where {� j }2
j=0 are the autocovariances of the process {xnh} and are given in

Lemma A.1.

Proof. Since the stationary process {xnh} is a centered Gaussian process, we
only need to find an ARMA(p, q) process with the same autocovariance function
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as {xnh}. The autocovariance function of {xnh}, denoted by {�n}1n=0, is given by
(see Lemma A.1)

�n = �0 ⇥
8
<

:

1
�1 � �2

(�1e�2nh � �2e�1nh) if � 2 � 4↵ 6= 0,

e�0nh(1 � �0nh) if � 2 � 4↵ = 0,

where (�1, �2) or �0 are the roots of the characteristic polynomial �2 +� �+↵ = 0
of the matrix A in (3-6).

On the other hand, the autocovariance function of an ARMA(p, q) process

Xn ��1 Xn�1 � · · · ��p Xn�p = Wn + ✓1Wn�1 + · · · + ✓q Wn�q ,

denoted by {� (n)}1n=0, is given by (see (B-4))

� (n) =
kX

i=1

ri �1X

j=0

�i j n j⇣�n
i for n � max{p, q + 1} � p,

where {⇣i : i = 1, . . . , k} are the distinct zeros of �(z) := 1��1z � · · ·��pz p, and
ri is the multiplicity of ⇣i (hence

Pk
i=1 ri = p), and {�i j } are constants.

Since {�n}1n=0 only provides two possible roots, ⇣i = e��i h or ⇣i = e��0h for
i = 1, 2, the order must be p = 2. From these two roots, one can compute the
coefficients �1 and �2 in the ARMA(2, q) process:

�1 = ⇣�1
1 + ⇣�1

2 = trace(eAh) = a1, �2 = �⇣�1
1 ⇣�1

2 = �e�� h = a2.

Since �k��1�k�1��2�k�2 =0 for any k �2, we have q 1. As �1��1�0��2�1 6=0,
Example B.2 indicates that q 6= 0. Hence, q = 1 and the above ARMA(2, 1) is the
unique process in the family of invertible ARMA(p, q) processes that has the same
distribution as {xnh}. The equations for � 2

W and ✓1 follow from Example B.3. ⇤
This proposition indicates that the discrete-time system for the linear Langevin

system should be an ARMA(2, 1) model.

Example 3.3. Suppose1 := � 2 �4↵< 0. Then the parameters in the ARMA(2, 1)

process (3-7) are given by a1 = 2e�(� /2)h cos(1
2
p�1h) and a2 = �e�� h and

✓1 = c � a1 � p
(c � a1)2 � 4
2

, � 2
w = �1(1 � a2) � �0a1

✓1
,

where c = �0��1a1��2a2
�1(1�a2)��0a1

and �n = � 2

2�↵

✓
cos

p�1nh
2

+ �p�1 sin
p�1nh

2

◆
for

n � 0.

Remark 3.4. The maximum likelihood estimators of ARMA parameters can also be
computed using a state-space representation and a Kalman recursion (see, e.g., [6]).
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This approach is essentially the same as the conditional likelihood method in our
discrete-time approach.

Remark 3.5. The proposition indicates that the parameters in the linear Langevin
equation can also be computed from the ARMA(2, 1) estimators, because from the
proof we have � = � ln(�a2)/h = ��1 � �2, ↵ = �1�2, and � 2 = 2�↵� 2

W , where
{�i : i = 1, 2} satisfy that {e��i h : i = 1, 2} are the two roots of �(z) = 1�a1z �a2z.

3C. Structure derivation for the Kramers oscillator. For nonlinear Langevin sys-
tems, in general there is no analytical solution, so the approach of Section 3B cannot
be used. Instead, we derive structures from the numerical schemes for solving
stochastic differential equations. For simplicity, we choose to focus on explicit
terms in a discrete-time system, so implicit schemes (in, e.g., [23; 34; 25]) are
not suitable. Here we focus on deriving structures from two explicit schemes: the
Euler–Maruyama scheme and the Itô–Taylor scheme of order 2.0; see Appendix C
for a brief review of these schemes. As mentioned before, we expect our approach
to extend to other explicit schemes, e.g., that of [2]. While we consider specifically
(1-1), the method used in this section extends to situations when f (x, y) is such
that (2-1) can be rewritten in form (1-1) and its higher-dimensional analogs by a
change of variables.

To warm up, we begin with the Euler–Maruyama scheme. Applying Scheme C.1
to the system (1-1), we find

xn+1 = xn + ynh,

yn+1 = yn(1 � � h) � hV 0(xn) + Wn+1,

where Wn = �h1/2⇣n , with {⇣n} an i.i.d. sequence of 1(0, 1) random variables.
Straightforward substitutions yield a closed system for x

xn = (2 � � h)xn�1 � (1 � � h)xn�2 � h2V 0(xn�2) + hWn�1.

Since V 0(x) = �x3 �↵x , this leads to the following possible structure for NARMA:

Model (M1). Xn = a1 Xn�1 + a2 Xn�2 + b1 X3
n�2 + ⇠n +

qX

j=1

c j⇠n� j + µ.

