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Inferring the laws of interaction in agent-based systems from

observational data is a fundamental challenge in a wide vari-

ety of disciplines. We propose a nonparametric statistical learn-

ing approach for distance-based interactions, with no reference

or assumption on their analytical form, given data consist-

ing of sampled trajectories of interacting agents. We demon-

strate the effectiveness of our estimators both by providing

theoretical guarantees that avoid the curse of dimensional-

ity and by testing them on a variety of prototypical systems

used in various disciplines. These systems include homoge-

neous and heterogeneous agent systems, ranging from par-

ticle systems in fundamental physics to agent-based systems

that model opinion dynamics under the social influence, prey–

predator dynamics, flocking and swarming, and phototaxis in cell

dynamics.

data-driven modeling | dynamical systems | agent-based systems

1. Introduction
Systems of interacting agents arise in a wide variety of disci-
plines, including Physics, Biology, Ecology, Neurobiology, Social
Sciences, and Economics (e.g., refs. 1–4 and references therein).
Agents may represent particles, atoms, cells, animals, neurons,
people, rational agents, opinions, etc. The understanding of
agent interactions at the appropriate scale in these systems is as
fundamental a problem as the understanding of interaction laws
of particles in Physics.

How can laws of interaction between agents be discovered? In
Physics, vast knowledge and intuition exist to formulate hypothe-
ses about the form of interactions, inspiring careful experiments
and accurate measurements, that together lead to the inference
of interaction laws. This is a classical area of research, dating
back to at least Gauss, Lagrange, and Laplace (5), that plays
a fundamental role in many disciplines. In the context of inter-
acting agents at the scale of complex organisms, there are fewer
controlled experiments possible and few “canonical” choices for
modeling the interactions. Different types and models of inter-
actions have been proposed in different scientific fields and fit
to experimental data, which in turn may suggest new modeling
approaches, in a model–data validation loop. Often, the form
of governing interaction laws is chosen a priori, within perhaps
a small parametric family, and the aim is often to reproduce
only qualitatively, and not quantitatively, some of the macro-
scopic features of the observed dynamics, such as the formation
of certain patterns.

Our work fits at the boundary between statistical/machine
learning and dynamical systems, where equations are estimated
from observed trajectory data, and inference takes into account
assumptions about the form of the equations governing the
dynamics. Since the past decade, the rapidly increasing acqui-
sition of data, due to decreasing costs of sensors and measure-
ments, has made the learning of large and complex systems pos-
sible, and there has been an increasing interest in inference tech-
niques that are model-agnostic and scalable to high-dimensional
systems and large datasets.

We establish statistically sound, dynamically accurate, com-
putationally efficient techniques⇤ for inferring these interac-
tion laws from trajectory data. We propose a nonparametric
approach for learning interaction laws in particle and agent sys-
tems, based on observations of trajectories of the states (e.g.,
position, opinion, etc.) of the systems, on the assumption that
the interaction kernel depends on pairwise distances only, unlike
recent efforts that either require feature libraries or parametric
forms for such interactions (6–10), or aim at identifying only the
type of interaction from a small set of possible types (11–13). We
consider a least-squares (LS) estimator, classical in the area of
inverse problems (dating back to Legendre and Gauss), suitably
regularized and tuned to the learning of the interaction kernel in
agent-based systems.

The unknown is the interaction kernel, a function of pair-
wise distances between agents of the systems. While the values
of this function are not observed, in contrast to the standard
regression problems, we are able to show that our estimator
converges at an optimal rate as if we were in the 1D regres-
sion setting. In particular, the learning rate has no dependency
on the dimension of the state space of the system, therefore
avoiding any curse of dimensionality, and making these estima-
tors well-suited for the modern high-dimensional data regime. It
may be easily extended to a variety of complex systems; here,
we consider first- and second-order models, with single and
multiple types of agents, and with interactions with simple envi-
ronments. We demonstrate with examples that the theoretical
guarantees on the performance of the estimator make it suit-
able for testing hypotheses on underlying models of interactions,
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assisting an investigator in choosing among different possible
(nonparametric) models.

Finally, our estimator is constructed with algorithms that are
computationally efficient (with complexity O(LN 2

M ) when the
interaction kernel is Lipschitz; SI Appendix, section 2F) and
may be implemented in a streaming fashion: It is, therefore,
well-suited for large datasets.

2. Learning Interaction Kernels
We start with a model that is used in a wide variety of interacting
agent systems [e.g., physical particles or influence propagation
in a population (14, 15)]: Consider N > 1 agents {xi}Ni=1 in
Rd , evolving according to the system of ordinary differential
equations (ODEs)

ẋi(t)=
1
N

NX

i0=1

�(kxi0(t)� xi(t)k)(xi0(t)� xi(t)), [1]

where ẋi(t)= d

dt
xi(t); k·k is the Euclidean norm, and � :R+ !R

is the interaction kernel. In other words, every agent’s velocity is
obtained by superimposing the interactions with all of the other
agents, each weighted in a way dependent on the distance to the
interacting agent. In a prototypical example—e.g., arising in par-
ticle systems (Section 2B) and flocking systems—the interaction
kernel may be negative for small distances, inducing repulsion,
and attractive for large distances. Let X := (xi)Ni=1 2RdN be the
state vector for all of the agents, rii0(t) := xi0(t)� xi(t) and
rii0(t) := krii0(t)k. The evolution Eq. 1 is the gradient flow for
the potential energy U(X(t)) := 1

2N

P
i 6=i0 �(rii0(t)), with �(·)=

�0(·)/·. The function �(·)· reappears naturally below, the funda-
mental reason being its relationship with U and �. Our obser-
vations are positions along trajectories: Xtr := {Xm(tl)}

L,M
l=1,m=1,

with 0= t1 < . . .< tL =T being the times at which observations
occur, and m indexing M different trajectories. Velocities Ẋ

m

(tl)
are approximated by finite differences. The M initial conditions
(ICs) Xm

0 := Xm(0) are drawn independently at random from a
probability measure µ0 on RdN .

Our goal is to infer, in a nonparametric fashion, the inter-
action kernel �, by constructing an estimator �̂ from training
data. A fundamental statistical problem that involves estimat-
ing a function is regression: Given samples (zi , g(zi))

n

i=1, with
the zi ’s independent and identically distributed (i.i.d.) samples
from an (unknown) measure ⇢Z in RD , and g a suitably regu-
lar (say, Hölder s) unknown function RD

!R, one constructs an
estimator ĝ such that kĝ � gk

L2(⇢Z ) .n
�

s

2s+D , with high prob-
ability (over the zi ’s). This rate is optimal in a minimax sense
(16), and its dramatic degradation with D is a manifestation of
the curse of dimensionality. Upon rewriting Eq. 1 as Ẋ = f�(X),
our observations (with either approximated or directly observed
velocities) resemble those needed for regression if we thought
of Z = X as a random variable, and g = f�. However, our obser-
vations are not i.i.d. samples of X with respect to any probability
measure, the lack of independence being the most glaring aspect.
If we nevertheless pursued this line of thought, we would be hit
with the curse of dimensionality in trying to learn the target func-
tion g = f� on the state space RdN , leading to a rate n

�O(1/dN )

for regression. This renders this approach useless in practice as
soon as, say, dN � 20. A direct application of existing approaches
(e.g., refs. 6–8), developed for low-dimensional systems, go in
this direction, These works would try to ameliorate this curse
of dimensionality by requiring f� to be well-approximated by a
linear combination of a small number of functions in a known
large dictionary. While such dictionaries may be known for spe-
cific problems, they are usually not given in the case of complex,
agent-based systems. Finally, such dictionaries typically grow

dramatically in size with the dimension (here, dN ), and existing
guarantees that avoid the curse of dimensionality require further,
strong assumptions on the measurements or the dynamics.

We proceed in a different direction, aiming for the flexibil-
ity of a nonparametric model while exploiting the structure of
the system in Eq. 1. The target function � depends on just one
variable (pairwise distance), but it is observed through a collec-
tion of nonindependent linear measurements (the left-hand side
of Eq. 1), at locations r

m

ii0(tl)= kxm
i0 (tl)� xmi (tl)k, with coeffi-

cients rm
ii0(tl)= xm

i0 (tl)� xmi (tl), as in the right-hand side of Eq. 1.
When the tl ’s are equidistant in time, we consider an estimator
minimizing the empirical error functional

EL,M (') :=
1

LMN

L,M ,NX

l,m,i=1

��ẋmi (tl)� f'(xm(tl))i
��2

, [2]

b�= b�L,M ,H := argmin
'2H

EL,M ('), [3]

where H is a hypothesis space of functions R+ !R, of dimension
n (we will choose n dependent on M ). We introduce a natu-
ral probability measure ⇢T on R+ adapted to the dynamics: It
can be thought of as an “occupancy” measure, in the sense that
for any interval I , ⇢T (I ) is the probability (over the random ICs
distributed according to µ0) of seeing a pair of agents with a dis-
tance between them being a value in I , averaged over the time
interval [0,T ]; see Eq. 4 for a formal definition.

We measure the performance of �̂ in terms of the error
k�̂(·) ·��(·) · k

L2(⇢T ). Theorem (Thm.) 3.3, our main result, will
bound this error by Õ(M�s/(2s+1)) if � is Hölder s : This is the
optimal exponent for learning � if we were in the (more favor-
able) 1D regression setting! We therefore completely avoid the
curse of dimensionality. In fact, we show under some rather
general assumptions that not only the rate, but even the con-
stants in the bound are independent of N , making the bounds
essentially dimension-free. It is crucial that ⇢T has wide sup-
port in order for the error to be informative. When the system
is ergodic, we expect ⇢T to have a large support for large T ,
as the system explores its ergodic distribution. However, many
deterministic systems of interest may reach a stationary state
(as in the cases of the Lennard–Jones or opinion dynamics, to
be considered momentarily), in which case ⇢T becomes highly
concentrated on a finite set for large T : In these cases, it
may be more relevant to consider T small compared with the
relaxation time.

We are also interested in whether trajectories X(t) of the true
system are well-approximated by trajectories bX(t) of the system
governed by the interaction kernel �̂, on both the “training”
time interval [0,T ] and after time T . Proposition (Prop.)
3.4 below bounds sup

t2[0,T 0] k
bX(t)� X(t)k in terms of

k�̂(·) ·��(·) · k
L2(⇢T ), at least for T

0 not too large; this further
validates the use of L2(⇢T ). We will report on this distance for
both T

0 =T and T
0 >T (“prediction” regime).

Finally, while the error k�̂(·) ·��(·) · k
L2(⇢T ) is unknown in

practice (since � is unknown), our results give guarantees on its
size, which in turn imply guarantees on accuracy of trajectory
predictions. Proxies for the error on trajectories, for example,
by holding out portions of trajectories during the training phase,
may be derived from data. These measures of error may be used
to test and validate different models of the dynamics: Too large
an error with one model may invalidate it and suggest that a dif-
ferent one (e.g., second vs. first order or multiple vs. single agent
types) should be used (Section 5).

A. Different Sampling Regimes and Randomness. The total num-
ber of observations is (number of ICs)⇥ (number of temporal

2 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1822012116 Lu et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1822012116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1822012116


A
PP

LI
ED

M
A

TH
EM

A
TI

CS

observations in [0,T ])=M ⇥L, each in RdN . We will consider
several regimes:
Many short time trajectories. T is small, L is small (e.g., L=1),
and M is large (many ICs sampled from µ0);
Single large time trajectory. T is large (even comparable to the
relaxation time of the system if applicable), L is large, and M =1
(or very small);
Intermediate time scale. T , L and M are all not small, but
none is very large, corresponding to multiple “medium”-length
trajectories, with several different ICs.

Randomness is injected via the ICs, and in our main results in
Section 3, the sample size will be M . If the system is ergodic, the
regimes above are partially related to each other, at least when
the ICs are sampled from the ergodic distribution µerg. Indeed,
at times much larger than the mixing time Tmix, the state of
the system becomes indistinguishable from a random sample of
µerg, and we may interpret the subsequent part of the trajectory
as a new trajectory with that IC. The M observed trajectories
of length T �Tmix are then equivalent to M ⇥T/Tmix tra-
jectories of length Tmix, to which our results apply. In regimes
when M is very small or µ0 is very concentrated, there is little
randomness: The problem is close to a fixed-design inverse prob-
lem, which is solvable if the dynamics produces different-enough
pairwise distances.

B. Example: Interacting Particles with the Lennard–Jones Poten-
tial. We illustrate the learning procedure on a particle system
with N =7 particles in R2, interacting according to Eq. 1 with
�(r)=�0

LJ (r)/r , where �LJ (r) := 4✏
�
(�/r)12 � (�/r)6

�
is the

Lennard–Jones potential, consisting of a strong near-field repul-
sion and a long-range attraction. The system converges quickly
to equilibrium configurations, which often consist of ordered,
crystal-like structures. This example is challenging for various
reasons: the Interaction kernel is unbounded, has unbounded
support, and equilibrium is reached quickly, reducing the amount
of information in trajectories. SI Appendix, section 3B contains
a detailed description of the experiments. Fig. 1 demonstrates
that the estimators approximate the true kernel well in differ-
ent sampling regimes and that the trajectories of the true system
are well-approximated by those of the learned system both in
the “training” interval ([t0,T ]) and in the “prediction” inter-
val ([T , 50T ] and [T , 2T ] respectively for the two regimes). We
also show, as a simple example of transfer learning, that we
can use the interaction kernel learned on the system with N

particles to accurately predict trajectories of a system with 4N
particles.

The rate of decay of the estimation error is close to the
optimal rate in Thm. 3.3 (Fig. 2); this is a consequence of
two factors: the use of an empirical approximation to ⇢LT and

1 2 3 4 5 6 7

-0.1

-0.08

-0.06

-0.02

0

ke
rn
el

104

0

0.05

0.1

0.15

0.2

0.25

0.3
101

1 2 3 4 5 6

-0.8

-0.6

-0.4

-0.2

0

103

0

0.02

0.04

0.06

0.1

0.12

de
ns
ity

102

-2 -1 0 1 2

-2

0

2

-2 0 2

-2

0

2

t
T

50T

-2 -1 0 1 2

-2

0

2

-2 0 2

-2

0

2

t
T

50T
-2 0 2

-2

0

2

-2 0 2

-2

0

2

t

T

2T

-2 0 2

-2

0

2

-2 0 2

-2

0

2

t

T

2T

A

C

B

D

Fig. 1. Interaction kernel estimation and trajectory prediction for the Lennard–Jones system. (A and B) Estimators �̂ (in blue) of the true interaction kernel
� (in black) in two sampling regimes: many short-time trajectories (A) and a few large-time trajectories (B). The proposed nonparametric estimators perform
extremely well—the means and SDs of the relative L

2(⇢L

T
) errors are 6.6 · 10�2

± 5.0 · 10�3 and 7.2 · 10�2
± 1.0 · 10�2, respectively, over 10 independent

learning runs. The SD (dashed) lines on the estimated kernel are so small to be barely visible. In both cases, we superimpose histograms of ⇢L

T
(estimated

from a large number of trajectories, outside of training data) and ⇢L,M
T

(estimated from the M training data trajectories; SI Appendix, Eq. 5). The estimators
belong to a hypothesis space Hn of piecewise linear functions with equidistant knots and yield accurate estimators in L

2(⇢L

T
). Note that we observe the

dynamics starting from a suitable t0 > 0, due to the singularity of Lennard–Jones kernel at r = 0. See SI Appendix, section 3B for details about the setup and
results. (C and D) The true and predicted trajectories for the N-particle system (Upper) and a 4N-particle system (Lower) with interaction kernels learned
on the N-particle system, for randomly sampled ICs. C and D show true and predicted trajectories for systems with interaction kernels learned in A and B,
respectively. The blue-to-green color gradient indicates the movement of particles in time (see color scales on the side). We achieve small errors in predicting
the trajectories in all cases, even when we transfer the interaction kernel learned on an N-particle system to predict trajectories of a system with 4N particles.
Coord., coordinates.
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Fig. 2. Learning rate in M for the Lennard–Jones system. The estimation
error in L

2(⇢L

T
) decays at rate 0.36, close to the optimal rate 0.4 for admissible

kernels; Thm. 3.3.

the blowup at 0 of �LJ , which is not an admissible kernel
as in Thm. 3.3 (see SI Appendix, Section 3B for a detailed
discussion).

