Symbolic Math Toolbox
 Go to function:
  Search    Help Desk 
ifourier See Also

Inverse Fourier integral transform.

Syntax

Description

f = ifourier(F) is the inverse Fourier transform of the scalar symbolic object F with default independent variable w. The default return is a function of x. The inverse Fourier transform is applied to a function of w and returns a function of x.

If F = F(x), ifourier returns a function of t.

By definition

f = ifourier(F,u) makes f a function of u instead of the default x.

Here u is a scalar symbolic object.

f = ifourier(F,v,u) takes F to be a function of v and f to be a function of u instead of the default w and x, respectively.

Examples

Inverse Fourier Transform

MATLAB Command

syms a real

f = exp(-w^2/(4*a^2))

F = ifourier(f)

F = simple(F)

returns

a*exp(-x^2*a^2)/pi^(1/2)

g = exp(-abs(x))

ifourier(g)

returns

1/(1+t^2)/pi

f = 2*exp(-abs(w)) - 1

simple(ifourier(f,t))

returns

(2-pi*Dirac(t)-pi*Dirac(t)*t^2)/(pi+pi*t^2)

syms w real

f = exp(-w^2*abs(v))*sin(v)/v

ifourier(f,v,t)

returns

1/2*(atan((t+1)/w^2)-

atan((-1+t)/w^2))/pi

See Also

fourier, ilaplace, iztrans



[ Previous | Help Desk | Next ]