Next, we derive a structure from the Itô–Taylor scheme of order 2.0. Applying
Scheme C.2 to the system (1-1), we find

xn+1 = xn + h(1 � 0.5� h)yn � 0.5h2V 0(xn) + Zn+1,

yn+1 = yn[1 � � h + 0.5� 2h2 � 0.5h2V 00(xn)]
� h(1 � 0.5� h)V 0(xn) + Wn+1 � � Zn+1,
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where Zn = �h3/2(⇣n + ⌘n/
p

3), with {⌘n} being an i.i.d. 1(0, 1) sequence inde-
pendent of {⇣n}. Straightforward substitutions yield a closed system for x :

xn = xn�1[2 � � h + 0.5� 2h2 � h2V 00(xn�2)] � 0.5h2V 0(xn�1) + Zn

+ [1 � � h + 0.5� 2h2 � 0.5h2V 00(xn�2)](�xn�2 + 0.5h2V 0(xn�2) � Zn�1)

� h2(1 � 0.5� h)2V 0(xn�2) + h(1 � 0.5� h)(Wn�1 � � Zn�1).

Note that Wn is of order h1/2 and Zn is of order h3/2. Writing the terms in descending
order, we obtain

xn = (2 � � h + 0.5� 2h2)xn�1 � (1 � � h + 0.5� 2h2)xn�2 + Zn � Zn�1

+ h(1 � 0.5� h)Wn�1 � 0.5h2V 0(xn�1) + 0.5h2V 00(xn�2)(xn�1 � xn�2)

+ 0.5� h3V 0(xn�2) + 0.5h2V 00(xn�2)Zn�1 � 0.5h4V 00(xn�2)V 0(xn�2). (3-8)

This equation suggests that p = 2 and q = 0 or 1. The noise term Zn � Zn�1 +
h(1 � 0.5� h)Wn�1 is of order h1.5, and involves two independent noise sequences
{⇣n} and {⌘n}; hence, the above equation for xn is not a NARMA model. However,
it suggests possible structures for NARMA models. In comparison to Model (M1),
the above equation has different nonlinear terms of order h2: h2V 0(xn�1) and
h2V 00(xn�2)(xn�1 � xn�2); and has additional nonlinear terms of orders 3 and
larger: h3V 0(xn�2), h2 Zn�1V 00(xn�2), and h4V 00(xn�2)V 0(xn�2). It is not clear
which terms should be used, and one may be tempted to include as many terms
as possible. However, this can lead to overfitting. Hence, we consider different
structures by successively adding more and more terms, and select the one that
fits data the best. Using the fact that V 0(x) = �x3 � ↵x , these terms lead to the
following possible structures for NARMA (for the reader’s convenience, we have
underlined all higher-order terms derived from V 0(x)).
Model (M2). Xn = a1 Xn�1 + a2 Xn�2 + b1 X3

n�1

+ b2 X2
n�2(Xn�1 � Xn�2) + ⇠n +

qX

j=1

c j⇠n� j + µ,

where b1 and b2 are of order h2, and q � 0.
Model (M3). Xn = a1 Xn�1 + a2 Xn�2 + b1 X3

n�1

+ b2 X2
n�2(Xn�1 � Xn�2) + b3 X3

n�2 + ⇠n +
qX

j=1

c j⇠n� j + µ,

where b3 is of order h3, and q � 0.
Model (M4). Xn = a1 Xn�1 + a2 Xn�2 + b1 X3

n�1 + b2 X2
n�2 Xn�1

+ b3 X3
n�2 + b4 X5

n�2 + b5 X2
n�2⇠n�1 + ⇠n +

qX

j=1

c j⇠n� j + µ,

where b4 is of order h4, and b5 is of order h3.5, and q � 1.
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From Models (M2)–(M4), the number of nonlinear terms increases as their order
increases in the numerical scheme. Following [8; 21], we only use the form of the
terms derived from numerical analysis, and not their coefficients; we estimate new
coefficients from data.

4. Numerical study

We test the continuous and discrete-time approaches for data sets with different
observation intervals h. The data are generated by solving the general Langevin
equation (1-1) using a second-order Itô–Taylor scheme, with a small step size
dt = 1

1024 , and making observations with time intervals h = 1
32 , 1

16 , and 1
8 ; the

value of time step dt in the integration has been chosen to be sufficiently small
to guarantee reasonable accuracy. For each one of the data sets, we estimate the
parameters in the SDE and in the NARMA models. We then compare the estimated
SDE and the NARMA model by their ability to reproduce long-term statistics and
to perform short-term prediction.

4A. The linear Langevin equation. We first discuss numerical results in the lin-
ear case. Both approaches start by computing the estimators. The estimator
✓̂ = (�̂ , ↵̂, �̂ ) of the parameters (� ,↵, � ) of the linear Langevin equation (3-4) is
given by

✓̂ = arg min
✓=(� ,↵,� )

 N�3X

n=1

3
2

[ŷn+2 � ŷn+1 + h(� ŷn +↵xn)]2

h� 2 + (N � 3) log � 2
�
, (4-1)

where ŷn is computed from data using (2-3).
Following (3-7), we use the ARMA(2, 1) model in the discrete-time approach:

Xn+2 = a1 Xn+1 + a2 Xn + Wn + ✓1Wn�1.