Fig. 3 shows the behavior of the error of the estimators as
both L and M are increased. It indicates that a single long trajec-
tory may not contain enough “information” to learn the kernel,
at least for deterministic systems approaching a steady state. It
also shows the behavior predicted by Thm. 3.3—namely, for each
fixed L the error decreases as M increases.

3. Learning Theory
We introduce an error functional based on the structure
of the dynamical system Ẋ = f�(X), whose minimizer will be
our estimator of the interaction kernel �. We consider ker-
nels in the admissible set KR,S : ={�2C

1(R+) : supp(�)⇢
[0,R], sup

r2[0,R] |�(r) |+|�0(r) |S}, for some R,S > 0. The
boundedness of � and �0 ensures the global well-posedness of
the system in Eq. 1. The restriction supp(�)⇢ [0,R] models the
finite range of interaction between agents, and it may be relaxed
to �2W

1,1(R+) with a suitable decay.

A. Probability Measures Adapted to the Dynamics. To measure the
quality of the estimator of the interaction kernel �, we introduce
two probability measures on R+, the space of pairwise distances
r
m

ii0(tl)= kxm
i0 (tl)� xmi (tl)k. We consider the expectation of the

empirical measure of pairwise distances, for continuous and
discrete time observations, respectively:

⇢T (r) :=
1�

N

2

�
T

Z
T

t=0

EX0⇠µ0

2

4
NX

i,i0=1,i<i0

�r
ii0 (t)

(r) dt

3

5, [4]

⇢LT (r) :=
1�

N

2

�
L

LX

l=1

EX0⇠µ0

2

4
NX

i,i0=1,i<i0

�r
ii0 (tl )

(r)

3

5. [5]

The expectations are over the ICs, with distribution µ0. The
measure ⇢T is intrinsic to the dynamical system, dependent
on µ0 and the time scale T , and independent of the observa-
tion data. ⇢LT depends also on the sampling scheme {tl}

L

l=1 in
time. Both are Borel probability measures on R+ (SI Appendix,
Lemma 1.1), measuring how much regions of R+ on average
(over the observed times and ICs) are explored by the system.
Highly explored regions are where the learning process ought to
be more accurate, as they are populated by more “samples” of
pairwise distances. We will measure the estimation error of our
estimators in L

2(⇢T ) or L2(⇢LT ).

We report here on the analysis in the discrete-time observation
case, most relevant in practice, with ⇢LT ; the arguments, however,
also apply to continuous-time observations, with ⇢T .

B. Learnability: The Coercivity Condition. A fundamental question
is the learnability of the kernel, i.e., the convergence of the esti-
mator �̂L,M ,H defined in Eq. 3 to the true kernel � as the sample
size increases (i.e., M !1) and H increases in a suitable way.
The following condition, similar to the one introduced in ref. 17
for studying the mean field limit (N !1), ensures learnability
and well-posedness of the estimation.

Definition 3.1. The dynamical system in Eq. 1, with IC sampled
from µ0 on RdN , satisfies the coercivity condition on a set H if
there exists a constant cL,N ,H > 0 such that for all '2H with
'(·)·2L

2(⇢LT ),

cL,N ,Hk'(·) · k2
L2(⇢L

T
) 

1
NL

L,NX

l,i=1

E
�����
1
N

NX

i0=1

'(rii0(tl))rii0(tl)

�����

2

.

[6]

The coercivity condition ensures learnability, by implying the
uniqueness of minimizer of EL,1(') : =E[EL,M (')] and, even-
tually, the convergence of estimators through a control of the
error of the estimator in L

2(⇢LT ) (SI Appendix, Thm. 1.2 and
Prop. 1.3). Thm. 3.1 proves that the coercivity condition holds
under suitable hypotheses, even independently of N ; numeri-
cal tests suggest that it holds generically over larger classes of
interaction kernels and distributions of ICs, for large L, and as
long as ⇢LT is not degenerate (SI Appendix, Fig. S6). Finally,
cL,N ,H also controls the condition number of the matrix in the
LS problem yielding the estimator (see SI Appendix, Prop. 2.1 for
details).

We prove that coercivity holds when µ0 is exchangeable (i.e.,
the distribution is invariant under permutation of components),
Gaussian, and L=1. Numerical tests (SI Appendix, Fig. S6) sug-
gest that the coercivity condition holds true for a larger class
of interaction kernels, for various initial distributions including
Gaussian and uniform distributions, and for large L, as long as
⇢LT is not degenerate. We conjecture that the coercivity condition
holds true in much greater generality (but not always!), leaving a
detailed investigation to future work.

Theorem 3.1. Suppose L=1,N > 1 and assume that the distri-

bution of X(t1)= (x1(t1), . . . , xN (t1)) is exchangeable Gaussian

with cov(X i)� cov(X i , xi0)=�Id for a constant �> 0. Then, the

125 250 500 1000 2000 4000 8000
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Fig. 3. The relative error of the estimated kernel as a function of M, L for
the Lennard–Jones system. The relative error, in log10 scale, of �̂ decreases
both in L and M, in fact, roughly in the product ML, at least when M and L

are not too small. M = 1 does not seem to suffice, no matter how large L is,
due to the limited amount of “information” contained in a single trajectory.
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coercivity condition holds true with cL,N ,H = (N�1)(N�2)
N2 cH +

N�1
N2 , where cH is independent of N , is positive for any compact

H⇢L
2(⇢LT ), and is zero for H=L

2(⇢LT ).
In this setting, the analysis of the coercivity constant cL,N ,H

is based on the exchangeability of the initial distribution of the
agents and relates coercivity to a positive integral kernel:

Lemma 3.2. Let X ,Y ,Z be exchangeable Gaussian random

vectors in Rd
with cov(X )� cov(X ,Y )=�Id for a constant

�> 0. Suppose L=1. Then, there is a positive definite integral

kernel K(r , s) :R+ ⇥R+ !R such that for any g 2L
2(⇢LT )

E [g(|X �Y |)g(|X �Z |)hX �Y ,X �Z i]

=

ZZ
g(r)rg(s)sK(r , s)drds,

where ⇢LT (r)/ r
d�1

e
�r

2/3
, since L=1. Therefore, there exists

cH � 0, depending only on H⇢L
2(⇢LT ), such that for g 2H

ZZ
g(r)rg(s)sK(r , s)drds � cHkg(·) · k2

L2(⇢L
T
),

and cH > 0 if H is compact in L
2(⇢LT ).

We conclude that under the assumptions of Thm. 3.1, if H is
compact, then cL,N ,H is bounded below uniformly in N .

C. Optimal Rates of Convergence. The classical bias–variance
trade-off in statistical estimation guides the selection of a hypoth-
esis space H, whose dimension will depend on M , the number
of observed trajectories. On the one hand, H should be large
so that the bias (distance between the true kernel � and H) is
small; on the other hand, H should be small so that variance
of the estimator is small. In the extreme case where H=KR,S ,
the bias is 0, the variance of the estimator dominates, and we
obtain the bound E[kb�L,M ,H(·) ·��(·) · k

L2(⇢L
T
)]CM

�1/4 (SI

Appendix, Prop. 1.5). In fact, significantly better rates may be
achieved for regular �’s:

Theorem 3.3. Assume that �2KR,S . Let {Hn}n be a

sequence of subspaces of L
1([0,R]), with dim(Hn) c0n and

inf'2Hn
k'��k

L1([0,R])  c1n
�s , for some constants c0, c1, s >

0. Assume that the coercivity condition holds on H : =[
1

n=1Hn .

Such a sequence exists, for example, if � is s-Hölder regu-

lar, and can be chosen so that H is compact in L
2(⇢LT ).

Choose n⇤ =(M /logM )1/(2s+1)
. Then, there exists a constant

C =C (c0, c1,R,S) such that

E
h
kb�L,M ,Hn⇤ (·) ·��(·) · k

L2(⇢L
T
)

i


C

cL,N ,H

✓
logM
M

◆ s

2s+1

. [7]

The rate [i.e., the exponent s/(2s +1)] we achieve is opti-

mal: It coincides with the minimax rate in the classical regres-
sion setting, where one can observe directly noisy values of
an s-Hölder regression function at the sample points. We
obtain this optimal rate, even if we do not observe the val-
ues {�(rm

ii0(tl))}l,i,i0,m , but a “mixture” of them in the observed
trajectory data. Many choices of {Hn} are consistent with the
requirements in the theorem, e.g., splines on increasingly finer
grids, or band-limited functions with increasing frequency limits.
These choices affect the constants in Eq. 7, the computational
complexity of computing b�L,M ,Hn⇤ , but not the rate in M .
While the rate is independent of the dimension dN of the state
space, the constant may depend on d and N via cL,N ,H. How-
ever, we expect that under rather general conditions, beyond
those in Thm. 3.1, cL,N ,H is, in fact, lower-bounded indepen-
dently of N for any compact subset H of L

2(⇢LT ) and is a
fundamental property of the mean field limit (N !1) of the
system.

One shortcoming of our result is that the rate is not a func-
tion of the total number of observations, which is O(LN 2

M )
(we have LN

2/2 pairwise distances for each of the M tra-
jectories), but only of M , the number of random samples.
Numerical experiments (see Fig. 3 and similar experiments for
the other systems, reported in SI Appendix) suggest that the
estimator improves as L increases, at least to a point, lim-
ited by the “information” in a single trajectory. Comparing to
ref. 17, where the mean field limit N !1, M =1, is studied,
we see the rates in ref. 17 seem no better than N

�1/d , i.e.,
they are cursed by dimension. So are sparsity-based inference
techniques such as those in refs. 6–8, 11, and 18, which also
require a good dictionary of template functions, are not non-
parametric (at least in the form therein presented), and lack
performance guarantees, except in some cases under stringent
assumptions.

Our work here may be compared with the classical parame-
ter estimation problem for the ODE models (19–22), where one
is interested in estimating the vector parameter ✓ in the ODE
model Ẋ = f (X(t), t ,✓) from the observation of a single noisy
trajectory. Our error functional, in spirit, is the same with the
gradient-matching method (also called the two-stage method)
used in the parameter-estimation problems (23–27). A chal-
lenging problem is the identifiability of ✓. We refer the reader
(28) for the statistical analysis and (29) (and references therein)
for a comprehensive survey of this topic. However, the prob-
lem and approach we considered here are different from the
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Fig. 4. Opinion dynamics. (Upper) Comparison between true and estimated
interaction kernel, together with histograms for ⇢L

T
and ⇢L,M

T
. The mean and

SD of the relative error for the interaction kernel are 1.6 · 10�1
± 2.3 · 10�3

over 10 independent learning runs. The SD lines (in dashed lines) on the esti-
mated kernel are so small to be barely visible. (Lower) Trajectories X(t) and
bX(t) obtained with � and �̂, respectively, for an IC in the training data (top
row) and an IC randomly chosen (bottom row). The black dashed vertical line
at t = T divides the “training” interval [0, T] from the “prediction” interval
[T , Tf ] (which in this case, Tf = 2T). We achieve small errors in all cases, in
particular predicting number and location of clusters for large time.
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Fig. 5. Estimation of interaction kernels and trajectory prediction for predator–swarm first- and second-order systems. Results for the first-order (A) and
second-order (B) predator–swarm systems, as described in Sections 4 and 5, are shown. For each system (corresponding to each column), Upper represents
�

k,k0 and b�
k,k0 , superimposed with the histograms of ⇢L

T
(estimated from a large number of trajectories, outside of training data) and ⇢L,M

T
(estimated from

the M training data trajectories; SI Appendix, Eq. 5). Lower shows trajectories X(t) and bX(t) of the corresponding (original and estimated) systems, evolved
from the same ICs as the training data (third row) and newly sampled ICs (fourth row), over both the training time interval [0, T] and in the future [T , 2T]
(color bars; the black dots in the trajectories correspond to t = T). For trajectories generated by the predator–swarm system, red-to-yellow lines indicate the
movement of predators, whereas the blue-to-green lines indicate the movement of prey. The color gradients indicate time; see the color scales on the side
of the plots. The estimators �̂

k,k0 perform extremely well: with negligible differences in the regions with large ⇢L

T
and with possibly larger errors in regions

with small ⇢L

T
(where the SDs over 10 independent learning runs become visible). The L

2(⇢L

T
) errors of the estimators are reported numerically in SI Appendix,

section 3. Note that they are truncated to a constant while preserving continuity, when there are no samples (e.g., r near 0 or r very large). The measure
⇢L

T
is quite smooth but can have interesting features; ⇢L,M

T
is typically a noisy version of ⇢L

T
. The trajectories of the estimated system are typically good

approximations to those of the original system, on both ICs in the training data and newly sampled ICs. The error of the estimated trajectories increases
with time, as expected, albeit it still typically excellent also in the “prediction” time interval [T , 2T], showing that the bounds in Prop. 3.4, while sharp in
general, may be overly pessimistic in some practical cases. Some slightly larger errors are present in some trajectories, e.g., when prey and predators get
much closer to each other than they did in the training data. Coord., coordinates.

parameter-estimation problem in several aspects. First of all, our
state variable X enters into the domain of the � (via its “pro-
jection” onto pairwise distance), while the parameter vector ✓
is decoupled from the state variable X . Moreover, our estima-
tor is nonparametric—i.e., the goal is to estimate a function
� (a vector infinite dimensions) instead of a finite-dimensional
vector ✓ of parameters. Finally, we establish identifiability condi-
tions for � from the perspective that the observations are i.i.d.
trajectories with random ICs, in contrast with the identifiabil-
ity of ✓ from observations along a fixed single trajectory with
i.i.d. noise. We would like to mention the different, but related,
problem of inferring potentials from ground states and unstable
modes (for example, ref. 30), as well as recent results on exis-
tence and properties of ground states for systems with nonlocal
interactions (31).

D. Trajectory-Based Performance Measures. It is important not only
that b� is close to �, but also that the dynamics of the system gov-
erned by b� approximate well the original dynamics. The error
in prediction may be bounded trajectory-wise by a continuous-
time version of the error functional and bounded in average by
the L

2(⇢T ) error of the estimated kernel (further evidence of the
usefulness of ⇢T ):

Proposition 3.4. Assume b�(k · k)·2Lip(Rd), with Lipschitz

constant CLip. Let bX(t) and X(t) be the solutions of systems with

kernels b� and �, respectively, started from the same IC. Then, for

each trajectory

sup
t2[0,T ]

kbX(t)� X(t)k
2
 2Te8T2

C
2
Lip

TZ

0

��Ẋ(t)� f'̂(X(t))
��2

dt ,

and on average with respect to the distribution µ0 of ICs:

Eµ0

"
sup

t2[0,T ]
kbX(t)� X(t)k

#
C

p

N k�̂(·) ·��(·) · k
L2(⇢T ),

where the measure ⇢T is defined in Eq. 4 and C =C (T ,CLip).

