Fourier integral transform.
Syntax
F = fourier(f)
F = fourier(f,v)
F = fourier(f,u,v)
Description
F = fourier(f)
is the Fourier transform of the symbolic scalar f
with default independent variable x
. The default return is a function of w
. The Fourier transform is applied to a function of x
and returns a function of w
.
If f = f(w)
, fourier
returns a function of t
.
By definition
where x
is the symbolic variable in f
as determined by findsym
.
F = fourier(f,v)
makes F
a function of the symbol v
instead of the default w
.
F = fourier(f,u,v)
makes f
a function of u
and F
a function of v
instead of the default variables x and w
, respectively.
Examples
Fourier Transform |
MATLAB Command |
|
f = exp(-x^2)
fourier(f) returns
pi^(1/2)*exp(-1/4*w^2)
|
|
g = exp(-abs(w))
fourier(g)
returns 2/(1+t^2)
|
|
f = x*exp(-abs(x))
fourier(f,u)
returns -4*i/(1+u^2)^2*u
|
|
syms x real
f = exp(-x^2*abs(v))*sin(v)/v
fourier(f,v,u)
returns -atan((u-1)/x^2)+atan((u+1)/x^2)
|
See Also
ifourier
, laplace
, ztrans
[ Previous | Help Desk | Next ]