We estimate the parameters a1, a2, ✓1, and � 2
W from data using the conditional

likelihood method of Section 3A.
First, we investigate the reliability of the estimators. One hundred simulated

data sets are generated from (3-4) with true parameters � = 0.5, ↵ = 4, and � = 1,
and with initial condition x0 = y0 = 1

2 and time interval [0, 104]. The estimators, of
(� ,↵, � ) in the linear Langevin equation and of (a1, a2, ✓1, �W ) in the ARMA(2, 1)

model, are computed for each data set. Empirical mean and standard deviation of
the estimators are reported in Table 1 for the continuous-time approach, and Table 2
for the discrete-time approach. In the continuous-time approach, the biases of the
estimators grow as h increases. In particular, large biases occur for the estimators of
� : the bias of �̂ increases from 0.2313 when h = 1

32 to 0.4879 when h = 1
8 , while

the true value is � = 0.5; similarly large biases were also noticed in [30]. In contrast,
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Estimator True value h = 1
32 h = 1

16 h = 1
8

�̂ 0.5 0.7313 (0.0106) 0.9538 (0.0104) 1.3493 (0.0098)
↵̂ 4 3.8917 (0.0193) 3.7540 (0.0187) 3.3984 (0.0172)
�̂ 1 0.9879 (0.0014) 0.9729 (0.0019) 0.9411 (0.0023)

Table 1. Mean and standard deviation of the estimators of the parameters (� ,↵, � ) of the
linear Langevin equation in the continuous-time approach, computed on 100 simulations.

Estimator h = 1
32 h = 1

16 h = 1
8

â1
1.9806 1.9539 1.8791
1.9807 (0.0003) 1.9541 (0.0007) 1.8796 (0.0014)

�â2
0.9845 0.9692 0.9394
0.9846 (0.0003) 0.9695 (0.0007) 0.9399 (0.0014)

✓̂1
0.2681 0.2684 0.2698
0.2667 (0.0017) 0.2680 (0.0025) 0.2700 (0.0037)

�̂W
0.0043 0.0121 0.0336
0.0043 (0.0000) 0.0121 (0.0000) 0.0336 (0.0001)

Table 2. Mean and (in parentheses) standard deviation of the estimators of the parameters
(a1, a2, ✓1, �W ) of the ARMA(2, 1) model in the discrete-time approach, computed on
100 simulations. The theoretical values (listed above the mean values) are computed from
Proposition 3.2.

the biases are much smaller for the discrete-time approach. The “theoretical values”
of a1, a2, ✓1, and � 2

W are computed analytically as in Example 3.3. Table 2 shows
that the estimators in the discrete-time approach have negligible differences from
the theoretical values.

In practice, the above test of the reliability of estimators cannot be performed,
because one has only a single data set and the true system that generated the data is
unknown.

We now compare the two approaches in a practical setting, by assuming that we
are only given a single data set from discrete observations of a long trajectory on
time interval [0, T ] with T = 217 ⇡ 1.31 ⇥ 105. We estimate the parameters in the
SDE and the ARMA model, and again investigate the performance of the estimated
SDE and ARMA model in reproducing long-term statistics and in predicting the
short-term evolution of x . The long-term statistics are computed by time-averaging.
The first half of the data set is used to compute the estimators, and the second half
of the data set is used to test the prediction.

The long-term statistics, i.e., the empirical probability density function (PDF)
and the autocorrelation function (ACF), are shown in Figure 1. For all three values
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Figure 1. Empirical PDF and ACF of the ARMA(2, 1) models (blue dashed line) and the
estimated linear Langevin system (black dotted line), in the cases h = 1

32 (left), h = 1
16

(center), and h = 1
8 (right). The ARMA models reproduce the PDF and ACF almost

perfectly (red solid line), much better than the estimated SDEs.

of h, the ARMA models reproduce the empirical PDF and ACF almost perfectly.
The estimated SDEs miss the spread of the PDF and the amplitude of oscillation in
the ACF, and these error become larger as h increases.

Next, we use an ensemble of trajectories to predict the motion of x . For each
ensemble, we calculate the mean trajectory and compare it with the true trajec-
tory from the data. We measure the performance of the prediction by computing
the root-mean-square error (RMSE) of a large number of ensembles as follows:
take N0 short pieces of data from the second half of the long trajectory, denoted
by {(x(ni +1)h, . . . , x(ni +K )h)}N0

i=1, where ni = K i . For each short piece of data
(x(ni +1)h, . . . , x(ni +K )h), we generate Nens trajectories {(Xi, j

1 , . . . , Xi, j
K )}Nens

j=1 using
a prediction system (i.e., NARMA(p, q), the estimated Langevin system, or the
true Langevin system), starting all ensemble members from the same several-
step initial condition (x(ni +1)h, . . . , x(ni +m)h), where m = 2 max{p, q} + 1. For
NARMA(p, q) we start with ⇠1 = · · · = ⇠q = 0. For the estimated Langevin system
and the true Langevin system, we start with initial condition (x(ni +m)h, ŷni ) with
ŷni = (x(ni +m)h�x(ni +m�1)h)/h and solve the equations using the Itô–Taylor scheme
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Figure 2. The linear Langevin system: RMSEs of 104 forecasting ensembles with size
Nens = 20, produced by the true system (black triangles), the system with estimated
parameters (red x’s), and the ARMA model (blue circles), in the cases h = 1

32 (left),
h = 1

16 (center), and h = 1
8 (right).