4. Extensions: Heterogeneous Agent Systems, First and
Second Order
The method proposed extends naturally to a large variety of
interacting agent systems arising in a multitude of applications
(4), including systems with multiple types of agents, driven
by second-order equations, and including interactions with an
environment. For detailed discussions of related topics on
self-organized dynamics, we refer the readers to refs. 3 and 32–35
and the recent surveys (36, 37).
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Fig. 6. Estimation of interaction kernels (Upper) and trajectory prediction
(Lower) for the Phototaxis system. Results for the Phototaxis systems, as
described in Sections 4 and 5, are shown. (Upper) Left represents �A vs. �̂A

(top row), and �⇠ vs. �̂⇠ (bottom row), superimposed with the histograms
of ⇢L

T ,r and, respectively, ⇢L,M
T ,r . Right shows the comparison of the marginal

distributions, ⇢L

T ,ṙ vs. ⇢L,M
T ,ṙ and ⇢L

T ,⇠ vs. ⇢L,M
T ,⇠ . (Lower) Left represents the tra-

jectories generated from true interaction kernels, whereas Right shows the
trajectories generated by the estimated kernels, generated from training IC
data (top row) and from a new random IC (bottom row). In this system, the
interaction kernels �A and �⇠ are the same; the corresponding estimators
�̂A and �̂⇠ are both learned accurately, but note that they are being learned
from two different sets of data, (r, ṙ) and (r, ⇠), respectively. In both cases,
data are scarce or missing for large values r, leading to estimators tapering
to 0 faster than the true interaction kernels. However, despite the undesired
tail-end behavior of our estimators, the estimators perform extremely well
in regenerating the trajectories. See SI Appendix, section 3 for more details.
Coord., coordinate.

A. First-Order Heterogeneous Agents Systems. Let the agents be
divided into K disjoint sets {Ck}

K

k=1 (“types”), with different
interaction kernels for each ordered pair of types:

ẋi(t)=
NX

i0=1

1
Nk

i0
�ki ki0 (rii0(t))rii0(t), [8]

where ki is the index of the type of agent i—i.e., i 2Cki ; Nk
i0 is

the number of agents in type Ck
i0 ; rii0 = xi0 � xi and rii0 = krii0k;

�kk0 :R+ !R is the interaction kernel governing how agents in
typeCk0 influence agents in typeCk . As usual we let X := (xi)Ni=1 2

RdN be the vector describing the state of the system. We assume
that the interaction kernels �ki ki0 ’s are the only unknown factors
in the model; in particular, we know the sets Ck ’s (i.e., the type of
each agent is known). The goal is to infer the interaction kernels
�kk0 from observations {Xm(tl)}

L,M
l,m=1 with 0= t1 < . . .< tl =T

and with the ICs Xm(0)= Xm

0 randomly sampled from µ0.
Let f�(Xm)2RdN be the vectorization of the right hand sides

of Eq. 8, and �=(�kk0)K
k ,k0=1. Dropping from the notation of

quantities that are assumed known, we rewrite the equations
for the dynamics in Eq. 8 as Ẋ

m

= f�(Xm). We use an error
functional similar to Eq. 2, with a weighted norm, to define the
estimators:

b� := argmin
'2H

1
ML

M ,LX

m=1,l=1

���Ẋ
m

(tl)� f'(xm(tl))
���
2

S

, [9]

where '=('kk0)K
k ,k0=1, b�=(�̂kk0)K

k ,k0=1 and kXk2
S
:=

P
N

i=1
1

Nki
kxik2. The weighted norm k·k

2
S

is introduced so that, when
different types of agents have significantly different cardinali-
ties (e.g., a large number of preys vs. a single predator), the
error functional will take into suitable consideration the least
numerous type. Otherwise, only the interaction kernel of the
most numerous type of agents would be accurately learned.
Other more general weighting strategies may be considered, with
minimal changes to the algorithm.

The generalization of ⇢LT in Eq. 5 (similarly for ⇢T ) to the
heterogeneous-agent case is the family, indexed by ordered pairs
{(k , k 0)}k ,k02{1,...,K}, of probability measures on R+

⇢L,kk
0

T
(r)=

1
LNkk0

LX

l=1

EX0⇠µ0

X

i2Ck ,i02C
k0 ,i 6=i0

�r
ii0 (tl )

(r), [10]

where Nkk0 =NkNk0 when k 6= k
0 and Nkk0 =

�
Nk

2

�
when k = k

0

(for Nk > 1, otherwise there is no interaction kernel to
learn). The error of an estimator, �̂kk0 , will be measured by����̂kk0(·) ·��kk0(·)·

���
L2(⇢L,kk

0
T

)
.

While this case requires learning multiple interaction kernels,
it turns out that the learning theory developed for the single-type
agent systems can be generalized, and the estimator in Eq. 9 still
achieves optimal rates of convergence, and a similar control on
the error of predicted trajectories can be obtained.

B. Second-Order Heterogeneous Agent Systems. Here, we focus on
a broad family of second-order multitype agent systems (not
included, even when rewritten as first-order systems, in the family
discussed above). We consider systems with K types of agents:
8
>>>>><

>>>>>:

mi ẍi =F
v
i (ẋi , ⇠i)+

NX

i0=1

1
Nk

i0

⇣
�E

ki ki0 (rii0)rii0 +�A

ki ki0 (rii0)ṙii0
⌘

⇠̇i =F
⇠
i
(⇠i)+

NX

i0=1

1
Nk

i0
�⇠
ki ki0

(rii0)⇠ii0 ,

[11]

for i =1, . . . ,N . Here ki 2 {1, . . . ,K} is the type of agent i ,
⇠i 2R is a variable modeling the agent’s response to the environ-
ment (e.g., food/light source), ⇠ii0 = ⇠i0 � ⇠i , and mi , Nk , mass of
agent i and number of agents of type k ; F v

i , F ⇠
i

, noncollective
influences on ẋi and ⇠i ; and �E

kk0 , �A

kk0 , �⇠
kk0 , energy-, alignment-,

and ⇠�type interaction kernels.
Note that here each agent is influenced by a weighted sum

of different influences over agents of different types, leading
to a rich family of models (including but not limited to prey–
predator, leader–follower, and cars–pedestrian models). Using
vector notation, let f�E (Xm) and f�A(Xm , Ẋ

m

)2RdN be the col-
lection of the energy and alignment induced interaction terms
respectively, and F

v(Ẋ
m

,⌅m)i =F
v
i (ẋi , ⇠i) (similar setup for

F
⇠(⌅m) and f�⇠ (Xm ,⌅m)) we can rewrite the equations as:

(
Ẍ
m

=F
v(Ẋ

m

,⌅m)+ f�E (Xm)+ f�A(Xm , Ẋ
m

)

⌅̇m =F
⇠(⌅m)+ f�⇠ (Xm ,⌅m) ,

[12]
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Table 1. Model selection: First- vs. second-order

Learned as Learned as
System first order second order

First-order system 0.01± 0.002 1.6 ± 1.1
Second-order system 1.7 ± 0.3 0.2± 0.06

The table shows the mean and SD of the errors of estimated trajectories,
over M = 250 train-test runs, with random ICs in each case. Small errors,
consistent with our theory that the errors are on a scale of M

�2/5, indicate
a correct model. The order is correctly identified in each case (highlighted
in bold).

where �E = {�E

kk0}, �A = {�A

kk0} and �⇠ = {�⇠
kk0}, with k , k 0 =

1, . . . ,K . We assume that the interaction kernels are the only
unknowns in the model, to be estimated from the observa-
tions {Xm(tl), Ẋ

m

(tl),⌅
m(tl)}

L,M
l,m=1, with M ICs Xm

0 := Xm(0),
Ẋ
m

0 := Ẋ
m

(0), and ⌅m

0 :=⌅m(0) sampled independently from µX
0 ,

µẊ
0 , and µ⌅

0 , respectively. With Ẍ
m

(tl) approximated by finite
difference, we construct estimators similar to those in Eq. 2

(b�
E

, b�
A

) := argmin
'E ,'A2Hv

1
ML

M ,LX

m,l=1

���Ẍ
m

(tl)�F
v(Ẋ

m

(tl),⌅
m(tl))

�f'E (Xm(tl))� f'A(Xm(tl), Ẋ
m

(tl))
���
2

S

, [13]

and the interactions acting on the auxiliary variable ⇠i can be
obtained separately as

b�
⇠
:= argmin

�⇠2H⇠

1
ML

M ,LX

m=1,l=2

k⌅̇m

l �F
⇠(⌅m

l )� f�⇠ (Xm

l ,⌅m

l )k
2

S
,

where ⌅̇m

l = Ẋ
m

(tl), Xm

l = Xm(tl), ⌅m

l =⌅m(tl), b�
⇠
=

{�̂⇠
kk0}

K

k ,k0=1, and the state space norm k · kS is defined similarly
to the first-order case. Here, we are using a vectorized notation
for 'E ,'A, Hv (a suitable product hypothesis space). To mea-
sure performance, for each pair (k , k 0), we define a probability
measure on R+ ⇥R+

⇢kk
0

T (r , ṙ)=
1

TNkk0

TZ

t=0

E
X

i2Ck ,i02C
k0 i 6=i0

�r
ii0 (t),ṙii0 (t)

(r , ṙ)dt ,

and another probability measure on R+ ⇥R+,

⇢L,kk
0

T ,r ,⇠(r , ⇠)=
1

LNkk0

LX

l=1

E
X

i2Ck ,i02C
k0 ,i 6=i0

�r
ii0 (tl ),⇠ii0 (t)

(r , ⇠),

where the expectation is with respect to ICs distributed accord-
ing to µX

0 ⇥µẊ
0 ⇥µ⌅

0 , and we let ṙ = kṙk (with abuse of notation),
⇠ii0(t)=

��⇠i0(t)� ⇠i(t)
��, Nkk0 =NkNk0 if k 6= k

0 and Nkk0 =
�
Nk

2

�

if k = k
0 (and Nk > 1, as there is no kernel to learn if Nk =1).

Let ⇢kk
0

T ,r be the marginal of ⇢kk
0

T with respect to r . We will mea-

sure the errors for �̂E

kk0(r)r , �̂A

kk0(r)ṙ , and b�
⇠

kk0(r)⇠ in L
2(⇢kk

0
T ,r ),

L
2(⇢kk

0
T ), and L

2(⇢kk
0

T ,r ,⇠), respectively.
The algorithm to construct the estimator in Eq. 13 generalizes

that for the first-order single-type agent systems, and involves
a LS problem with a structured matrix with K

2 vertical bands
indexed by (k , k 0), accommodating the estimators for the inter-
action kernels. Note that such an LS problem takes into account,
as it should, the dependencies in learning the various interaction
kernels, all at once.

We note that while of course the second-order system may
be written as a first-order system in the variables xi and vi = ẋi ;
even when F

v
i ⌘ 0 and �A

ki ,ki0
⌘ 0, the resulting equations for

(xi , vi) are different from those governing the first-order systems
considered above in Eq. 8.

5. Examples
We consider the learning of interaction kernels and the pre-
diction of trajectories for three canonical categories of exam-
ples of self-organized dynamics (see SI Appendix, section 3 for
details).

Opinion Dynamics These are first-order ODE systems with a
single type of agent, with bounded, discontinuous, compactly
supported, and attraction-only interaction kernels. They model
how the opinions of people influence each other and how con-
sensus is formed based on different kinds of influence functions
(refs. 14, 15, and 38 and references therein).

Predator–Swarm System We consider a first-order system with a
single predator and a swarm of prey, with the interaction kernels
(prey–prey, predator–prey, and prey–predator) similar to
Lennard–Jones kernels (with appropriate signs to model attrac-
tions and repulsions). Different chasing patterns arise depend-
ing on the relative interaction strength of predator–prey vs.
prey–predator interactions. We also consider a second-order
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Fig. 7. Model selection: energy-based vs. alignment-based. The estimated
interaction kernels for an energy-based model (A) and an alignment-based
model (B). For each model, we compute two estimators: an energy-based
interaction kernel �̂E and an alignment-based interaction kernel �̂A. Our
estimators correctly identify the type of model in each case: The L

2(⇢L

T ,r )
norm of �̂E is significantly larger than that of �̂A (means and SDs: 18.8 ± 0.4
vs. 6.5 ± 0.3) for the energy-based model, and the L

2(⇢L

T ,r ) norm of �̂A is
larger than that of �̂E (means and SDs: 27.6 ± 0.7 vs. 2.4 · 10�2

± 0.1) for
the alignment-based model. Note that the y axes are on very different
scales.
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predator–swarm system, with the collective interaction acting
on accelerations, leading to even richer dynamics and chasing
patterns (e.g., refs. 39–41).

Phototaxis This is a second-order ODE system with a single
type of agents interacting in an environment, modeling photo-
tactic bacteria moving toward a far-away fixed light source. The
response of the bacteria to the light source is represented in the
auxiliary variable ⇠i as the excitation level for each bacteria i

(e.g., refs. 42–44). Another example which we do not pursue here
is the Vicsek model (45), which fits perfectly in our model upon
choosing ⇠i = ✓i (✓i : moving direction of agent i).

In our experiments, we report the measure ⇢L,M
T

estimated
from the training data, our estimator, and similarly in the case
of noisy observations; we measure performance in terms of (rel-
ative) L

2(⇢LT ) error of the kernel estimators and of distance
between true trajectories X(t) and estimated trajectories bX(t),
on both the “training” interval [0,T ] (where observations were
given) and in the future [T , 2T ] (predictions). See Prop. 3.4,
where the bounds may be overly pessimistic, especially for sys-
tems tending to stable configurations. Our estimator performs
extremely well in all these examples: The interaction kernels
are accurately estimated, and the trajectories are accurately pre-
dicted. We refer the reader to Fig. 4 for the results of the opinion
dynamics, Fig. 5 for the results of the predator–swarm dynamics,
Fig. 6 for the results of the phototaxis, and SI Appendix, sec-
tion 3 for further details on the setup for the experiments and
a comprehensive report of all of the results, as well as a detailed
description of the final algorithm and its computation complexity
in SI Appendix, section 2.
Model Selection and Transfer Learning. We also consider the
use of our method for model selection, where the theoretical
guarantees on learning the interaction kernels and on predict-
ing trajectories are used to decide between different models
for the dynamics. We consider two examples of model selec-
tion, to test whether: (i) a second-order system is driven by
energy-based or alignment-based interactions; or (ii) a hetero-
geneous agent system is driven by first- or second-order ODEs.
For each of them, we construct two estimators assuming either
case and then select models according to the performance of
the estimators in predicting trajectories. See Table 1 and Fig. 7
for results and discussions and SI Appendix, section 3E for
details.

As a simple example of transfer learning, we use the inter-
action kernel learned on a system with N agents to accurately
predict trajectories of the same type of system but with more
agents (4N in our simulations); the interaction kernel acts as a
sort of “latent variable” that seamlessly enables transfer across
such related systems. In SI Appendix, section 3, we report the
corresponding results, for all of the systems considered (see,
however, Fig. 1 for the Lennard–Jones system).
Noisy Observations. Our estimators appear robust under obser-
vation noise, namely, if the observed positions and derivatives
are corrupted by noise. Fig. 8 demonstrates the kernel estimation
and trajectory prediction for the first-order predator–swarm sys-
tem when only noisy observations are available. Similar results
(reported in SI Appendix, section 3) are obtained in all of the
other systems considered.
Choice of the Basis of the Hypothesis Space. Our learning
approach is robust to the choice of hypothesis space H, as long
as the coercivity condition is satisfied by H (or the sequence Hn).
Additionally, different well-conditioned bases may be used in H

to compute the projection onto H, implying, together with the
coercivity condition, a control of the condition number of the LS
problem (SI Appendix, Prop. 2.1). To demonstrate this numeri-
cally, we compare the B-splines linear basis with the piecewise
polynomial basis on the 1st -order predator–swarm system, with
results shown in SI Appendix, Fig. S8.
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Fig. 8. Kernel estimation for PS1st from noisy observations. (Upper) Inter-
action kernels learned with Unif.([��, �]) multiplicative noise with �= 0.1
in the observed positions and velocities, with parameters as in SI Appendix,
Table S9. The estimated kernels are minimally affected and only in regions
with small ⇢L

T
. (Lower) One of the observed trajectories before and after

being perturbed by noise. The solid lines represent the true trajectory,
the dashed semitransparent lines represent the noisy trajectory used as
training data (together with noisy observations of the derivative), and the
dashed-dotted lines are the predicted trajectory learned from the noisy
trajectory.

