- Fall 12 - Hans Lindblad

wk | date | Monday | Wednesday | Homework due following Wed. |

1 | 1/31 | Elliptic PDE: 6.1-2 Weak solutions | 6.2 Existence | 6.6:2,3,4,Riesz Repr. Theorem |

2 | 2/7 | 6.2, 6.5.1, D.5 Eigenfunctions | 6.3 Interior & Boundary Regularity | 6.6:7,13, 5.10:5,6,12, Spectral Th. (for compact op.) |

3 | 2/14 | 6.3.2 Boundary Regularity | 7.1 Parabolic PDE, 1-D example | 6.6:11, 7.5:2,4 |

4 | 2/21 | holiday | 7.1.2-3 Existence-Regularity | 7.5:1,5,9 |

5 | 2/28 | 7.5:7,10 | ||

6 | 3/7 | 7.2.1-3 Hyperbolic PDE | 7.3 Hyperbolic Systems | |

7 | 3/14 | 7.3 Hyperbolic Systems | 7.4 Semigroup theory | 7.5:13,14,15,16? |

8 | 3/21 | break | break | |

9 | 3/28 | 13.1-3 H^k-L^\infty est. | 13.3, 16.1 Exist. Symm. hyp. syst. | 13.1:1, 13.3:1,6, 16.1:11,12,13 |

10 | 4/4 | 16.2 Euler's compr. eq. | 16.5 Euler's compr. eq. | 16.2:1 |

11 | 4/11 | 17.1,2 Exist Euler's incomp. eq. | no class | |

12 | 4/18 | 13.5-6 | 13.8(Ch7) | |

13 | 4/25 | 13.8(Ch7) | 5.8 Hodge decomp., 17.2 | |

14 | 5/2 | 17.1 Vorticity bound | 17.2 or 17.3-4 |