Estimator True value h = 1
32 h = 1

16 h = 1
8

�̂ 0.5 0.8726 (0.0063) 1.2049 (0.0057) 1.7003 (0.0088)

�̂ 0.3162 0.3501 (0.0007) 0.3662 (0.0007) 0.4225 (0.0009)

�̂ 1 0.9964 (0.0014) 1.0132 (0.0027) 1.1150 (0.0065)

Table 3. Mean and standard deviation of the estimators of the parameters (� ,�, � ) of the
Kramers equation in the continuous-time approach, computed on 100 simulations.

of order 2.0 with a time step dt = 1
64 and record the trajectories every h/dt steps to

get the prediction trajectories (Xi, j
1 , . . . , Xi, j

K ).
We then calculate the mean trajectory for each ensemble Xi

k =(1/Nens)
PNens

j=1 Xi, j
k ,

k = 1, . . . , K . The RMSE measures, in an average sense, the difference between
the mean ensemble trajectory and the true data trajectory:

RMSE(kh) :=
✓

1
N0

N0X

i=1

|Xi
k � x(ni +k)h|2

◆1/2

.

The RMSE measures the accuracy of the mean ensemble prediction; RMSE = 0
corresponds to a perfect prediction, and small RMSEs are desired.

The computed RMSEs for N0 = 104 ensembles with Nens = 20 are shown in
Figure 2. The ARMA(2, 1) model reproduces almost exactly the RMSEs of the
true system for all three observation step sizes, while the estimated system has
RMSEs deviating from that of the true system as h increases. The estimated system
has smaller RMSEs than the true system, because it underestimates the variance of
the true process xt (that is, �̂ 2/(2↵̂�̂ ) < � 2/(2↵� )) and because the means of xt
decay exponentially to 0. The steady increase in RMSE, even for the true system,
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Figure 3. RMSEs of Models (M2), (M3), and (M4) with ensemble size Nens = 20 in the
case h = 1

8 . Models with q = 1 have larger RMSEs than the models with q = 0. In the
case q = 0, Models (M2) and (M3) have almost the same RMSEs.

is entirely expected because the forecasting ensemble is driven by independent
realizations of the forcing, as one cannot infer the white noise driving the system
that originally generated the data.

4B. The Kramers oscillator. We consider the Kramers equation in the form

dxt = yt dt,

dyt = (�� yt ���2x3
t + xt) dt + � d Bt ,

(4-2)

for which there are two potential wells located at x = ±�.
In the continuous-time approach, the estimator ✓̂ = (�̂ , �̂, �̂ ) is given by

✓̂ = arg min
✓=(� ,�,� )

 N�3X

n=1

3
2

[ŷn+2 � ŷn+1 + h(� ŷn +��2x3
n � xn)]2

h� 2 + (N � 3) log � 2
�
.

(4-3)
As for the linear Langevin system case, we begin by investigating the reliability

of the estimators. One hundred simulated data sets are generated from the above
Kramers oscillator with true parameters � = 0.5, � = 1/

p
10, and � = 1, and with

initial condition x0 = y0 = 1
2 and integration time interval [0, 104]. The estimators

of (� ,�, � ) are computed for each data set. Empirical mean and standard deviation
of the estimators are shown in Table 3. We observe that the biases in the estimators
increase as h increases; in particular, the estimator of �̂ has a very large bias.

For the discrete-time approach, we have to select one of the four NARMA(2, q)

models, Models (M1)–(M4). We make the selection using data only from a single
long trajectory (e.g., from the time interval [0, T ] with T = 218 ⇡ 2 ⇥ 105), and
we use the first half of the data to estimate the parameters. We first estimate the
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Figure 4. Empirical PDFs and ACFs of the NARMA models (M2) (blue dotted line), (M3)
(black dashed line) and data (red solid line) in the case h = 1

8 . Model (M3) reproduces the
ACF and PDF better than Model (M2).

Estimator h = 1
32 h = 1

16 h = 1
8

â1 1.9906 (0.0004) 1.9829 (0.0007) 1.9696 (0.0014)
�â2 0.9896 (0.0004) 0.9792 (0.0007) 0.9562 (0.0014)
�b̂1 0.3388 (0.1572) 0.6927 (0.0785) 1.2988 (0.0389)

b̂2 0.0300 (0.1572) 0.0864 (0.0785) 0.1462 (0.0386)
b̂3 0.0307 (0.1569) 0.0887 (0.0777) 0.1655 (0.0372)

�µ̂ (⇥10�5) 0.0377 (0.0000) 0.1478 (0.0000) 0.5469 (0.0001)
�̂W 0.0045 (0.0000) 0.1119 (0.0001) 0.0012 (0.0000)

Table 4. Mean and standard deviation of the estimators of the parameters of the NARMA
model (M3) with q = 0 in the discrete-time approach, computed from 100 simulations.