6. Discussion and Conclusion
We proposed a nonparametric estimator for learning interac-
tion kernels from observations of agent systems, implemented
by computationally efficient algorithms. We applied the estima-
tor to several classes of systems, including first- and second-
order, with single- and multiple-type agents, and with simple
environments. We have also considered observation data from
different sampling regimes: many short-time trajectories, a single
large-time trajectory, and intermediate time scales.

Our inference approach is nonparametric, does not rely on
a dictionary of hypotheses (such as in refs. 6–8), exploits the
structure of dynamics, and enjoys optimal rates of convergence
(which we proved here for first-order systems), independent of
the dimension of the state space of the system. Having techniques
with solid statistical guarantees is fundamental in establishing
trust in data-driven models for these systems and in using them
as an aide to the researcher in formulating and testing conjec-
tures about models underlying observed systems. In this vein,
we presented two examples of model selection, showing that
our estimators can reliably identify the order of a system and
identify whether a system is driven by energy- or alignment-type
interactions.

We expect further generalizations to the case of stochastic
dynamical systems and to the cases of more general interac-
tion kernels that depend on more general types of interaction
between agents, beyond pairwise, distance-based interactions.
Other future directions include (but are not limited to) a
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better understanding of learnability, model selection based on
the theory, learning from partial observations, and learning
reduced models for large systems.
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1. Learning Theory

Consider the problem of estimating the interaction kernel „ : R+ æ R of the dynamical system as follows

ẋi(t) = 1
N

Nÿ

iÕ=1

„(ÎxiÕ (t) ≠ xi(t)Î )(xiÕ (t) ≠ xi(t)) , [1]

from observations of discrete-time trajectories and derivatives, {Xm(tl)} and {Ẋm(tl)} with 0 = t1 < · · · < tL = T and
m = 1, . . . , M . We let X := (xi)N

i=1 œ RdN be the state space variable. The initial conditions Xm
0 := Xm(0) are sampled

independently from a probability measure µ0 on RdN .
Such a system can also be described as the gradient flow Ẋ = f„(X) = ÒU(X) of the potential energy U(X) =

1
2N

q
i,iÕ �(Îxi ≠ xiÕ Î), with the function � : R+ æ R satisfying �Õ(r) = „(r)r. Therefore, the estimation of „ is equivalent to

the estimation of �Õ. As we will see later, the function „(·)· appears naturally in assessing the quality of approximation of
estimators of „, the fundamental reason being the relationship with the potential involving �.

We restrict our attention to kernels in the admissible set

KR,S := {„ œW
1,Œ : supp(„) œ [0, R], sup

rœ[0,R]

#
|„(r)| + |„Õ(r)|

$
Æ S} [2]

for some R, S > 0. The boundedness of „ and its derivative ensures the existence and uniqueness of a global solution to initial
value problems of the first order system Eq. (1), and the continuous dependence of the solution on the initial condition. The
restriction supp(„) µ [0, R] represents the finite range of interaction between particles, and this restriction may be replaced by
functions with unbounded support but with a suitable decay on R+.

We shall construct an error functional based on the special structure of the dynamical system Ẋ = f„(X), taking advance
of the form of the dependency of the right-hand side f„ on the interaction kernel „. This learning procedure deviates from
standard regression in two aspects: (i) the values of the interaction kernel are not observed, and cannot be explicitly estimated
from the observations of the state variables; (ii) the observations of the independent variable of the interaction kernel, given by
the pairwise distance between the agents, though abundant, are not independent and may be redundant.

We would also like to stress the importance of using a carefully chosen measure on the pairwise distance space, so as to
account for both the randomness from the initial conditions and the evolution of the dynamical system, and to reflect the
(relative) abundances of pairwise distances. Our analysis shows that the expectation of the empirical measure of the pairwise
distances is a natural choice, and it is closely related to the coercivity condition, the other fundamental ingredient which
ensures learnability and convergence of the estimators.

A. The Error functional and estimators. Given the structure of the first order system Eq. (1), we consider the error functional

EL,M (Ï) := 1
MN

L,M,Nÿ

l,m,i=1

wl

..ẋm
i (tl) ≠ fÏ(xm(tl))i

..2
, [3]

where {wl}L
l=1 is a normalized set of weights (wl > 0 and

qL

l=1 wl = 1), and define an estimator

‚„L,M,H := arg min
ÏœH

EL,M (Ï), [4]

where H is a suitable class of functions that will be referred as hypothesis space. Natural choices of weights {wl} may be
chosen to be all equal to 1/L, as in the case of equi-spaced tl’s, which is what we considered throughout the paper, and is
consistent with the definition of fl

L
T and its use in measuring the performance of the estimator in L

2(flL
T ). However, if one

wished to measure the performance in a di�erent L
2 space, one could choose the weights di�erently. A distinguished choice

would be L
2(flLebesgue), in which case one may choose wl = 1/(tl+1 ≠ tl), for l = 1, . . . , L ≠ 1 (and change all the summations

involving l to stop at L ≠ 1 instead of L). Other choices of weights corresponding to other quadrature rules are also be possible.
Note that the error functional is quadratic in Ï and bounded below by 0, therefore the minimizer exists for any finite

dimensional convex hypothesis spaces H. We can always truncate this minimizer so that it is bounded above by S, the upper
bound of the functions in the admissible set KR,S , and this truncated estimator behaves similarly to the estimator obtained by
assuming that the functions in H are uniformly bounded. In fact, such truncation can only reduce the error. Hence, without
loss of generality, we assume H to be a compact set in the L

Œ norm.
Our objectives are measuring the quality of approximation of the estimator and finding the hypothesis spaces for which the

optimal rate of convergence of „̂ to the true interaction kernel „ is achieved.
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B. Measures on the pairwise distance space. We introduce a probability measure on R+, to define a suitable function space
that contains all the estimators and the true interaction kernel, and to provide a norm to assess the accuracy of the estimators.
We let

riiÕ (t) = xiÕ (t) ≠ xi(t), and riiÕ (t) = ÎxiÕ (t) ≠ xi(t)Î.

Note that the independent variable of the interaction kernel is the pairwise distances r
m
iiÕ (t), which can be computed from the

observed trajectories. It is natural to start from the empirical measure of pairwise distances

fl
L,M
T (r) = 1!

N
2
"
LM

L,Mÿ

l,m=1

Nÿ

i,iÕ=1,i<iÕ

”rm
iiÕ

(tl)(r) , [5]

which tends, as M æ Œ, using the law of large numbers, to fl
L
T defined in (5) in the main text. When trajectories are observed

continuously in time, the counterpart of fl
L
T is the measure defined in (5). We now establish basic properties of these measures:

Lemma 1.1. For each „ œ KR,S defined in Eq. (2), the measures fl
L
T and flT defined in (5) and (4) in the main text are Borel

probability measures on R+. They are absolutely continuous with respect to the Lebesgue measure provided that µ0 is absolutely
continuous with respect to the Lebesgue measure on RdN .

C. Learnability: the coercivity condition. A fundamental question is the learnability of the true interaction kernel, i.e. the
well-posedness of the inverse problem of kernel learning. Since the estimators „̂L,M,H always exists for suitably chosen hypothesis
spaces H (e.g. compact sets), learnability is equivalent to the convergence of the estimator „̂L,M,H to the true kernel „ as the
sample size increases (i.e. M æ Œ) and as the hypothesis space grows. To ensure such a convergence, one would naturally
wish: (i) that the true kernel „ is the unique minimizer of the expectation of the error functional (by the law of large numbers)

EL,Œ(Ï) := lim
MæŒ

EL,M (Ï) = 1
LN

L,Nÿ

l,i=1

E

C
.. 1

N

Nÿ

iÕ=1

(Ï ≠ „) (riiÕ (tl))riiÕ (tl)
..2

D
; [6]

(ii) that the error of the estimator, in terms of a metric based on the L
2(flL

T ) norm, can be controlled by the discrepancy
between the empirical error functional and its limit.

Note that EL,Œ(Ï) Ø 0 for any Ï and that EL,Œ(„) = 0. Furthermore, Eq. (6) reveals that EL,Œ(Ï) is a quadratic functional
of Ï ≠ „, and we have, by Jensen’s inequality,

EL,Œ(Ï) Æ (N ≠ 1)2

N2 ÎÏ(·) · ≠„(·)·Î2
L2(flL

T
) .

This inequality suggests the above weighted L
2(flL

T ) norm as a metric on the error of the estimator that we wish to be controlled.
Therefore, as long we as can bound the limit error functional from below by ÎÏ(·) · ≠„(·)·Î2

L2(flL
T

), we can conclude that „ is
the unique minimizer of EL,Œ(·) and that the estimators converge to „. This suggests the following coercivity condition:
Definition 1.1 (Coercivity condition). We say that the dynamical system defined in Eq. (1) together with the probability
measure µ0 on RdN , satisfies the coercivity condition on H with a constant cL,N,H > 0, if

cL,N,HÎÏ(·) · Î2
L2(flL

T
)Æ

1
NL

L,Nÿ

i,l=1

E
5.. 1

N

Nÿ

iÕ=1

Ï(riiÕ (tl))riiÕ (tl)
..2

6
[7]

for all Ï œ H such that Ï(·)· œ L
2(flL

T ), with the measure fl
L
T defined in (4) in the main text, and the expectation being with

respect to initial conditions distributed according to µ0.
The above inequality is called a coercivity condition because that it implies coercivity of the bilinear functional ÈÈ·, ·ÍÍ on

L
2(R+, fl

L
T ),

ÈÈÏ1, Ï2ÍÍ := 1
LN

L,Nÿ

l,i=1

E
5=

1
N

Nÿ

j=1

Ï1(rji(tl))rij(tl),
1
N

Nÿ

j=1

Ï2(rji(tl))rij(tl)
>6

, [8]

as Eq. (7) may be rewritten as
cL,N,H ÎÏ(·)·Î2

L2(R+,flL
T

) Æ ÈÈÏ, ÏÍÍ.
The coercivity condition plays a key role in the learning of the interaction kernel. It ensures learnability by ensuring the

uniqueness of minimizer of the expectation of the error functional, and by guaranteeing convergence of estimators through a
control of the error of the estimator on every compact convex hypothesis space H in L

2(flL
T ). To see this, apply the coercivity

inequality to Ï ≠ „, to obtain

cL,N,H ÎÏ(·) · ≠„(·)·Î2
L2(R+,flL

T
) Æ EL,Œ(Ï). [9]

From the facts that EL,Œ(Ï) Ø 0 for any Ï and that EL,Œ(„) = 0, we can conclude that the true kernel „ is the unique minimizer
of the EL,Œ(Ï). Furthermore, the coercivity condition enables us to control the error of the estimator, on every compact convex
hypothesis space in L

2(flL
T ), by the discrepancy of the error functional (see Proposition 1.3), therefore guaranteeing convergence

of the estimator.
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Theorem 1.2. Let Hn be a sequence of compact convex subsets of L
Œ([0, R]) such that

inf
ÏœHn

ÎÏ(·) · ≠„(·) · ÎL2(flL
T

) æ 0

as n æ Œ. Assume that the coercivity condition holds on fiŒ

n=1Hn. Then the estimator ‚„L,M,Hn defined in Eq. (4) converges
to the true kernel in L

2(flL
T ) almost surely as n, M approaches infinity, i.e.

lim
næŒ

lim
MæŒ

Î‚„L,M,Hn (·) · ≠„(·) · ÎL2(flL
T

) = 0, almost surely.

The above theorem follows from the next proposition.

Proposition 1.3. Let H be a compact convex subset of L
2(flL

T ) and assume the coercivity condition holds true on H. Then the
functional EL,Œ defined in Eq. (6) admits a unique minimizer

‚„L,Œ,H = arg min
ÏœH

EL,Œ(Ï), [10]

in L
2(flL

T ). Furthermore, for all Ï œ H

EL,Œ(Ï) ≠ EL,Œ(‚„L,Œ,H) Ø cL,N,HÎÏ(·) · ≠‚„L,Œ,H(·) · Î2
L2(flL

T
). [11]

D. Optimal rate of convergence of the estimator. We now turn to the rate of convergence of the estimator.

Theorem 1.4. Let the true kernel „ œ KR,S, and let H µ L
Œ([0, R]) be compact convex and bounded above by S0 Ø S. Assume

that the coercivity condition in Eq. (7) holds. Then for any ‘ > 0, we have

cL,N,HÎ„̂L,M,H(·) · ≠„(·) · Î2
L2(flL

T
) Æ 2 inf

ÏœH

ÎÏ(·) · ≠„(·) · Î2
LŒ([0,R]) + 2‘ [12]

with probability at least 1 ≠ ”, provided that

M Ø 1152S
2
0R

2

cL,N,H‘

!
log(N (H,

‘

48S0R2 )) + log(1
”

)
"

,

where N (H, ÷) is the ÷-covering number of H under the Œ-norm.

We discuss first the implications of this theorem on the choice of hypothesis space in view of obtaining optimal rates of
convergence of our estimator. The proof of the theorem will be presented at the end of this section. In practice, given a
set of M trajectories, we would like to chose the best finite-dimensional hypothesis space H to minimize the error of the
estimator. There are two competing issues. On one hand, we would like the hypothesis space H to be large so that the
bias infÏœH ÎÏ ≠ „Î2

LŒ([0,R]) is small. On the other hand, we would like to keep H to be small so that the covering number
N (H, ‘/48S0R

2), and therefore the variance of the estimator is small. This is the classical bias-variance trade-o� in statistical
estimation. Inspired from approximation methods in regression (1–3) , the following proposition quantifies the e�ect of
hypothesis spaces on the rate of convergence of the estimator.

Proposition 1.5. Assume that the coercivity condition holds with a constant cL,N,H, and recall ‚„L,M,H defined in Eq. (4) is a
minimizer of the empirical error functional over a hypothesis space H.
(a) For H = KR,S, there exists a constant C = C(S, R) such that

E[Î‚„L,M,H(·) · ≠„(·) · ÎL2(flL
T

)] Æ C

cL,N,H
M

≠
1
4 .

(b) Assume that Hn is a sequence of finite dimensional spaces of L
Œ([0, R]) such that dim(Hn) Æ c0n and

inf
ÏœHn

ÎÏ(·) ≠ „(·)Î2
LŒ([0,R]) Æ c1n

≠s [13]

for all n for some constants c0, c1, s > 0, then by choosing n = nú := (M/log M)
1

2s+1 , we have

E[Î‚„L,M,Hnú
(·) · ≠„(·) · ÎL2(flL

T
)] Æ C

cL,N,H

1 log M

M

2 s
2s+1

,

where C = C(c0, c1, R, S).

It is interesting to compare this rate with those in the mean field regime, where the regime N æ Œ (with M = 1, L æ Œ)
was studied: the rates implied by (4) they seem to be no better than N

≠1/d, i.e. they are cursed by the dimension d, even if
the problem is fundamentally that of estimating a 1-dimensional function. It would be interesting to understand whether that
rate is optimal for this problem in the mean-field regime (N æ Œ), or if in fact, the results in the present work lead to sharper,
dimension-independent bounds in the mean-field limit as well.

The proof of Thm. 1.4 is based on this technical Proposition:
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Proposition 1.6. Assume the coercivity condition holds true and let H µ L
Œ([0, R]) be compact convex, bounded above by S0.

