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Abstract. We compute the E2 page of the Adams spectral sequence converging to the
connective KO-theory of the second mod 2 Eilenberg-MacLane space, ko∗(K(Z/2, 2)). This
required a careful analysis of the structure of H∗(K(Z/2, 2);Z2) as a module over the subal-
gebra of the Steenrod algebra generated by Sq1 and Sq2. Complete analysis of the spectral
sequence will be performed in a subsequent paper.

1. Introduction

Let Z2 = Z/2 and let K2 denote the Eilenberg-MacLane space K(Z2, 2). In [8], the

authors gave a complete determination of the connective complex K-theory groups

ku∗(K2) and ku∗(K2). The original motivation for this work was from [14] and [9],

which studied Stiefel-Whitney classes of Spin manifolds. Because of the relationship

([2]) of the Spin cobordism spectrum and the spectrum ko for connective real K-

theory, information about ko∗(K(Z2, n)) gave useful results about Spin manifolds.

For complete calculations the authors were led to the more tractable ku groups. In

this paper, we return to the ko groups.

We give a complete determination of the E2 page of the Adams spectral sequences

(ASS) converging to ko∗(K2) and ko∗(K2). In a subsequent paper, we will complete

the calculation by determining the differentials and extensions in the spectral se-

quences. We choose to split this E2 work off because we feel that it involves some

clever arguments that we would not want to have obscured in a paper with massive

ASS charts.

Most of our focus will be on the homology groups ko∗(K2), in part because of its

connection with the motivating problem and in part because its ASS is of a more
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familiar form than that for ko∗(−). In [8], most of the work was done for the co-

homology groups ku∗(K2), largely because of the product structure. That structure,

along with a comparison with the mod-p groups k(1)∗(K2), enabled us to find the

differentials in the spectral sequence for ku∗(K2), and we can use that information to

deduce differentials in the other spectral sequences. Similarly to the situation for ku

in [8], the ko-homology and ko-cohomology groups of K2 are Pontryagin duals of one

another. We discuss this in Section 4.

Let A1 denote the subalgebra of the mod-2 Steenrod algebra generated by Sq1 and

Sq2, and let E1 denote the exterior subalgebra generated by the Milnor primitives

Q0 = Sq1 and Q1 = Sq1 Sq2+Sq2 Sq1. The ASS converging to ko∗(X) has Es,t
2 =

Exts,tA1
(H∗X,Z2), while that for ku∗(X) has E2 = ExtE1(H

∗X,Z2). All cohomology

groups have coefficients in Z2. The first step toward ku∗(K2) was finding a splitting

of H∗K2 as a direct sum of reduced E1-modules ([8, Proposition 2.11 and (2.16)]).

(A reduced module is one containing no free submodules.) In Section 3, we describe

a corresponding splitting as A1-modules (Theorem 3.9) and the groups ExtA1(−,Z2)

for all of the summands. This then will be the E2 page of the ASS, the main result

of this paper.

2. The A1-summands Mk

An important part of the E1 splitting of H∗K2 was a family of E1-modules Mk for

k ≥ 4 ([8, (2.13), (2.14), (2.15)]). In this section, we find corresponding A1-modules,

which we also call Mk. Although the structure of these A1-modules as E1-modules

is very similar to that of the corresponding E1-modules of [8] (in fact isomorphic if

k ≡ 0, 1 mod 4), finding classes with the correct Sq2 behavior was a nontrivial task.

Let u0 denote the nonzero element of H2(K2), and define uj inductively by uj+1 =

Sq2
j

uj. Then H∗(K2) = Z2[uj : j ≥ 0] with |uj| = 2j + 1. Let S = (Sq1, Sq2). One

easily checks that

S(uj) =


(u1, u

2
0) j = 0

(0, u2) j = 1

(u2
j−1, 0) j ≥ 2.

In Lemma 2.1 we replace uj with generators xj for j ≥ 4 with similar properties

except that Sq2 Sq1(x4) = 0.
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Lemma 2.1. There are elements xj ∈ H2j+1(K2) for j ≥ 4 satisfying

(1) xj ≡ uj mod decomposables,

(2) Sq1(x4) = c18 ̸= 0, Sq2(c18) = 0, Sq2(x4) = 0, and

(3) S(xj) = (x2
j−1, 0) for j ≥ 5.

Proof. We first introduce an intermediate set of generators wj defined by

wj =


uj j = 0, 1

u0u1 + u2 j = 2

u2j−2

1 uj−2 + u2j−2

0 uj−1 + uj j ≥ 3.

These satisfy

S(wj) =


(w1, w

2
0) j = 0

(0, w2 + w0w1) j = 1

(0, w0w2) j = 2

(w2
j−1, 0) j ≥ 3.