parameters for each NARMA model with q = 0 and q = 1, using the conditional
likelihood method described in Section 3A. Then we make a selection by the criteria
proposed in Section 3A. First, we test numerical stability by running the model for
a large time for different realizations of the noise sequence. We find that for our
model, using the values of h tested here, Model (M1) is often numerically unstable,
so we do not compare it to the other schemes here. (In situations where the Euler
scheme is more stable, e.g., for smaller values of h or for other models, we would
expect it to be useful as the basis of a NARMA approximation.) Next, we test the
performance of each of the models (M2)–(M4). The RMSEs of Models (M2) and
(M3) with q = 0 and q = 1 and Model (M4) with q = 1 are shown in Figure 3.
In the case q = 1, the RMSEs for Models (M2)–(M4) are very close, but they are
larger than the RMSEs of Models (M2) and (M3) with q = 0. To make a further
selection between Models (M2) and (M3) with q = 0, we test their reproduction of
the long-term statistics. Figure 4 shows that Model (M3) reproduces the ACFs and
PDFs better than Model (M2); hence, Model (M3) with q = 0 is selected.
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Figure 5. Empirical PDFs and ACFs of the NARMA model (M3) with q = 0 (blue dashed
line) and the estimated Kramers system (black dotted line), in the cases h = 1

32 (left),
h = 1

16 (center), and h = 1
8 (right). These statistics are better reproduced (red solid line)

by the NARMA models than by the estimated Kramers systems.

The mean and standard deviation of the estimated parameters of Model (M3)
with q = 0 and 100 simulations are shown in Table 4. Unlike in the linear Langevin
system case, we do not have a theoretical value for these parameters. However,
note that when h = 1

32 , â1 and â2 are close to 2 � � h + 0.5� 2h2 = 1.9845 and
�(1 � � h + 0.5� 2h2) = �0.9845, respectively, which are the coefficients in (3-8)
from the Itô–Taylor scheme. This indicates that when h is small, the NARMA model
is close to the numerical scheme, because both the NARMA and the numerical
scheme approximate the true system well. On the other hand, note that �̂W does
not increase monotonically as h increases. This clearly distinguishes the NARMA
model from the numerical schemes.

Next, we compare the performance of the NARMA model and the estimated
Kramers system in reproducing long-term statistics and predicting short-term dy-
namics. The empirical PDFs and ACFs are shown in Figure 5. The NARMA models
can reproduce the PDFs and ACFs equally well for three cases. The estimated
Kramers system amplifies the depth of double wells in the PDFs, and it misses the
oscillation of the ACFs.
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Figure 6. The Kramers system: RMSEs of 104 forecasting ensembles with size Nens = 20,
produced by the true Kramers system (black triangles), the Kramers system with estimated
parameters (red x’s), and the NARMA model (M3) (blue circles) with q = 0, in the cases
h = 1

32 (left), h = 1
16 (center), and h = 1

8 (right). The NARMA model has almost the same
RMSEs as the true system for all the observation spacings, while the estimated system has
larger RMSEs.

Results for RMSEs for N0 = 104 ensembles with size Nens = 20 are shown in
Figure 6. The NARMA model reproduces almost exactly the RMSEs of the true
Kramers system for all three step sizes, while the estimated Kramers system has
increasing error as h increases, due to the increasing biases in the estimators.

Finally, in Figure 7, we show some results using a much smaller observation
spacing, h = 1

1024 . Table 5 shows the estimated parameters, for both the continuous-
and discrete-time models. (Here, the discrete-time model is (M2).) Consistent with
the theory in [30], our parameter estimates for the continuous-time model are close
to their true values for this small value of h. Figure 7 compares the RMSE of the
continuous-time and discrete-time models on the same forecasting task as before.
The continuous-time approach now performs much better, essentially as well as
the true model. Even in this regime, however, the discrete-time approach remains
competitive.

4C. Criteria for structure design. In the above structure selection between Models
(M2) and (M3), we followed the criterion of selecting the one that fits the long-term
statistics best. However, there is another practical criterion, namely whether the
estimators converge as the number of samples increases. This is important because
the estimators should converge to the true values of the parameters if the model is
correct, due to the consistency discussed in Section 3A. Convergence can be tested
by checking the oscillations of estimators as data length increases: if the oscillations
are large, the estimators are likely not to converge, at least not quickly. Table 6
shows the estimators of the coefficients of the nonlinear terms in Models (M2) and
(M3), for different lengths of data. The estimators b̂1, b̂2, and b̂3 of Model (M3) are
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Continuous-time model parameters Discrete-time model parameters

�̂ ��̂ �̂ â1 �â2 �b̂1

0.5163 0.3435 1.0006 1.9997 0.9997 0.0097

�b̂2 �µ̂ (⇥10�8) ˆ�W (⇥10�10)

0.0169 2.0388 6.2165

Table 5. Estimated parameters for the continuous-time and discrete-time models.
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Figure 7. RMSEs of 103 forecasting ensembles with size Nens = 20 with h = 1
1024 ,

produced by the true Kramers system (True SDE), the Kramers system with estimated
parameters (Est. SDE), and the NARMA model (M2) with q = 0. Since h = 1

1024 is
relatively small, the NARMA model and the estimated system have almost the same
RMSEs as the true system. Here the data is generated by the Itô–Taylor solver with step
size dt = 2�15 ⇡ 3 ⇥ 10�5, and data length is N = 222 ⇡ 4 ⇥ 106.