Let

DL,Œ,H(Ï) := EL,Œ(Ï) ≠ EL,Œ(‚„L,Œ,H) , DL,M,H(Ï) := EL,M (Ï) ≠ EL,M (‚„L,Œ,H),

where ‚„L,Œ,H is the minimizer of EL,Œ(·) over H. Then for all ‘ > 0 and 0 < – < 1, we have

P

;
sup
ÏœH

DL,Œ,H(Ï) ≠ DL,M,H(Ï)
DL,Œ,H(Ï) + ‘

Ø 3–

<
Æ N (H, C1–‘) e

≠C2–2M‘

where C1 = 1
8S0R2 and C2 = ≠cL,N,H

32S2
0 R2 .

Proof of the Theorem 1.4 . Put – = 1
6 in Proposition 1.6. We know that, with probability at least

1 ≠ N
1

H,
‘

48S0R2

2
e

≠
cL,N,HM‘

1152S2
0 R2

,

we have
sup
ÏœH

DL,Œ,H(Ï) ≠ DL,M,H(Ï)
DL,Œ,H(Ï) + ‘

<
1
2 ,

and therefore, for all Ï œ H,
1
2DL,Œ,H(Ï) < DL,M,H(Ï) + 1

2 ‘.

Taking Ï = ‚„L,M,H, we have
DL,Œ,H(‚„L,M,H) < 2DL,M,H(‚„L,M,H) + ‘ .

But DL,M,H(‚„L,M,H) = EL,M (‚„L,M,H) ≠ EL,M (‚„L,Œ,H) Æ 0 and hence by Proposition 1.3 we have

cL,N,HÎ‚„L,M,H(·) · ≠‚„L,Œ,H(·) · Î2
L2(flL

T
) Æ DL,Œ,H(‚„L,M,H) < ‘.

Therefore,

Î‚„L,M,H(·) · ≠„(·) · Î2
L2(flL

T
) Æ 2Î‚„L,M,H(·) · ≠‚„L,Œ,H(·) · Î2

L2(flL
T

) + 2Î‚„L,Œ,H(·) · ≠„(·) · Î2
L2(flL

T
)

Æ 2
cL,N,H

(‘ + inf
ÏœH

ÎÏ(·) · ≠„(·) · Î2
Œ),

where the last inequality follows from the coercivity condition and by the definition of ‚„L,Œ,H(see Eq. (10)). Given 0 < ” < 1,
we see we need M large enough so that

1 ≠ N (H,
‘

48S0R2 )e
≠

cL,N,HM‘

1152S2
0 R2 Ø 1 ≠ ” .

The conclusion follows.

E. Trajectory-based Performance Measures. After having established results on the convergence rate of our estimator, we turn
to control the accuracy of trajectories predicted when using the estimated interaction kernel, evolved from initial conditions
both in and outside of the training data. Trajectory-based measurements of accuracy are interesting because (a) they provide a
quantitative assessment on the quality of the approximated dynamics, (b) while the true interactions kernels are typically not
known, and so the accuracy of the estimated interaction kernel may not be evaluated, trajectories are known, and may be used
to perform model validation and cross-validation for parameter selection (if needed).

The next Proposition shows that the error in prediction is (i) bounded trajectory-wise by a continuous time version of the
error functional, and (ii) bounded in the mean squared sense by the mean squared error of the estimated interaction kernel.

Proposition 1.7. Let ‚„ be an estimator of the true interaction kernel „. Suppose that the function ‚„(|| · ||)· is Lipschitz
continuous on Rd, with Lipschitz constant CLip. Denote by ‚X(t) and X(t) the solutions of the systems with interaction kernels
‚„ and „ respectively, starting from the same initial condition. Then we have

sup
tœ[0,T ]

Î ‚X(t) ≠ X(t)Î2 Æ 2T e
8T 2C2

Lip

⁄ T

0

..Ẋ(t) ≠ fÏ̂(X(t))
..2

dt

for each trajectory, and on average with respect to the initial distribution µ0,

Eµ0 [ sup
tœ[0,T ]

Î ‚X(t) ≠ X(t)Î2] Æ C(T, CLip)
Ô

NÎ‚Ï(·) · ≠„(·) · Î2
L2(flT )

for a constant C(T, CLip), where the measure flT is as in Eq. (4) in the main text.
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2. Algorithm

We start from describing the algorithm in its simplest form, for learning first order system with homogeneous agents; we then
move to first order systems with heterogeneous agents, and finish with the second order systems with heterogeneous agents.

A. First Order Homogeneous Agent Systems. Recall that we would like to estimate the interaction kernel „ of the N -agent
system in Eq. (1) from M independent trajectories {xm

i (tl), ẋm
i (tl)}N,L,M

i=1,l=1,m=1 with tl = lT
L . We obtain an estimator by

minimizing the discrete empirical error functional, over all Ï in a hypothesis space Hn,

EL,M (Ï) = 1
LMN

L,M,Nÿ

l,m,i=1

.....ẋm
i (tl) ≠

Nÿ

iÕ=1

1
N

Ï(rm
i,iÕ (tl))rm

i,iÕ (tl)

.....

2

. [14]

When only the positions can be observed, we assume that T/L is su�ciently small so that we can accurately approximate
the velocity ẋm

i (tl) by finite di�erences, for example

ẋm
i (tl) ¥ �xm

i (tl) = xm
i (tl) ≠ xm

i (tl≠1)
tl ≠ tl≠1

, for 1 Æ l Æ L,

where we assumed t0 is also observed. The error of the backward di�erence approximation is of order O(T/L), leading to a
O(T/L) bias in the estimator. Therefore, for simplicity, we assume in the theoretical discussion that follows that the velocity
ẋm

i (tl) is observed.
First, we set the hypothesis space Hn to be the span of {Âp}n

p=1, a set of linearly independent functions on [0, R]. It is
natural to use an orthonormal basis of Hn in L

2(flT
L) for e�cient computations. If the true interaction kernel is known to be

uniformly smooth, a global basis (e.g. Fourier) may be used. Since our admissible set is in W
1,Œ, we shall use a local basis

consisting of piecewise polynomial functions on a partition of increasingly finer intervals. The partitions will be on the interval
[Rmin, Rmax], where Rmin and Rmax are minimal and maximal values of r such that the empirical density fl

T
L,M (r) of the

pairwise distances {r
m
i,iÕ (tl)} is greater than a threshold.

Next, we minimize the empirical error functional over Hn to obtain an estimator. To simplify notation, for each m, we
denote

dm :=
!
ẋm

1 (t2), . . . , ẋm
N (t2); . . . ; ẋm

1 (tL) . . . ẋm
N (tL)

"
[15]

a column vector in RLNd; and denote

�m
L (li, p) :=

Nÿ

iÕ=1

1
N

Âp(rm
i,iÕ (tl))rm

i,iÕ (tl) œ Rd
,

for 1 Æ l Æ L, 1 Æ i Æ N and 1 Æ p Æ n, and refer it as the learning matrix �m
L . Here and in what follows, the index li denotes,

with some abuse of notation, the double-index (l, i) mapped (in any fixed way) bijectively onto a one-dimensional array. Then
we can rewrite the empirical error functional as

EL,M (Ï) = EL,M (a) = 1
LNM

Mÿ

m=1

Îdm ≠ �m
L aÎ2

RLNd .

Our estimator is the minimizer of EL,M (a) over Rn. This is a Least Squares problem, and we solve for the minimizer from the
normal equations

1
M

Mÿ

m=1

A
m
L

¸ ˚˙ ˝
AL,M

a = 1
M

Mÿ

m=1

b
m
L , [16]

where the trajectory-wise regression matrices are

A
m
L := 1

LN
(�m

L )T �m
L and b

m
L := 1

LN
(�m

L )T dm
.

We emphasize that the above regression is ready to be computed in parallel: we can compute simultaneously the matrices
A

m
L and b

m
L for di�erent trajectories. The size of the matrices A

m
L is n ◊ n, and there is no need to read and store all the data

at once, thereby dramatically reducing memory usage.
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B. Well-conditioning from coercivity. We show next that the coercivity condition implies that AL,M is well-conditioned and
positive definite for large M . More specifically, the coercivity constant provides a lower bound on the smallest singular value of
AL,M , provided the basis for the hypothesis space is well-conditioned (e.g. orthonormal), therefore enabling control of the
condition number of the regularized problem.

Recall the bilinear functional ÈÈ·, ·ÍÍ defined in Eq. (8).

Proposition 2.1. Assume that the coercivity condition holds on Hn µ L
Œ([0, R]) with cL,N,H > 0. Let {Â1, · · · , Ân} be a

basis of Hn such that
ÈÂp(·)·, ÂpÕ (·)·ÍL2(flL

T
) = ”p,pÕ , ÎÂpÎŒ Æ S0 [17]

and AL,Œ =
!
ÈÈÂp, ÂpÕ ÍÍ

"
p,pÕ

œ Rn◊n. Then the smallest singular value of AL,Œ satisfies

‡min(AL,Œ) Ø cL,N,H .

Moreover, AL,Œ is the a.s. limit of AL,M in Eq. (16). Therefore, for large M , the smallest singular value of AL,M satisfies

‡min(AL,M ) Ø 0.9cL,N,H

with probability at least 1 ≠ 2n exp(≠
c2

L,N,H
M

200n2c2
1+

10cL,N,Hc1
3 n

), where c1 = R
2
S

2
0 + 1.

Proof. For each a œ Rn,

aT
AL,Œa = ÈÈ

nÿ

p=1

apÂp,

nÿ

p=1

apÂpÍÍ Ø cL,N,H

..
nÿ

p=1

apÂp(·) ·
..2

L2(flL
T

) = cL,N,HÎaÎ2
.

This proves the desired bound on the smallest singular value.
Going back to the case of finite M : by the law of large numbers, the matrix AL,M =

qM

m=1 A
m
L converges to AL,Œ = E[Am

L ]
as M æ Œ. Hence if the sample size M is large enough, then we apply the matrix Bernstein inequality to get the probability
estimates for the event that ‡min(AL,M ) is bounded below by 0.9cL,N,H.

Remark 2.2. Proposition 2.1 highlights the importance of choosing basis functions to be linearly independent in L
2(flL

T ) instead
of in L

Œ([0, R]) for the hypothesis space Hn (orthonormality can be easily obtained through Gram-Schmidt orthogonalization
if the functions are linearly independent). To see this, consider a set of basis functions consisting of piecewise polynomials
that are supported on a partition of the interval [0, R]. These functions are linearly independent in L

Œ([0, R]), but can be
linearly dependent in L

2(flL
T ) if some of the partitioned intervals have zero probability under the measure fl

L
T . This would lead

to an ill-conditioned normal matrix AL,Œ. This issue can deteriorate in practice when the unknown fl
L
T is replaced by the

empirical measure fl
L,M
T . In this work we use piecewise polynomials on a partition of the support of fl

L,M
T , which are orthogonal

in L
2(flL,M

T ).

C. First Order Heterogeneous Agent Systems. For these systems the empirical error to be minimized is as in (9) in the main
text:

1
LM

L,M,Nÿ

l,m,i=1

1
Nki

.....ẋm
i (tl) ≠

Nÿ

iÕ=1

1
NkiÕ

ÏkikiÕ
(rm

i,iÕ (tl))rm
i,iÕ (tl)

.....

2

,

over all possible Ï = {ÏkkÕ }K
k,kÕ=1 œ H. Here ri,iÕ (tl) and ri,iÕ (tl) are as in Eq. (14). When given observation data,

{xm
i (tl)}N,M,L

i=1,m=1,l=1, but no derivative information, we approximate the derivatives using backward di�erencing scheme for
1 Æ l Æ L (assuming observations at t0); in either case we assemble the derivative vector d similarly to Eq. (15), but with the
normalization

dm(li) = N
≠1/2
ki

�xm
i (tl) œ Rd

.

Proceeding analogously to the homogeneous agent case, we search for ÏkkÕ in a nkkÕ -dimensional hypothesis space HnkkÕ
,

with basis {ÂkkÕ,p}nkkÕ

p=1 , and write ÏkkÕ (r) =
qK

k,kÕ=1
qnkkÕ

p=1 akkÕ,pÂkkÕ,p(r) for some vector of coe�cients (akkÕ,p)nkkÕ

p=1 . For the
learning matrix �m

L , we will divide the columns into K
2 regions, each region indexed by the pair (k, k

Õ), with k, k
Õ = 1, · · · , K.

We adopt the usual lexicographic partial ordering on these pairs. The columns of �m
L corresponding to (k, k

Õ) are given by

�m
L (li, ñkkÕ + p) = N

≠1/2
ki

ÿ

iÕœCkÕ

1
NkÕ

ÂkkÕ,p(rm
i,iÕ (tl))rm

i,iÕ (tl) œ Rd
,

for i œ Ck and 1 Æ l Æ L, and ñkkÕ =
q

(k1,kÕ

1)<(k,kÕ) nk1kÕ

1
. We define

a =
!
a11,1, . . . , a11,n11 ; . . . ; aKK,1, . . . , aKK,nKK

"
œ Rd0

with d0 =
qK

k,kÕ=1
nk,kÕ , to arrive at Eq. (16)
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D. Second Order Heterogeneous Agent Systems. The learning problems of inferring the interactions of the ẋi’s and ›i’s can
be de-coupled. We start with the inference of the interactions on ẋi’s. Let the observations of the second order heterogeneous
agent system be {xm

i (tl), ẋm
i (tl), ›

m
i (tl)}L,N,M

l,i,m=1. Let vm
i = ẋm

i . As usual, if velocities and/or accelerations are not observed,
they are approximated by a finite-di�erence (in time) scheme, for example

�vm
i (tl) = vm

i (tl) ≠ vm
i (tl≠1)

tl ≠ tl≠1
, �›

m
i (tl) = ›

m
i (tl) ≠ ›

m
i (tl≠1)

tl ≠ tl≠1
,

for 1 Æ l Æ L and 1 Æ i Æ N (assuming observations also at t0). For the data corresponding to the m
th initial condition, we

assemble the external influence (from interaction with the environment) vector F̨
m,v as:

F̨
m,v(li) = N

≠1/2
ki

F
v(vm

i (tl), ›
m
i (tl)) œ Rd

,

and the approximated derivative of vi’s as

dm,v(li) = N
≠1/2
ki

mi�vm
i (tl) œ Rd

.

We use a finite dimensional subspace HE
nE , so that the candidate functions ÏE = {Ï

E
kkÕ }K

k,kÕ=1 are expressed as ÏE(r) =
qK

k,kÕ=1
qnE

k,kÕ

p=1 –
E
kkÕ,pÂ

E
kkÕ,p(r). Using the same ordering from previous discussion on the first order heterogeneous agent

system, we have, for a pair (k, k
Õ) learning matrix �m,E

L,M for the energy-based interaction kernel,

�m,E
L,M (li, ñ

E + p) = N
≠1/2
ki

ÿ

iÕœCkÕ

1
NkÕ

Â
E
kkÕ,p(rm

i,iÕ (tl))rm
i,iÕ (tl),

for 1 Æ l Æ L, i œ Ck and ñ
E =

q
(k1,kÕ

1)<(k,kÕ) n
E
k1kÕ

1
. The construction of the alignment-based learning matrix �m,A

L,M is
analogous:

�m,A
L,M (li, ñ

A + p) = N
≠1/2
ki

ÿ

iÕœCkÕ

1
NkÕ

Â
A
kkÕ,p(rm

i,iÕ (tl))rm
i,iÕ (tl),

for 1 Æ l Æ L, i œ Ck and ñ
A =

q
(k1,kÕ

1)<(k,kÕ) n
A
k1kÕ

1
. We put all the –’s together into aE and aA, and further grouping them

into one big vector, av =
3

aE

aA

4
and �m,v

L,M =
!
�m,E

L,M , �m,A
L,M

"
, we arrive at the final formulation,

1
LM

Mÿ

m=1

..dm,v ≠ F̨
m,v ≠ �m,v

L,M av
..2
RLNd .