Now we define x4 = w0w
3
2 + w4 and, for j ≥ 5

xj = w2j−4

0 w2j−3

2 wj−2 + w3·2j−5

1 w2j−4

2 w2j−5

3 wj−3 + w2j−5

0 w2j−4

1 w2j−3

2 wj−3 + wj.

One can check that these satisfy the claims of the lemma.

Theorem 2.2. For k ≥ 4 there are Q0-free A1-submodules Mk ⊂ H∗(K2) with

H∗(Mk;Q1) =

{
⟨c18, x4⟩ k = 4

⟨x2
k−1, c18x4

∏k−2
t=4 x

2
t ⟩ k ≥ 5.

The A1-module Σ−2kMk has the form in Figure 2.3.

Here and throughout ⟨s1, . . . , sk⟩ denotes the span (resp. graded span) of elements

in a vector space (resp. graded vector space). We depict A1-modules with straight

segments showing Sq1, and curved segments Sq2. We circle the Q1-homology classes.
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Figure 2.3. Modules Σ−2kMk.

s s s sk = 4ℓ+ 5

s s s sk = 4ℓ+ 4

s s s sk = 4ℓ+ 6

s s s sk = 4ℓ+ 7

s s s ss s s s s s s s. . .
1 8ℓ+ 3

s s s ss s s ssss s. . . s ss
1 8ℓ+ 7

s s s ss s s s s s· · ·
1 8ℓ+ 1

s s s ss s s ssss s s. . . ss
1

8ℓ+ 5

For example, if k = 4ℓ+ 4, Σ−2kMk has a single nonzero class gi for 1 ≤ i ≤ 8ℓ+ 2

with

Sq2 Sq1 Sq2(gi) = Sq1 gi+4 ̸= 0 if i ≡ 3 (4), i ≤ 8ℓ− 5,

and Sq2 Sq1(g1) = Sq1(g3) ̸= 0.

Proof of Theorem 2.2. We use the classes xj, j ≥ 4, of Lemma 2.1, but find it conve-

nient to write c18 as x
2
3, even though it isn’t a perfect square. In the discussion below

we treat it as a perfect square. For k ≥ 4, let Mk denote the finite A1-submodule of

H∗K2 with basis all elements
k∏

j=3

x
ej
j satisfying

∑
ej2

j = 2k. Our desired A1-module

Mk will be a submodule of Mk.

We first show that Mk is Q0-free. Every monomial in Mk which is a perfect square

can be written uniquely as
∏
s∈S

x2
s ·

∏
t∈T

x2et
t with et > 1 and S and T disjoint. It

determines a Q0-free summand ∏
t∈T

x2et−2
t

⊗
i∈S∪T

⟨xi+1, x
2
i ⟩.

Every monomial in Mk is in a unique one of these summands, as can be seen by

writing the monomial as P ·
∏
u∈U

xu with P a perfect square. This monomial is in the

Q0-free summand determined as above from P ·
∏
u∈U

x2
u−1.
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We now show, somewhat similarly, that

H∗(Mk;Q1) = ⟨x2
k−1, x4

k−2∏
t=3

x2
t ⟩.

Let k ≥ 5, as the case k = 4 is elementary. Every monomial in Mk which is a perfect

square or x4 times a perfect square can be written uniquely as
∏
s∈S

x2
s ·xε

4 ·
∏
t∈T

x2et
t with

et ≥ 2, S and T disjoint, and ε ∈ {0, 1}. Also, T ̸= ∅ unless the monomial is x2
k−1 or

x2
3x

3
4x

2
5 · · ·x2

k−2, in order to have
∑

ej2
j = 2k. This monomial determines a Q1-free

summand ∏
s∈S

x2
s · xε

4 ·
∏
t∈T

x2et−4
t

⊗
t∈T

⟨x4
t , xt+2⟩.

Every monomial in Mk except x2
k−1 and x2

3x
3
4x

2
5 · · ·x2

k−2 is in a unique one of these by

writing it as

P · xε
4 ·

∏
t∈T
t>2

xt+2

with P a perfect square; it is in the Q0-free summand determined as above from

P · xε
4

∏
t∈T

x4
t .

By [12, Proposition 13.13 and p.203], the A1-module Mk has an expression, unique

up to isomorphism, as Mk ⊕F , with F free and Mk reduced. This Mk is Q0-free and

has the Q1-homology stated in the theorem. To get a sense of why this is true, it is

impossible for a Q0-free module to have just one Q1-homology class. Thus the two

Q1-homology classes must be in the same summand and what is left must be free over

A1.

We will determine its precise structure.