Data length Model (M2) Model (M3)
(⇥N ) �b̂1 �b̂2 �b̂1 b̂2 b̂3

1
8 0.3090 0.3032 0.3622 0.0532 0.0563
1
4 0.3082 0.3049 0.3290 0.0208 0.0217
1
2 0.3088 0.3083 0.3956 0.0868 0.0845

1 0.3087 0.3054 0.3778 0.0691 0.0697

Table 6. Consistency test. Values of the estimators in the NARMA models (M2) and (M3)
with q = 0. The data come from a long trajectory with observation spacing h = 1

32 . Here
N = 222 ⇡ 4 ⇥ 106. As the length of data increases, the estimators of Model (M2) have
much smaller oscillation than the estimators of Model (M3).

unlikely to be convergent, since they vary a lot for long data sets. On the contrary,
the estimators b̂1 and b̂2 of Model (M2) have much smaller oscillations, and hence
they are likely to be convergent.
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Estimator h = 1
32 h = 1

16 h = 1
8

â1 1.9905 (0.0003) 1.9820 (0.0007) 1.9567 (0.0013)
�â2 0.9896 (0.0003) 0.9788 (0.0007) 0.9508 (0.0014)
�b̂1 0.3088 (0.0021) 0.6058 (0.0040) 1.1362 (0.0079)
�b̂2 0.3067 (0.0134) 0.5847 (0.0139) 0.9884 (0.0144)
�µ̂ (⇥10�5) 0.0340 (0.0000) 0.1193 (0.0000) 0.2620 (0.0001)
�̂W 0.0045 (0.0000) 0.1119 (0.0001) 0.0012 (0.0000)

Table 7. Mean and standard deviation of the estimators of the parameters
(a1, a2, b1, b2, µ, �W ) of the NARMA model (M2) with q = 0 in the discrete-time
approach, computed on 100 simulations.

These convergence tests agree with the statistics of the estimators on 100 simula-
tions in Tables 4 and 7. Table 4 shows that the standard deviations of the estimators
b̂1, b̂2, and b̂3 of Model (M3) are reduced by half as h doubles, which is the opposite
of what is supposed to happen for an accurate model. On the contrary, Table 7
shows that the standard deviations of the parameters of Model (M2) increase as h
doubles, as is supposed to happen for an accurate model.

In short, Model (M3) reproduces better long-term statistics than Model (M2), but
the estimators of Model (M2) are statistically better (e.g., in rate of convergence) than
the estimators of Model (M3). However, the two have almost the same prediction
skill as shown in Figure 3, and both are much better than the continuous-time
approach. It is unclear which model approximates the true process better, and it is
likely that neither of them is optimal. Also, it is unclear which criterion is better
for structure selection: fitting the long-term statistics or consistency of estimators.
We leave these issues to be addressed in future work.

5. Concluding discussion

We have compared a discrete-time approach and a continuous-time approach to the
data-based stochastic parametrization of a dynamical system, in a situation where
the data are known to have been generated by a hypoelliptic stochastic system of a
given form. In the continuous-time case, we first estimated the coefficients in the
given equations using the data, and then solved the resulting differential equations;
in the discrete-time model, we chose structures with terms suggested by numerical
algorithms for solving the equations of the given form, with coefficients estimated
using the data.

As discussed in our earlier papers [8; 21], the discrete-time approach has several
a priori advantages:

• The inverse problem of estimating the parameters in a model from discrete data
is in general better-posed in a discrete-time than in a continuous-time model.
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In particular, the discrete-time representation is more tolerant of relatively
large observation spacings.

• Once the discrete-time parametrization has been derived, it can be used directly
in numerical computation; there is no need of further approximation. This is
not a major issue in the present paper where the equations are relatively simple,
but we expect it to grow in significance as the size of problems increases.

Our example validates the first of these points; the discrete-time approximations
generally have better prediction skills than the continuous-time parametrization,
especially when the observation spacing is relatively large. This was also the main
source of error in the continuous models discussed in [8]; note that the method for
parameter estimation in that earlier paper was completely different. Our discrete-
time models also have better numerical properties; e.g., when all else is equal,
they are more stable and produce more accurate long-term statistics than their
continuous-time counterparts.

We expect the advantages of the discrete-time approach to become more marked
as one proceeds to analyze systems of growing complexity, particularly larger, more
chaotic dynamical systems. A number of questions remain, first and foremost
being the identification of effective structures; this is of course a special case of
the difficulty in identifying effective bases in the statistical modeling of complex
phenomena. In the present paper we introduced the idea of using terms derived from
numerical approximations; different ideas were introduced in our earlier work [21].
More work is needed to generate general tools for structure determination.

Another challenge is that, even when one has derived a small number of potential
structures, we currently do not have a systematic way to identify the most effective
model. Thus, the selection of a suitable discrete-time model can be labor-intensive,
especially compared to the continuous-time approach in situations where a paramet-
ric family containing the true model (or a good approximation thereof) is known.
On the other hand, continuous-time approaches, in situations where no good family
of models is known, would face similar difficulties.

Finally, another open question is whether discrete-time approaches generally
produce more accurate predictions than continuous-time approaches for strongly
chaotic systems. Previous work has suggested that the answer may be yes. We plan
to address this question more systematically in future work.
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Appendix A: Solutions to the linear Langevin equation

Denoting

Xt =
✓

xt
yt

◆
, A =

✓
0 1

�↵ ��
◆

, e =
✓

0
�

◆
,

we can write (3-4) as
d Xt = AXt dt + e d Bt .