As usual, we solve the associated normal equations of Eq. (16) with A
m
L := (�m,v

L,M )€�m,v
L,M and b

m
L := (�m,v

L,M )€(dm,v ≠ F̨
m,v),

reducing the system size from (MLNd) ◊ (nE + n
A) to (nE + n

A)2.
For the inference of the interactions on ›i’s, we let

F̨
m,›(li) = N

≠1/2
ki

F
›(›m

i (tl)) and dm,›(li) = N
≠1/2
ki

�›
m
i (tl),

for 1 Æ l Æ L and 1 Æ i Æ N ; then the learning matrix �m,›
L,M is assembled similarly as

�m,›
L,M (li, ñ

› + p) = N
≠1/2
ki

ÿ

iÕœCkÕ

1
NkÕ

Â
›
kkÕ,p(rm

i,iÕ (tl))rm
i,iÕ (tl),

for 1 Æ l Æ L, i œ Ck, and ñ
› =

q
(k1kÕ

1)<(k,kÕ) n
›
k1,kÕ

1
. We then arrive at the Least Squares problem

1
LM

Mÿ

m=1

..dm,› ≠ F̨
m,› ≠ �m,›

L,M a›
..2
RLNd

and solve it from the associated normal equations.
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E. The Final Algorithm. Given observation data, {xm
i (tl) and ẋm

i (tl) and/or ›
m
i (tl)}L,N,M

l,i,m=1, we use the Algorithm 1 to find the
estimators for the interaction kernels.

Algorithm 1 Learning Interaction Kernels from Observations

1: Input: {xm
i (tl) and/or ẋm

i (tl) and/or ›
m
i (tl)}L,N,M

l,i,m=1.
2: Output: estimators for the interaction kernels.
3: if First Order System then
4: Find out the maximum interaction radii RkkÕ ’s.
5: Construct the basis, ÂkkÕ,p’s.
6: Assemble the normal equations (16) (in parallel) and solve for a.
7: Assemble ‚„(r) =

qK

k,kÕ=1
qnkkÕ

p=1 akkÕ,pÂkkÕ,p(r).
8: else if Second Order System then
9: Find out the maximum interaction radii RkkÕ ’s.

10: Construct the basis, Â
E
kkÕ,p’s and Â

A
kkÕ,p’s.

11: Assemble the normal equations (16) (in parallel), solve for av, and partition it to aE and aA.

12: Assemble ‚„(r)E =
qK

k,kÕ=1
qnE

kkÕ

p=1 a
E
kkÕ,pÂ

E
kkÕ,p(r) and ‚„(r)A =

qK

k,kÕ=1
qnA

kkÕ

p=1 a
A
kkÕ,pÂ

A
kkÕ,p(r).

13: if If there are ›i’s then
14: Construct the basis, Â

›
kkÕ,p’s.

15: Assemble the normal equations and solve for a›.

16: Assemble ‚„(r)› =
qK

k,kÕ=1
qn›

kkÕ

p=1 a
›
kkÕ,pÂ

›
kkÕ,p(r).

17: end if.
18: end if.

F. Computational Complexity. The computational complexity is driven by the construction and solution of the least squares
problem in Algorithm 1. Though the observation data {xm

i (tl), ẋm
i (tl), ›

m
i (tl)}L,N,M

l,i,m=1 requires an array of size MLN(2d + 1),
the linear system to be solved, i.e. the system consisting of normal equations, is only of size n

E + n
A; in the case of choosing

the optimal basis, n
E and n

A behave like O(M
1

2s+1 ). When the system of the normal equations is ill-conditioned or ill-posed,
a truncated singular value decomposition will be used, which performs a singular value decomposition of the matrix AL,M , and
keeps those singular values which are above a (preset) threshold, then assemble an approximated matrix with the truncated
singular value matrices.

Furthermore, since the M trajectories are independent, we can construct �m,E and other related quantities for each
trajectory at a time (which can be done in a parallel environment with two communication needed, one to send/receive the
maximum interaction radii’s, and the other to send/receive A

m
L and b

m
L in the normal equations after they are built on the

master core), each requires a total memory of LNd(nE + n
A) + LNd + LNd, which is O(LNd), since n

E + n
A π LNd.

The computing time of the algorithm depends heavily on the time to assemble normal equations from M trajectories, which
is O((nE + n

A)2
LN

2); solving the final linear system requires time O((nE + n
A)3) = O(M

3
2s+1 ) in the worst case, for example

when using a highly stable truncated singular value decomposition solver.
Therefore, the algorithm is e�ective at inferring the interactions from a wide variety of systems; the results will be discussed

in the next section.

3. Examples

We consider here four important examples of self-organized dynamics: the opinion dynamics, the particle system with the
Lennard-Jones potential, the predator-swarm system and the phototaxis dynamics. We describe here in detail how the numerical
simulations are set up for each of these examples. In all but the Lennard-Jones system, we set up the experiments using the
parameters as shown in Table S1. We consider the regime with a rather small number of observations in terms of both M and
L to emphasize that our technique can achieve good results even when a relatively small number of samples is given.

Table S1

N # Trials MflL
T

[0, Tf ]
10 10 2000 [0, cT ]

Parameters used in all the examples but the Lennard-Jones system. Here the observation time T is system-specific. c = 2 in all examples unless
otherwise specified.

We use a large number MflL
T

(in particular, MflL
T

∫ M) of independent trajectories (not to be used elsewhere) to obtain an
accurate approximation of the unknown probability measure fl

L
T in (4) in the main text. In what follows, to keep the notation

from becoming cumbersome, we denote by fl
L
T this empirical approximation to fl

L
T . We run the dynamics over the time [0, Tf ]
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with M di�erent initial conditions (drawn from the dynamics-specific probability measure µ0), and the observations consist
of the state vector, with no derivative information, at L equidistant time samples in the time interval [0, T ]. We report the
relative (i.e. normalized by the norm of the true interaction kernel) error of our estimators in the L

2(flL
T ) norm. In the spirit

of Proposition (3.4) in the main text, we also report on the error on trajectories X(t) and ‚X(t) generated by the system
with the true interaction kernel and with the learned interaction kernel, on both the “training” time interval [0, T ] and on a
“prediction” time interval [T, Tf ] (Tf = 2T unless otherwise specified), with both the same initial conditions as those used for
training, and on new initial conditions (sampled according to the specified measure µ0). The trajectory error will be estimated
using M trajectories (we report mean and standard deviation of the error). We run a total of 10 independent learning trials
and compute the mean and standard deviation of the corresponding estimators, their errors, and the trajectory errors just
discussed. Since each learning trial generates di�erent mean and standard deviation of the trajectory errors over di�erent
Initial Conditions (ICs), we also report the mean and standard deviation over the 10 learning trials for meanIC and stdIC .

All ODE systems are evolved using ode15s in MATLAB® with a relative tolerance at 10≠5 and absolute tolerance at 10≠6.
We choose the finite-dimensional hypothesis space Hn (with n chosen di�erently in each example, based on sample size) as the
span of either piecewise constant or piecewise linear functions on n intervals forming a uniform partition of [0, Rk,kÕ ], where
Rk,kÕ is the maximum observed pairwise distance between agents of type k

Õ and agents in type k for t œ [0, T ].
Learning results are showcased in Fig. 5 in the main text . The first one compares the learned interaction kernel(s) to the

true interaction kernel(s) (with mean and standard deviation over the total number of learning trials) with the background
showing the comparison of fl

L
T (computed on MflL

T
trajectories, as described above) and fl

L,M
T (generated from the observed data

consisting of M trajectories). The second plot compares the true trajectories (evolved using the true interaction law(s)) and
learned trajectories (evolved using the learned interaction law(s)) over two di�erent sets of initial conditions – one taken from
the training data, and one new, randomly generated from µ0. The third plot compares the true trajectories and the trajectories
generated with the estimated interaction kernel, but for a di�erent system with number of agents Nnew = 4N , again over two
di�erent sets of randomly chosen initial conditions. Measurements of performance are also shown alongside the figures: (L2(flL

T )
errors, trajectory errors, etc. Let X(t) and X̂(t) be two sets of continuous-time trajectories; the max-in-time error is defined as

..X ≠ X̂
..

TM([0,T]) = sup
tœ[0,T ]

..X(t) ≠ X̂(t)
..

S
. [18]

For second order systems with the auxiliary environment variable ›i’s, we are also interested in the trajectories of ›i, for which
we may use

..� ≠ �̂
..

TM([0,T]) = suptœ[0,T ]
..�(t) ≠ �̂(t)

..
S

.
Finally, for each example we consider adding noise to the observations: in the case of additive noise the observations

are {(Xm(tl) + ÷1,l,m, Ẋm(tl)) + ÷2,l,m}L,M
l=1,m=1, while in the case of multiplicative noise they are {(Xm(tl) · (1 + ÷1,l,m),

Ẋm(tl)) · (1 + ÷2,l,m)}L,M
l=1,m=1, where in both cases ÷1,l,m and ÷2,l,m are i.i.d. samples from a distribution modeling noise,

which we will pick to be Unif.([≠‡, ‡]). Note that in both these cases velocities are part of our observations, since with noise
added in the position the inference of velocities becomes problematic due to the amplification of the noise that a simple finite
di�erence scheme would incur.

Finally, for several examples we also report the behavior of the relative error of the estimator as a function of the number of
samples L in time and of the number of trajectories M . We observe the decrease in error as L increases, which is expected but
is not captured by the estimate in Thm. (3.3) in the main text. These plots are qualitatively the same for all the experiments.

We devote the next sections to the various examples, discussing setups particular to each example and corresponding results.

A. Opinion Dynamics. Modeling using self-organized dynamics has seen successful applications in studying and analyzing how
the opinions of people influence each other and how consensus is formed based on di�erent kinds of influence functions. We
refer to these systems as opinion dynamics. We consider the first order model in Eq. (1), and the interaction kernel defined as

„(r) =

Y
]

[

1, 0 Æ r <
1

Ô
2 ,

0.1,
1

Ô
2 Æ r < 1,

0, 1 Æ r.

In this context „ : R+ æ R+ is sometimes referred to as the scaled influence function, modeling the change of each agents’
opinion by relative di�erences in the opinions of the other agents. Here xi œ Rd is the vector opinions of agent i. Here Î·Î can
be taken as the normal Euclidean norm, but other metrics depending on the problem at hand may be used as well, with no
changes in our definitions and constructions. The time-discretization of this system is referred to as the classical Krause model
for opinion dynamics. With the specific „ above, there is only attraction present in the system, the opinions of the agents
merge into clusters, with the number of clusters significantly smaller than the number of agents. This clustering behavior
severely reduces the amount of e�ective samples of pairwise distance observable at large times. We consider the system and
test parameters given in Table S2.

Table S2

d M L T µ0 n deg(Â)
1 50 200 10 U([0, 10]2) 200 0

(OD) Parameters for the system
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Fig. S1. (OD) Trajectories X(t) and ‚X(t) obtained with „ and „̂ respectively, for dynamics with larger Nnew = 4N , over two different sets of initial conditions. We are able to
accurately predict the clusters (number and location). Errors are reported in Table S3.

Table S3

[0, T ] [T, Tf ]
meanIC: Training ICs 3.5 · 10≠2 ± 8.1 · 10≠3 4.8 · 10≠2 ± 1.4 · 10≠2

stdIC: Training ICs 5.2 · 10≠2 ± 1.3 · 10≠2 7.6 · 10≠2 ± 2.7 · 10≠2

meanIC: Random ICs 3.2 · 10≠2 ± 7.4 · 10≠3 4.6 · 10≠2 ± 1.2 · 10≠2

stdIC: Random ICs 5.0 · 10≠2 ± 1.7 · 10≠2 7.2 · 10≠2 ± 2.7 · 10≠2

meanIC: Larger N 3.1 · 10≠2 ± 2.0 · 10≠3 7.3 · 10≠2 ± 4.1 · 10≠3

stdIC: Larger N 2.1 · 10≠2 ± 2.1 · 10≠3 6.1 · 10≠2 ± 4.2 · 10≠3

(OD) Trajectory Errors: ICs used in the training set (first two rows), new IC"s randomly drawn from µ0 (second set of two rows), for ICs randomly drawn for
a system with 4N agents (last two rows). Means and std’s are over 10 learning runs.

Fig.S1 shows the comparison between the estimated interaction kernel „̂ (as the mean over learning trials) and the true one,
„. We obtain a faithful approximation of the true interaction kernel, including near the discontinuity and the compact support.
Our estimator also performs well near 0, notwithstanding that information of „(0) is lost due to the structure of the equations,
that have terms of the form „(0)̨0 = 0̨. The same figure also compares the trajectories generated by the system governed by „

and that governed by „̂. Table S3 reports the max-in-time error for those trajectories. We also test the robustness to noise, by
adding noise to the observations of both positions and velocities, as described above: the estimated kernel is shown in Figure
S2. Figure S3 shows the behavior of the error of the estimator as both L and M are increased.
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Fig. S2. (OD) Interaction kernel learned with Unif.([≠‡, ‡]) additive noise, for ‡ = 0.1 in the observed positions and velocities. The estimated kernels are minimally affected,
mostly in regions with small flL

T and near 0.
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Fig. S3. (OD) Relative error, in log10 scale, of „̂ as a function of L and M . The error decreases both in L and M , in fact roughly in the product ML, at least when M and L
are not too small. M = 1 does not seem to suffice, no matter how large L is, due to the limited amount of “information” contained in a single trajectory.
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(a) N -particle system, with kernel learned from many short trajectories

(b) N -particle system, with kernel learned from a few long trajectories

Fig. S4. (LJ) (a) and (b)presents trajectories X(t) (left) and ‚X(t) (right) obtained with „ and „̂ respectively, for initial conditions in the training dataset (top) and randomly
sampled initial conditions (bottom). The time T is as in Table S5. Trajectory errors for all cases are reported in Table S7.

B. Interacting Particles in Lennard-Jones Potential. The expression of the Lennard-Jones potential is

�(r) = 4‘

51
‡

r

212
≠

1
‡

r

26
6

= ‘

51
rm

r

212
≠ 2

1
rm

r

26
6

where ‘ is the depth of the potential well, ‡ is the finite distance at which the inter-particle potential is zero, r is the distance
between the particles, and rm is the distance at which the potential reaches its minimum. At rm, the potential function has
the value ≠‘. The r

≠12 term describes Pauli repulsion at short ranges due to overlapping electron orbitals, and the r
≠6 term

describes attraction at long ranges (van der Waals force, or dispersion force). We set ‘ = 10 and ‡ = 1 in our simulations.
In the experiments, whose results are represented in Fig. 1 in the main text, the distribution µ0 for the M i.i.d. initial

conditions is a standard Gaussian vector in R2N . In this Lennard-Jones interacting system, one has to be careful in choosing
the observation time interval. Since the minimum distance between the particles at initial configurations is very close to 0 with
high probability, the particles have very large velocities (e.g. ≥ 1022) due to the singularity of the interaction kernel at 0. This
obstruction made the learning algorithm infeasible since our algorithm is for learning bounded kernels. Therefore, we chose an
observation time starting from a suitable time t0, small but positive. On the other side of the training time interval, since the
system evolves to equilibrium configurations very quickly, we observe the dynamics up to a time T which is a fraction of the
equilibrium time. In each sampling regime, we observe the dynamics at discrete times {ti}i=2,...,L and then use the standard
finite di�erence method to obtain a faithful approximation of velocities of agents.
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Table S4

N d µ0 # Trials MflL
T

[t0, Tf ] deg(ÂkkÕ )
7 2 N(0, I2N ) 10 2000 [t0, cT ] 1

(LJ) Parameters used in Lennard-Jones system

Table S5

M L n [t0, T ] c

Many short traj. 200 91 600 [0.001, 0.01] 50
Single long traj. 20 4991 600 [0.001, 0.5] 2
(LJ) Observation parameters for the Lennard-Jones system

Table S4 and Table S5 summarize the parameters used for the two regimes: many short-time trajectories, and a single
large-time trajectory. In the first regime, the randomness of initial conditions enables the agents to explore large regions of
state space, and in the space of pairwise distance, in a short time. In the second regime, the large-time dynamics plays a
fundamental role in driving the pairwise distance between agents to cover areas of interest.