The module M4 has only the classes ⟨x4, x
2
3⟩, so this is also M4. For k ≥ 5, Mk

in gradings ≤ 2k + 4 has just the classes ⟨xk, x
2
k−1, x

2
k−2xk−1, x

4
k−2⟩, in which Sq1 and

Sq2 act as depicted on the left four dots in each row of Figure 2.3. We will use Yu’s

Theorem ([4, Theorem 7.1]) to show that Mk must have the form claimed in the

theorem. We thank Bob Bruner for suggesting the use of Yu’s Theorem.

For k ≥ 5, let M∗
k denote the A1-module dual to Mk. Its top class x∗

k is in grading

−2k − 1 and bottom class (x2k−3

3 )∗ is in grading −2k − 2k−3. Let (M∗
k)

+ denote an

A1-module which agrees with M∗
k in gradings less than −2k and for i ≥ −2k has
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a single nonzero class yi in grading i, with Sq2 Sq3 y4j = y4j+5 = Sq1 y4j+4, and

0 ̸= Sq1 y−2k ∈ im(Sq2). This (M∗
k)

+ is Q0-free and has a single nonzero Q1-homology

class, dual to x4

∏k−2
t=3 x

2
t , in grading 7 − 2k − 2k. By [12, Proposition 13.13 and

p.203], (M∗
k)

+ is isomorphic to the direct sum of a reduced module R and a free

module. Since R is Q0-free and reduced with a single nonzero Q1-homology class,

by Yu’s Theorem, R is isomorphic to a shifted version of one of the four modules

Pi, 0 ≤ i ≤ 3, depicted in [4, Figure 1]. These modules begin with a form dual to

one of the four endings of the modules in Figure 2.3, followed by an infinite string of

Sq1 zn = Sq2 Sq3 zn−4.

Our module Mk is defined as the dual of R/T , where T is the submodule of R

consisting of classes of grading ≥ −2k. This Mk will begin the same way as Mk,

as Σ2k⟨g1, Sq1 g1, g3, Sq1 g3 = Sq2 Sq1 g1⟩, and will end with one of the four types in

Figure 2.3, although a priori it could have a different length. Its top Q1-homology

class is in grading 2k + 2k − 7.

Since A1 has 8 basis elements, the total number of basis elements in Mk will be

congruent mod 8 to the number in Mk. There is a 1-1 correspondence between a

basis for Mk and the set of partitions of 2k−3 into 2-powers. (ej tells the number of

occurrences of 2j−3.) It is proved in [6] that this number of partitions is ≡ 2 mod 8

if k is even, and is ≡ 4 mod 8 if k is odd.

Let k = 4ℓ+ 4. The first module in Figure 2.3 is the only possibility that satisfies

that the top Q1-homology class is in grading 2k+2k−7 = 2k+8ℓ+1 and the number

of basis elements is ≡ 2 mod 8. The second and fourth types in Figure 2.3 have

their top Q1-homology class in grading 3 mod 4, while if the third type had its top

Q1-homology class in 2k + 8ℓ+ 1, its number of basis elements would be 6 mod 8. A

similar analysis, utilizing top Q1-homology class mod 4 and number of basis elements

mod 8, shows the Mk must be as claimed.

Prior to discovering this proof, we had laboriously found explicit bases for Mk for

k ≤ 9. For example, with abcd denoting xa
6x

b
5x

c
4c

d
18, the basis for M7 had x7, 2000,

1200, 0400, 1040, 0240, 0080 along the top, as pictured in Figure 2.3, and 1111+0320,
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0311 + 1031 + 1102 + 0240, 0231 + 1022 + 0160, 0151 + 1013 + 0222 + 0080, and

0071 + 0142 + 0213 + 1004 along the bottom.

3. Ext charts and tensor products

There is a nice pattern to the charts Exts,tA1
(Σ−2kMk,Z2), depicted, as usual, in coor-

dinates (t−s, s). They are similar to familiar charts of ExtA1(H
∗P 2n,Z2) (e.g., [7]). In

fact, there are A1-module isomorphisms Σ−24ℓ+4
M4ℓ+4 ≈ H∗P 8ℓ+2 and Σ−24ℓ+5

M4ℓ+5 ≈
H∗P 8ℓ+4. For all k, all classes in these charts are v41-periodic; i.e., Ext

s,t → Exts+4,t+12

is bijective for s ≥ 0. All the charts have the same upper edge, (8i + x, 4i + y) for

(x, y) = (1, 0), (2, 1), (3, 2), and (7, 3). The lower edge drops by 1 for each increase in

k, as long as s ≥ 0. In Figure 3.1 we show the beginning of the charts for 5 ≤ k ≤ 7.