Its solution is

Xt = eAt
X0 +

Z t

0
eA(t�u)

e d Bu .

The solution at discrete times can be written as

x(n+1)h = a11xnh + a12 ynh + Wn+1,1,

y(n+1)h = a21xnh + a22 ynh + Wn+1,2,

where ai j = (eAh)i j for i, j = 1, 2, and

Wn+1,i = �

Z h

0
ai2(u) d B(nh + u) (A-1)

with ai2(u) = (eA(h�u))i2 for i = 1, 2. Note that if a12 6= 0, then from the first
equation we get ynh = (x(n+1)h � a11xnh � Vn+1,1)/a12. Substituting it into the
second equation we obtain

x(n+2)h=(a11+a22)x(n+1)h+(a12a21�a11a22)xnh�a22Wn+1,1+a12Wn+1,2+Wn+2,1.

Combining with the fact that a11 + a22 = trace(eAh) and a12a21 � a11a22 = �e�� h ,
we have

x(n+2)h = trace(eAh)x(n+1)h �e�� h xnh �a22Wn+1,1 +Wn+2,1 +a12Wn+1,2. (A-2)

Clearly, the process {xnh} is a centered Gaussian process, and its distribution is
determined by its autocovariance function. Conditionally on X0, the distribution of
Xt is 1(eAt

X0, 6(t)), where 6(t) := R t
0 eAu

ee

T eA

T u du. Since ↵, � > 0, the real
parts of the eigenvalues of A, denoted by �1 and �2, are negative. The stationary
distribution is 1(0, 6(1)), where 6(1) = limt!1 6(t). If X0 has distribution
1(0, 6(1)), then the process (Xt) is stationary, and so is the observed process
{xnh}. The following lemma computes the autocorrelation function of the stationary
process {xnh}.
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Lemma A.1. Assume that the system (3-4) is stationary. Denote by {� j }1j=1 the
autocovariance function of the stationary process {xnh}; i.e., � j := E[xkh x(k+ j)h]
for j � 0. Then �0 = � 2/(2↵� ), and � j can be represented as

� j = �0 ⇥
8
<

:

1
�1 � �2

(�1e�2 jh � �2e�1 jh) if � 2 � 4↵ 6= 0,

e�0 jh(1 � �0 jh) if � 2 � 4↵ = 0

for all j � 0, where �1 and �2 are the different solutions to �2 + � �+↵ = 0 when
� 2 � 4↵ 6= 0, and �0 = �� /2.

Proof. Let 0( j) := E[Xkh X

T
(k+ j)h] = 6(1)eA

T jh for j � 0. Note that � j = 011( j),
i.e., � j is the first element of the matrix 0( j). Then it follows that

�0 = 611(1), � j = (6(1)eA

T jh)11.

If � 2 �4↵ 6= 0, then A has two different eigenvalues �1 and �2 and can be written as

A = Q3 Q

�1 with Q =
✓

1 1
�1 �2

◆
and 3 =

✓
�1 0
0 �2

◆
.

The covariance matrix 6(1) can be computed as

6(1)= lim
t!1

Z t

0
Qe3u

Q

�1
ee

T
Q

�Te3T u
Q

T du =� 2
✓

1/(2ab) 0
0 �1/(2b)

◆
. (A-3)

This gives �0 = 611(1) = � 2/(2�↵) and for j > 0,

� j = 611(1)(eA

T jh)11 = 1
�1 � �2

(�1e�2 jh � �2e�1 jh)� (0).

In the case � 2 � 4↵ = 0, A has a single eigenvalue �0 = �� /2, and it can be
transformed to a Jordan block

A = Q3 Q

�1 with Q =
✓

1 0
�0 1

◆
and 3 =

✓
�0 1
0 �0

◆
.

This leads to the same 6(1) as in (A-3). Similarly, we have �0 = � 2/(2�↵) and

� j = 611(1)(eA

T jh)11 = e�0 jh(1 � �0 jh)�0. ⇤

Appendix B: ARMA processes

We review the definition and computation of the autocovariance function of ARMA
processes in this subsection. For more details, we refer to [6, §3.3].
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Definition B.1. The process {Xn : n 2 Z} is said to be an ARMA(p, q) process if
it is a stationary process satisfying

Xn ��1 Xn�1 � · · · ��p Xn�p = Wn + ✓1Wn�1 + · · · + ✓q Wn�q , (B-1)

for every n, where the {Wn} are i.i.d. 1(0, � 2
W ), and if the polynomials �(z) :=

1 � �1z � · · · � �pz p and ✓(z) := 1 + ✓1z + · · · + ✓q zq have no common factors.
If {Xn � µ} is an ARMA(p, q) process, then {Xn} is said to be an ARMA(p, q)

process with mean µ. The process is causal if �(z) 6= 0 for all |z|  1. The process
is invertible if ✓(z) 6= 0 for all |z|  1.