Table S6

Many short trajectories a few long trajectories
Rel. Err. for „̂ 6.6 · 10≠2 ± 5 · 10≠3 7.2 · 10≠2 ± 1 · 10≠2

(LJ) Relative error of the estimator for the Lennard-Jones system

The estimator belongs to a piecewise linear function space Hn of dimension n = 600. As reported in Fig.1 of the main text,
the estimated interaction kernel „̂ approximates the true interaction kernel „ well in the regions where fl

L
T (and flT ) is large, i.e.

regions with an abundance of observed values of pairwise distances to reconstruct the interaction kernel. The dependency on T

of fl
L
T , and of the space L

2(flL
T ) (see (5) in the main text) used for learning, is rather pronounced, as may be seen from the

histogram visualization also in Fig. 1. As usual we also compare trajectories ‚X(t) generated by the system with the estimated
interaction kernel learned with trajectories X(t) generated by the original system, given the same initial conditions at t0, both
on the learning interval [t0, T ] and on larger time intervals [t0, cT ]. Figure S4 provides a visualization of such trajectories.
Visualization of the corresponding systems with a larger number of agents Nnew can be found in Figure 1 of the main text. We
report the estimation errors of the interaction kernel and the trajectory errors in Tables S6 and S7.

Table S6 shows the mean and standard deviations of the relative L
2(flT ) errors of the kernel estimators in 10 di�erent

simulations. We report the relative errors of trajectory prediction in SI Sec.3B.

Table S7

[t0, T ] [T, Tf ]
meanIC: Training ICs 1.6 · 10≠3 ± 2 · 10≠4 1.7 · 10≠2 ± 2 · 10≠3

stdIC: Training ICs 4.6 · 10≠4 ± 5 · 10≠5 2.1 · 10≠2 ± 4 · 10≠3

meanIC: Random ICs 1.6 · 10≠3 ± 2 · 10≠4 1.7 · 10≠2 ± 2 · 10≠3

stdIC: Random ICs 4.5 · 10≠4 ± 5 · 10≠5 1.9 · 10≠2 ± 2 · 10≠3

meanIC: Larger N 6.2 · 10≠2 ± 7 · 10≠3 6.2 · 10≠2 ± 2 · 10≠2

stdIC: Larger N 8.2 · 10≠3 ± 7 · 10≠4 3.0 · 10≠2 ± 1 · 10≠2

meanIC: Training ICs 3.4 · 10≠3 ± 1 · 10≠3 5.1 · 10≠3 ± 2 · 10≠3

stdIC: Training ICs 2.7 · 10≠3 ± 2 · 10≠3 6.6 · 10≠3 ± 3 · 10≠3

meanIC: Random ICs 4.1 · 10≠3 ± 2 · 10≠3 8.7 · 10≠3 ± 8 · 10≠3

stdIC: Random ICs 3.6 · 10≠3 ± 2 · 10≠3 1.5 · 10≠2 ± 2 · 10≠2

meanIC: Larger N 7.7 · 10≠2 ± 1 · 10≠2 6.6 · 10≠2 ± 3 · 10≠2

stdIC: Larger N 1.5 · 10≠2 ± 1 · 10≠2 5.7 · 10≠2 ± 3 · 10≠2

(LJ) Trajectory Errors for Many Short Trajectories Learning (top) and Single Large Time Trajectories Learning (bottom)

We also test the convergence of our estimator as M æ Œ: we choose the parameters for observations and learning as in
Table S8. It is important that we choose the dimension n of hypothesis space to be dependent on M , as dictated by Thm. (3.3)
in the main text. Also, in this experiment (and this experiment only!) we observe the true derivatives (instead of approximating
them by finite di�erences of positions), as those would introduce a bias term that does not vanishes unless L also increased
with n.
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Table S8

[t0, T ] L log2(M) n

[0.001, 0.01] 10 12 : 21 64(M/ log M)0.2

(LJ) Observation parameters in the plot of convergence rate

We obtain a decay rate for for Î„̂(·) · ≠„(·) · ÎL2(flL
T

) around M
≠0.36, which is close to the theoretical optimal learning rate

M
≠0.4 – see Fig. 2 in the main text. We impute this (small) di�erence to the singularity of the Lennard-Jones interaction

kernel at 0, which makes this interaction kernel not admissible in the our learning theory.

Fig. S5. (LJ) Interaction kernel learned with Unif.([≠‡, ‡]) additive noise, for ‡ = 0.1, in the observed positions and observed velocities; here M = 500, L = 2000, with all
the other parameters as in Table S5.

However, the singularity of the Lennard-Jones interaction kernel at 0 forces the particles close to each other to be repel each
other. Also, the system evolves rapidly to a steady-state, and the particles only explore a bounded region due to the large range
attraction. Therefore, to obtain a well-supported non-degenerate measure fl

L
T , we should make observations on a time interval

that avoids reaching either the singularity of the interaction kernel or the steady-state. The restriction of the Lennard-Jones
interaction kernel to the support of fl

L
T is bounded and smooth, and hence our learning theory applies and we achieve an almost

optimal rate of learning in the numerical experiments. The estimated interaction kernel with noisy observation is visualized in
Figure S5.

Finally, Fig.S6 reports numerical validations of the coercivity condition in Definition 1.1 for this system. We consider the
number of agents N ranging from 5 to 30, three di�erent initial distributions µ0, and observations on di�erent time intervals.
The coercivity constants computed by Monte Carlo sampling are close to the theoretical lower bound in all these cases.

5 10 15 20 25 30

N

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C
o

e
c

iv
it

y
 c

o
n

s
ta

n
t

N/(N-1) 2

Gaussian

5 10 15 20 25 30

N

N/(N-1) 2

Uniform 

5 10 15 20 25 30

N

N/(N-1) 2

Spherical Uniform

Fig. S6. (LJ) Coercivity condition validation in 2D Lennard-Jones system with different N . We compute the empirical coercivity constant cL,N,H defined in Eq. (7), with H

consisting of 200 piecewise constant basis functions with random coefficients, using M = 131, 072 trajectories with initial conditions drawn from µ0. Three initial distributions
for µ0 are tested: the standard Gaussian vector in R2N (left), the uniform distribution on [≠0.5, 0.5]2N (middle), and the uniform distributions on the unit spheres in R2N

(right). Ten different lengths of trajectories are considered (represented in each figure by the colored curves above the black curve, the theoretical lower bound of cL,N,H):
each with the same initial time t1 = 0.001, but the end time tL ranges from 0.0059 to 0.0509 with a uniform time gap 10≠4. In all these ten sampling regimes (all are short
time periods), the coercivity constant is around N≠1

N2 , matching the theoretical lower bound in Thm. 3.1for one time step. We also note that cL,N,H appears to not go to 0 as
N increases, consistent with the conjecture that in rather great generality cL,N,H stays bounded away from 0 independently of N .

Fei Lu, Ming Zhong, Sui Tang, Mauro Maggioni

1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798

1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860

15 of 27



C. Predator-Swarm system. There is an increasing amount of literature in discussing models of self-organized animal motion
(5–15). Even more challenging is modeling interactions between agents of multiple types, in complex and emergent physical and
social phenomena (11, 16–19). We consider here a representative heterogeneous agent dynamics: a Predator-Swarm system
with a group of preys and a single predator, governed by either a first order or a second order system of ODE’s. The intensity
of interaction(s) between the single predator and group of preys can be tuned with parameters, determining dynamics with
various interesting patterns (from confusing the predator with fast preys, to chase, to catch up to one prey). Since there is
one single predator in the system, there is no predator-predator interaction to be learned. The interaction kernels (prey-prey,
predator-prey) have both short-range repulsion to prevent the agents to collide, and long-range attraction to keep the agents in
the flock. Because of the strong short-range repulsion, the pairwise distances stay bounded away from r = 0. We will see that
these di�culties, similar to those confronted with the Lennard-Jones interaction kernel, do not prevent us from learning the
interactions kernels.

In our notation for the heterogeneous system, the set C1 corresponds to the set of preys, and C2 to the set consisting of the
single predator.

Predator-Swarm, 1st order (PS1st). We start from the first order system. It is a special case of the first order heterogeneous
agent systems we considered, with the following interaction kernels:

„1,1(r) = 1 ≠ r
≠2

, „1,2(r) = ≠2r
≠2

, „2,1(r) = 3r
1.5

, „2,2(r) © 0.

The simulation parameters are given in Table S9.

Table S9

d N1 N2 M L T

2 9 1 50 200 5
n1,1 n1,2 = n2,1 n2,2 deg(ÂkkÕ ) Preys µX

0 Pred. µX
0

360 120 64 [1, 1; 1, 0] Unif. on ring [0.5, 1.5] Unif. on disk at 0.1
(PS1st) System parameters for first order Predator-Swarm system

In the first column of Fig. 5 in the main text, we show the comparison of the learned interaction kernels versus the true
interaction kernels (with fl

L,kkÕ

T and fl
L,M,kkÕ

T shown in the background), and the comparison of true and learned trajectories
over two di�erent sets of initial conditions.

As is shown in the top left a portion (4 sub-figures) of Fig. 5 in the main text, we are able to match faithfully all four
learned interactions to their corresponding true interactions over the range of flT when the pairwise distance data is abundant.
We are not able to learn the interaction kernels for r close to 0, demonstrated by the larger area of uncertainty (surrounded by
the dashed lines) towards 0: first, the prey-to-prey interaction is preventing preys colliding into each other; second, in the case
of chasing predators, the preys are able to push away the predator. The predator-to-prey and prey-to-predator interactions are
learned over the same set of pairwise distance data, however, we are able to learn the details of the two interaction kernels, and
judging from the learned interaction kernels, they are not simply negative of each other. The predator-to-predator interaction
simply is learned as a zero function, even though there is no pairwise distance data of a predator to a di�erent predator. Errors
in their corresponding L

2(flL,kkÕ

T ) norms are reported in Table S10.
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Fig. S7. (PS1st) Trajectories X(t) and ‚X(t) obtained with „ and „̂ respectively, for two randomly chosen initial conditions and evolved for Nnew agents (with the same setup
as in the case of N agents). Trajectory errors are shown in Table S11.

The trajectory comparisons are shown in the bottom left portion (4 sub-figures) of Fig. 5 in the main text. We use color
changing lines to indicate the movement of agents in time: with the blue-to-green lines attached to preys and the red-to-yellow
line for the predator). The black dot on the trajectories indicate the position of the agents at time t = T , and it shows the
time divide: the first half of the time, [0, T ], is used for learning; and the second half of the time, [T, Tf ], is used for prediction.

And the first row of 2 sub-figures show the comparison of the trajectories over the initial condition taken from training
data, it shows (visually) no major di�erence between the two, except one of the prey-trajectory, is having a bigger loop in
the learned trajectories. The second row of 2 sub-figures compares the trajectories from a randomly chosen initial condition
(outside of the training set). We are able to predict the movement of the predator in the learned trajectories, and movement of
most preys. In Fig. S7 we compare the true and predicted trajectories over a corresponding system a dynamics but with a
larger number Nnew of agents. Table S11 reports the max-in-time error Eq. (18) in the trajectories in all cases considered. We
consider the e�ect of adding noise to observations, with results visualized in Fig. 8 of the main text.

Table S10

Rel. Err. for „̂1,1 5.6 · 10≠2 ± 1.1 · 10≠3

Rel. Err. for „̂1,2 6.6 · 10≠3 ± 2.4 · 10≠3

Rel. Err. for „̂2,1 2.7 · 10≠2 ± 8.9 · 10≠3

Abs. Err. for „̂2,2 0
(PS1st) Estimator Errors

Table S11

[0, T ] [T, Tf ]
meanIC: Training ICs 4.2 · 10≠2 ± 1.0 · 10≠2 1.1 · 10≠1 ± 3.0 · 10≠2

stdIC: Training ICs 7.2 · 10≠2 ± 5.6 · 10≠2 1.9 · 10≠1 ± 1.4 · 10≠1

meanIC: Random ICs 3.8 · 10≠2 ± 1.4 · 10≠2 9.5 · 10≠2 ± 3.2 · 10≠2

stdIC: Random ICs 5.5 · 10≠2 ± 6.2 · 10≠2 1.4 · 10≠1 ± 1.4 · 10≠1

meanIC: Larger N 4.2 · 10≠1 ± 1.7 · 10≠1 3.1 ± 4.6
stdIC: Larger N 1.7 · 10≠1 ± 9.6 · 10≠2 15.8 ± 27.4

(PS1st) Trajectory Errors

We show numerically that our learning approach is robust to the choice of hypothesis space, as predicted by the theory,
by testing on the Predator-Swarm, 1st-order system with the B-splines basis. Results are shown in Fig. S8. Note that the
estimators perform similarly in comparison with Fig. 8 of the main text and are consistent with the error statistics in Table
S11, in both of which the hypothesis space uses piece-wise polynomial basis.
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Fig. S8. (PS1st) Comparison of interaction kernels (true versus learned) when the learned kernels are generated by linear B-splines (n as in the other case considered for this
system). The relative error (in L2(flT ) norm) for prey on prey interaction is: 6.6 · 10≠2; for predatory on prey: 6.1 · 10≠3; for prey on predator: 3.6 · 10≠2; and finally for
predator on predator: 0.
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Fig. S9. (PS1) Relative error, in log10 scale, of „̂E
k,kÕ (with (k, kÕ) increasing lexicographically from top-left to bottom-right) as a function of L and M . The error decreases

both in L and M , in fact roughly in the product ML. The fourth plot is an identically 0 absolute error, because both „E
2,2 and its estimator are identically 0, since there is only

one predator. Note M ∫ 1 seems to be needed for accurate inference of the interaction kernels, regardless of how large L is: the trajectories explored for small M do not
explore enough configuration to enable estimation, suggesting that the limit M æ +Œ considered in this work is of fundamental importance, at least for non-ergodic systems.

Predator-Swarm, 2nd-order (PS2nd). The second order Predator-Swarm system is a special case of the second order system
which is considered in this paper, without alignment-based interactions and without environment variables ›i’s, similar to
the Cucker-Dong model of repulsion-attraction (20) and D’Orsogna-Bertozzi model for modeling fish school formation (5, 6)
without the non-collective forcing term. The energy-based interactions are

„1,1(r) = 1 ≠ r
≠2

, „1,2(r) = ≠r
≠2

, „2,1(r) = 1.5r
≠2.5

, „2,2(r) © 0.

The non-collective change on ẋi is F
v
i (ẋi, ›i) = ≠‹ki ẋi, where the friction constants are type-based and ‹k = 1 for all

k = 1, · · · , K; and the mass of each agent is mi = 1 for all i = 1, · · · , N . We consider the system and test parameters given in
table S12 (the initial velocity of preys and predator are fixed at 0 œ R2).
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Table S12

d N1 N2 M L T

2 9 1 150 300 10
n1,1 n1,2 = n2,1 n2,2 deg(ÂE

kkÕ ) Preys µX
0 Pred. µX

0
1620 540 180 [1, 1; 1, 0] Unif. on [0.1, 1]2 Unif. on [0, 0.08]2

(PS2nd) System Parameters

Note that the two dynamics, predator-prey 1st order and predator-prey 2nd order, use a similar set of interaction kernels,
however, the resulting dynamics are significantly di�erent from each other, as demonstrated in both the distribution of pairwise
distance data and in the trajectories.