The autocovariance function {� (k)}1k=1 of an ARMA(p, q) can be computed
from the following difference equations, which are obtained by multiplying each
side of (B-1) by Xn�k and taking expectations:

� (k) ��1� (k � 1) � · · · ��p� (k � p) = � 2
W

X

k jq

✓ j j�k,

0  k < max{p, q + 1}, (B-2)

� (k) ��1� (k � 1) � · · · ��p� (k � p) = 0, k � max{p, q + 1}, (B-3)

where  j in (B-2) is computed as (letting ✓0 := 1 and ✓ j = 0 if j > q)

 j =
⇢
✓ j + P

0<k j �k j�k for j < max{p, q + 1},P
0<kp �k j�k for j � max{p, q + 1}.

Denote by {⇣i : i = 1, . . . , k} the distinct zeros of �(z) := 1 � �1z � · · · � �pz p,
and let ri be the multiplicity of ⇣i (hence

Pk
i=1 ri = p). The general solution of the

difference (B-3) is

� (n) =
kX

i=1

ri �1X

j=0

�i j n j⇣�n
i for n � max{p, q + 1} � p, (B-4)

where the p constants �i j (hence the values of � ( j) for 0  j < max{p, q +1}� p)
are determined from (B-2).

Example B.2 (ARMA(2, 0)). The autocovariance function for an ARMA(2, 0)

process Xn ��1 Xn�1 ��2 Xn�2 = Wn is

� (n) =
⇢
�1⇣

�n
1 +�2⇣

�n
2 if �2

1 + 4�2 6= 0,

(�1 +�2n)⇣�n if �2
1 + 4�2 = 0

for n � 0, where ⇣1, ⇣2, or ⇣ are the zeros of �(z) = 1 ��1z ��2z2. The constants
�1 and �2 are computed from the equations

� (0) ��1� (1) ��2� (2) = � 2
W ,

� (1) ��1� (0) ��2� (1) = 0.
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Example B.3 (ARMA(2, 1)). We have  0 = 1 and  1 = �1 for an ARMA(2, 1)

process Xn ��1 Xn�1 ��2 Xn�2 = Wn + ✓1Wn�1. Its autocovariance function is of
the same form as that in Example B.2, where the constants �1 and �2 are computed
from the equations

� (0) ��1� (1) ��2� (2) = � 2
W (1 + ✓2

1 + ✓1�1),

� (1) ��1� (0) ��2� (1) = � 2
W ✓1.

Appendix C: Numerical schemes for hypoelliptic SDEs with additive noise

Here we briefly review the two numerical schemes, the Euler–Maruyama scheme
and the Itô–Taylor scheme of strong order 2.0, for hypoelliptic systems with additive
noise

dx = y dt,

dy = a(x, y) dt + � d Bt ,

where a : R2 ! R satisfies suitable conditions so that the system is ergodic.
In the following, the step size of all schemes is h, and Wn = �

p
h⇠n and Zn =

�h3/2(⇠n +⌘n/
p

3), where {⇠n} and {⌘n} are two i.i.d. sequences of 1(0, 1) random
variables.

Scheme C.1 (Euler–Maruyama). xn+1 = xn + ynh,

yn+1 = yn + ha(xn, yn) + Wn+1.

Scheme C.2 (Itô–Taylor scheme of strong order 2.0).

xn+1 = xn + hyn + 0.5h2a(xn, yn) + Zn+1,

yn+1 = yn + ha(xn, yn) + 0.5h2[ax(xn, yn)yn + (aay + 0.5� 2ayy)(xn, yn)]
+ Wn+1 + ay(xn, yn)Zn+1 + ayy(xn, yn)�

2 1
6 h(W 2

n+1 � h).

The Itô–Taylor scheme of order 2.0 can be derived as follows (see, e.g., works
of Kloeden and Platen [14; 18]). The differential equation can be rewritten in the
integral form

xt = xt0 +
Z t

t0
ys ds,

yt = yt0 +
Z t

t0
a(xs, ys) ds + � (Bt � Bt0).

We start from the Itô–Taylor expansion of x :

xtn+1 = xtn + hytn +
Z tn+1

tn

Z t

tn
a(xs, ys) ds dt + � I n+1

10

= xtn + hytn + 0.5h2a(xtn , ytn ) + � I n+1
10 + O(h5/2),
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where I n+1
10 := R tn+1

tn (Bt � Btn ) dt . To get a higher-order scheme for y, we apply
Itô’s chain rule to a(xt , yt):

a(xt , yt) = a(xs, ys) +
Z t

s
[ax(xr , yr )yr + (aay + 0.5� 2ayy)(xr , yr )] dr

+ �
Z t

s
ay(xr , yr ) d Br .

This leads to the Itô–Taylor expansion for y (up to the order 2.0):

ytn+1 = ytn +
Z tn+1

tn
a(xs, ys) ds + � (Btn+1 � Btn )

= ytn+ha(xtn , ytn )+� (Btn+1�Btn )+ay(xtn , ytn )� I n+1
10 +ayy(xtn , ytn )�

2 I n+1
110

+ 0.5h2[ax(xtn , ytn )ytn + (aay + 0.5� 2ayy)(xtn , ytn )] + O(h5/2),

where I n+1
110 = R tn+1

tn

R t
tn (Bs � Btn ) d Bs dt . Representing � (Btn+1 � Btn ), � I n+1

10 , and
I n+1
110 by Wn+1, Zn+1, and 1

6 h(W 2
n+1 � h), respectively, we obtain Scheme C.2.
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