In the middle column of Fig. 5 in the main text, we show the comparison of the learned interaction kernels versus the true
interaction kernels (with fl

L,kkÕ

T,r and fl
L,M,kkÕ

T,r shown in the background), and the comparison of true and learned trajectories
over two di�erent sets of initial conditions. Similar observations to those for the 1st order system apply here. Errors of the
estimators in the L

2(flL,kkÕ

T ) norms are reported in Table S13. The test on trajectories (bottom middle portion (4 sub-figures)
of Fig. 5 in the main text) shows visually the accuracy of the predicted trajectories, quantified by the numerical report in
Table S14. We also compare in Fig. S10 the true and learned trajectories over a corresponding system with Nnew agents. We
consider the e�ect of adding noise to observations, with results visualized in Figure S11. Figures S9 and S12 show the behavior
of the error of the estimator (for systems (PS1st) and (PS2nd) respectively) as both L and M are increased.

Fig. S10. (PS2nd) Trajectories X(t) and ‚X(t) obtained with „ and „̂ respectively, for two randomly chosen initial conditions and evolved for Nnew agents (with the same
setup as in the case of N agents). Trajectory errors are shown in Table S14.

Table S13

Rel. Err. for „̂E
1,1 1.5 · 10≠1 ± 5.0 · 10≠2

Rel. Err. for „̂E
1,2 1.3 · 10≠1 ± 1.1 · 10≠2

Rel. Err. for „̂E
2,1 7.1 · 10≠1 ± 3.8 · 10≠1

Abs. Err. for „̂E
2,2 0

(PS2nd) Estimator Errors

Fei Lu, Ming Zhong, Sui Tang, Mauro Maggioni

2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294

2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356

19 of 27



Table S14

[0, T ] [T, Tf ]
meanIC: Training ICs 3.5 · 10≠1 ± 1.2 · 10≠1 7.9 · 10≠1 ± 2.1 · 10≠1

stdIC: Training ICs 6.5 · 10≠1 ± 2.7 · 10≠1 1.2 ± 3.7 · 10≠1

meanIC: Random ICs 3.5 · 10≠1 ± 1.2 · 10≠1 8.0 · 10≠1 ± 2.3 · 10≠1

stdIC: Random ICs 5.8 · 10≠1 ± 1.6 · 10≠1 1.2 ± 3.1 · 10≠1

meanIC: Larger N 2.0 · 10≠1 ± 3.0 · 10≠2 4.6 · 10≠1 ± 1.2 · 10≠1

stdIC: Larger N 1.1 · 10≠1 ± 1.4 · 10≠2 2.5 · 10≠1 ± 5.6 · 10≠2

(PS2nd) Trajectory Errors

Fig. S11. (PS2nd) Interaction kernels learned with Unif.([≠‡, ‡]) multiplicative noise, for ‡ = 0.1 in the observed positions and velocities, with parameters as in Table S12.
The estimated kernels are minimally affected, mostly in regions with small flL

T near 0.
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Fig. S12. (PS2) Relative error, in log10 scale, of „̂E
k,kÕ (with (k, kÕ) increasing lexicographically from top-left to bottom-right) as a function of L and M . The error decreases

both in L and M , in fact roughly in the product ML (we impute the lack of monotonicity of some of the entries in the plots to the variance in the results). The fourth plot is an
identically 0 absolute error, because both „E

2,2 and its estimator are identically 0, since there is only one predator. Note M ∫ 1 seems to be needed for accurate inference of
the interaction kernels, regardless of how large L is: the trajectories explored for small M do not explore enough configuration to enable estimation, suggesting that the limit
M æ +Œ considered in this work is of fundamental importance, at least for non-ergodic systems.
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D. Phototaxis Dynamics. Second order models have been widely used in describing self-organized human motion (21–23),
synthetic agent (robots, drones, etc.) behavior (24–27), and bacteria/cell aggregation and motility (28–31). A step further
in accurately model reality is to consider models with responses of agents to their surrounding environment or the spread of
emotion among agents within a system. Such phenomena appear in a variety of applications, including modeling of emergency
evacuation, crowded pedestrian dynamics, bacteria movement toward certain food sources (28–36). We choose here a system
modeling the dynamics of phototactic bacteria towards a fixed light source. This system extends the Cucker-Smale system
(9, 37, 38) with an extra auxiliary variable ›i modeling the response (called excitation level) of individual bacteria to the light
source. The dynamics is known to lead to flocking (all bacteria moving in the same direction) within a rather short amount
time, due to the interaction kernel having a long interaction range and the e�ect of light entering the dynamics uniformly. This
system is within our family of the second order systems, with homogeneous agents and no energy-induced interaction kernel.
The alignment-based interaction kernels acting on ẋi and ›i are the same:

„
v(r) = „

›(r) = (1 + r
2)≠

1
4 .

The non-collective change on ẋi is given by

F
v
i (ẋi, ›i) = I0(vterm ≠ ẋi)(1 ≠ “(›i; ›cr)),

where I0 = 0.1 is the light intensity, vterm = (60, 0) is the terminal velocity (light source at infinity), ›cr = 0.3 is the critical
excitation level (when the light e�ect activates the bacteria), and “(·) is the smooth cuto� function

“(›; ›c) =

Y
]

[

1, 0 Æ › < ›c,
1
2 (cos( fi

›c
(› ≠ ›c) + 1), ›c Æ › < 2›c,

0, 2›c Æ ›.

Here ›c is a a threshold constant. The non-collective change on ›i is given by

F
›
i (›i) = I0“(›i; ›cp),

where ›cp = 0.6 is the maximum excitation level of light e�ect on the bacteria. The system parameters are summarized in
Table S15.

Table S15

d M L T

2 50 200 0.25
µX

0 = µẊ
0 µ�

0 nv = n› deg(ÂA
kkÕ ) = deg(Â›

kkÕ )
Unif. on [0, 100]2 Unif. on [0, 0.001]2 400 1

(PT) Parameters for Phototaxis Dynamics

In the right column of Fig. 5 in the main text, we show the comparison of the learned interaction kernels „̂
A and „̂

› versus
the true interaction kernels, as well as the comparison of true and learned trajectories over two di�erent sets of initial conditions.
We are able to accurately learn the interaction kernels „̂

A and „̂
› over the support of flT when pairwise distance data is

abundant. When the pairwise distance data becomes scarce towards the two ends of the interaction interval [0, R], we are able
to faithfully capture the behavior of „ at r = 0; the errors are larger near the upper end r = R, where the data is extremely
scarce. Crucially, we recover faithfully the interactions between the agents and their environment. Estimation errors in the
appropriate L

2(flL
T,r,ṙ)- and L

2(flL
T,r,›)-norms are reported in Table S16. A case with noisy observation is also investigated and

shown in Fig. S15. Trajectory errors are shown in Table S17. We also compare in Fig. S13 the true and learned trajectories for
a corresponding system a dynamics with larger N .
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Fig. S13. (PT) Trajectories X(t) and ‚X(t) obtained with true and learned interaction kernels respectively, for two randomly chosen initial conditions and evolved using the
larger number of agents Nnew (governed by the same equations as in the case of N agents). Trajectory errors are shown in Table S17.

Table S16

Rel. Err. for „̂A 9.4 · 10≠3 ± 5.2 · 10≠3

Rel. Err. for „̂› 8.2 · 10≠3 ± 5.0 · 10≠3

(PT) Estimator Errors

Table S17

[0, T ] [T, Tf ]
meanIC: Training ICs 1.6 · 10≠3 ± 5.7 · 10≠5 6.5 · 10≠3 ± 9.1 · 10≠4

stdIC: Training ICs 3.1 · 10≠4 ± 4.8 · 10≠5 8.1 · 10≠3 ± 3.9 · 10≠3

meanIC: Random ICs 1.8 · 10≠3 ± 8.0 · 10≠4 7.3 · 10≠3 ± 3.2 · 10≠3

stdIC: Random ICs 1.5 · 10≠3 ± 3.4 · 10≠3 1.1 · 10≠2 ± 1.2 · 10≠2

meanIC: Larger N 4.2 · 10≠3 ± 1.6 · 10≠3 8.4 · 10≠3 ± 3.8 · 10≠3

stdIC: Larger N 2.9 · 10≠3 ± 3.0 · 10≠3 7.9 · 10≠3 ± 7.0 · 10≠3

(PT) Trajectory Errors

x

Finally we display, in Fig. S14a and S14b, the two joint distributions fl
L
T,r,ṙ and fl

L
T,r,›, used to define the appropriate

L
2-norms for measuring the performance of „̂

A and „̂
›. We also calculated the ¸

1 distance between the joint distribution fl
L
T,r,ṙ

and the product of its marginals, and it is 1 · 10≠1. For the ¸
1 distance between fl

L
T,r,› and the product of its marginals, it is

7 · 10≠2. For the empirical distributions (over 10 learning trials), the ¸
1 distance for fl

L,M
T,r,ṙ and the product of its marginal is

7 · 10≠1 ± 1 · 10≠2; whereas the ¸
1 distance of fl

L,M
T,r,› to the product of its marginals is 3.7 · 10≠1 ± 7 · 10≠3.
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(a) (PT) flL
T,r,ṙ vs. flL,M

T,r,ṙ .

(b) (PT) flL
T,r,› vs. flL,M

T,r,›
.

Fig. S14. (PT) Density plots for the various flL
T measures.
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Fig. S15. (PT) Interaction kernels learned from noisy observations of positions and velocities. The noises are multiplicative, Unif.([≠‡, ‡]) with ‡ = 0.1 and with other
parameters as in Table S15. The estimated kernel for associated with ẋi is minimally affected, mostly in regions with small flL

T ; the additive noise is on a scale far great then
that on ›i hence severely affects the learning result on the interaction kernel on ›i.

Figure S16 shows the behavior of the error of the estimators as both L and M are increased.
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Fig. S16. (PT) Relative error, in log10 scale, of „̂A (left) and „̂› (right) as a function of L and M . The error decreases both in L and M , in fact roughly in the product ML.
The fourth plot is an identically 0 absolute error, because both „E

2,2 and its estimator are identically 0, since there is only one predator. Note M ∫ 1 seems to be needed for
accurate inference of the interaction kernels, regardless of how large L is: the trajectories explored for small M do not explore enough configuration to enable estimation,
suggesting that the limit M æ +Œ considered in this work is of fundamental importance, at least for non-ergodic systems.

E. Model Selection. Our learning approach can be used to identify the model of the system from the observation data. We
consider here two di�erent scenarios of model selection: one is identifying the type – energy-based vs. alignment-based – of
interaction kernels from a second order system driven by only one type of interaction kernel; the other is to identify the order
of the system from a heterogeneous dynamics.

Model Selection: energy-based vs. alignment-based interactions. We consider a special case of the second order homogeneous
agent dynamics, given as either

ẍi =
Nÿ

iÕ=1

1
N

„
E(riiÕ )riiÕ or ẍi =

Nÿ

iÕ=1

1
N

„
A(riiÕ )ṙiiÕ ,

with the (unknown) interaction kernels defined as

„
E(r) = 2 ≠ 1

r2 and „
A(r) = 1

(1 + r2)0.25 .

The system parameters are given in Table S18.
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Table S18

d M L T µX
0 µẊ

0 nE = nA deg(ÂA)=deg(Â›)
2 200 200 10 Unif. on ring [0.5, 1] U([0, 10]2) 800 1

(MS1 and 2) Test Parameters

Given the observation data from either system („E- or „
A-driven), we proceed to learn the interaction kernels as usual,

i.e. as if the dynamics were generated with both energy-based and alignment-based interaction kernels present. Results are
shown in Fig. 7 in the main text. The two sub-figures on the left show the learned interaction kernels „̂

E and „̂
A from a purely

energy-based system: „̂
A is small in the appropriate norm, while „̂

E is large (and a good approximation to „
E): the estimators

can therefore detect this is an energy-driven system. In the two sub-figures on the right, we display the analogous results
corresponding to learning the interaction kernels for an alignment-based system. We obtain (almost) 0 for the norm of „̂

E . The
reason why the L

2(flL
T,r,ṙ) norm of „̂

A (from the first case) is not as close to 0 as the L
2(flL

T,r) norm of the „̂
E (from the second

case) lies in the di�erence in the joint distribution of the two cases, see Figures S17a and S17b. To further investigate the
properties of the joint distributions (and also to di�erentiate the two dynamics), we calculated the ¸

1 distance of the respective
joint distributions to the product and their marginals. For MS1, the ¸

1 distance (over 10 learning trials) between the joint
distribution fl

L,M
T,r,ṙ and the product of its marginals is 1.3 · 10≠1 ± 3.8 · 10≠3. For MS2, the ¸

1 distance (over 10 learning trials)
between the joint distribution fl

L,M
T,r,ṙ and the product of its marginals is 4.6 · 10≠1 ± 3.4 · 10≠3.

(a) (MS1) Joint distribution of flL
T,r,ṙ . (b) (MS2) Joint distributions of flL

T,r,ṙ .

Fig. S17. (MS1 and 2) Density plots for the various flL
T measures.

Model Selection: first order vs. second order. We consider two di�erent heterogeneous agent systems, one first order and one
second order, with the order of the system unknown to the estimator. The observations are in the time interval [0, T ], and in
this case Tf = T . We first consider the first order heterogeneous agent system

ẋi =
Nÿ

iÕ=1

1
NkiÕ

„kikiÕ
(riiÕ )riiÕ ,

with
„1,1(r) = 1 ≠ r

≠2
, „1,2(r) = ≠2r

≠2
, „2,1(r) = 3.5r

≠3
, „2,2(r) © 0,

and the type information setup similar to that of the Predator-Swarm first order system (detailed in Sec.3C). For the second
scenario, we consider the data generated by the following second order heterogeneous agent dynamics,

ẍi = ≠ẋi +
Nÿ

iÕ=1

1
NkiÕ

„
E
kikiÕ

(riiÕ )riiÕ ,

with
„1,1(r) = 1 ≠ r

≠2
, „1,2(r) = ≠r

≠2
, „2,1(r) = 1.5r

≠2.5
, „2,2(r) © 0,

and the type information setup similar to that of the Predator-Swarm second order system (details shown in Sec.3C). The
parameters for both systems are given in Tables S19 and S20.
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Table S19

d M L T

2 250 250 1
n Deg(ÂkkÕ ) Prey µX

0 Pred. µX
0

[298, 150; 150, 2] [1, 1; 1, 0] Unif. on ring [0.5, 1.5] Unif. on disk at 0.1
(MS3) Test Parameters

Table S20

d M L T

2 250 250 1
n deg(ÂE

kkÕ ) Prey µX
0 Pred. µX

0
[298, 150; 150, 2] [1, 1; 1, 0] U([0.1, 1]2) U([0, 0.07]2)

(MS4) Test Parameters

With the order of the ODE system and the interaction kernels being the missing information, we construct estimators
for the interaction kernels in two ways: first assuming a first order system, then assuming a second order system (without
non-collective forcing). We then generate predicted trajectories using the learned interaction kernels, and the same initial
conditions as in the training data. Next, we calculate the trajectory max-in-time error, obtaining the results in Table 1 of the
main text (shown as the mean of the trajectory error plus or minus standard deviation of the error over 10 runs). As indicated
by the trajectory error statistics, the predicted trajectories with smaller error indicate the correct order of the true underlying
system in both cases. Details on the statistics of the trajectory errors are reported in Tables S21 and S22. In each, the column
with smaller values (within both mean and standard deviation of the trajectory errors) corresponds the correct order of the
system.

Table S21

Learned as 1st order Learned as 2nd order
meanIC 9.5 · 10≠3 ± 2 · 10≠3 3.9 ± 8

stdIC 1.8 · 10≠2 ± 1.1 · 10≠2 48 ± 1 · 102

(MS3) Trajectory Errors

Table S22

Learned as 1st order Learned as 2nd order
meanIC 1.6 ± 1 · 10≠1 1.3 · 10≠1 ± 3 · 10≠2

stdIC 9.4 · 10≠1 ± 2 · 10≠1 2.0 · 10≠1 ± 5 · 10≠2

(MS4) Trajectory Errors
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