These Ext charts are easily obtained by standard methods from the explicit descrip-

tion of the modules in Figure 2.3. See [5, Appendix A] for a rather detailed discussion

of these methods.

Figure 3.1. ExtA1(Σ
−2kMk,Z2).

s s s
ss s s s

s s s
ss s

1 7
k = 5

s ss ss
ss s

1 7 11
k = 6

s s s

s s sss s s
1 7 11

s ss
s s sssss s s

k = 7

Explicitly, Σ−2kMk has, for i ≥ 0,

• 0 in 8i+ 6, 8,

• Z2 in 8i+ 1, 2 of filtration 4i+ 0, 1,

• Z2 in 8i+ 4, 5 of filtration 4i− k + 6, 7 if 4i− k + 6, 7 ≥ 0, else 0,

• Z/2k−4 in 8i+ 7 with generator of filtration 4i− k + 8 if 4i− k + 8 ≥ 0, else Z/24i+4

with generator of filtration 0, and

• Z/2k−2 in 8i+ 3 with generator of filtration 4i− k + 5 if 4i− k + 5 ≥ 0, else Z/24i+3

with generator of filtration 0.

Here, as usual, d dots connected by vertical segments yield a Z/2d summand.
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The A1-modules Mk in Section 2 correspond to the E1-modules Mk in the E1-

splitting of H∗(K2) in [8, (2.16)]. The correspondence is that, as an E1-module, the

A1-module Mk is isomorphic to the E1-module Mk plus perhaps a single copy of E1.

Moreover, the Q1-homology classes agree, with uj replaced by xj. Also involved in the

E1 splitting in [8, (2.16)] were summandsMk ·P , where P is a product of finitely many

distinct classes u2
j with j ≥ k. Although u2

j is acted on trivially by E1, Sq
2(u2

j) ̸= 0,

so the corresponding A1 summands must do more than just multiply by the product

of the classes u2
j . To maintain some consistency with [8], in Definition 3.3 we will

define Mkzj to be a reduced Q0-free A1-module with

H∗(Mkzj;Q1) = H∗(Mk;Q1)⊗ ⟨u2
j+1⟩, (3.2)

and similarly for products with more than one zj.

For j ≥ 3, let Gj = ⟨uj+2, u
2
j+1, u

4
j⟩ with Sq2 Sq1 uj+2 = u4

j . If M is a Q0-free

A1-module, then M ⊗Gj is Q0-free and

H∗(M ⊗Gj;Q1) = H∗(M ;Q1)⊗ ⟨u2
j+1⟩.

Definition 3.3. We define Mkzj to be the reduced summand of the A1-module Mk ⊗
Gj.

Let Pj be the A1-module for which there is a short exact sequence (SES)

0 → Gj → Pj → Σ2j+2−1Z2 → 0

with uj+2 ∈ im(Sq2). Then H∗(Pj;Q1) = 0, so Mk ⊗Pj is a free A1-module by Wall’s

Theorem ([13]), using also a Künneth Theorem for Qi-homology. The short exact

sequence of A1-modules

0 → Mk ⊗Gj → Mk ⊗ Pj → Σ2j+2−1Mk → 0 (3.4)

has a long exact sequence Ext sequence which implies that

Exts,tA1
(Mk ⊗Gj,Z2) → Exts+1,t+1

A1
(Σ2j+2

Mk,Z2)

is bijective for s ≥ 1 and surjective for s = 0. We deduce that, for the reduced

submodule, ExtA1(Mkzj,Z2) is formed from ExtA1(Σ
2j+2

Mk,Z2) by shifting filtrations

down by 1, or, equivalently, by killing classes of filtration 0. Elements in the kernel of

(3.4) when s = 0 correspond to free summands, which do not appear in the reduced

submodule. Iterating, we have
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Proposition 3.5. For distinct ji ≥ k − 1, ExtA1(Mkzj1 · · · zjr ,Z2) is formed from

ExtA1(Σ
2j1+2+···+2jr+2

Mk,Z2) by reducing filtrations by r.

The E1-splitting of H∗K2 in [8, Proposition 2.11] also involved products of modules

with a class called u2
2 there, but would be u2

0 in our notation. Again, since Sq2(u2
0) ̸= 0,

we must expand to an A1-submodule of H∗(K2), namely

U = ⟨u0, u1, u
2
0, u2, u

2
1⟩. (3.6)

The A1-structure of this is Σ
2⟨1, Sq1, Sq2, Sq2 Sq1, Sq3 Sq1⟩, sometimes called the Joker

([3]). Note that H∗(U ;Q1) = ⟨u2
0⟩.

Proposition 3.7. If M is a Q0-free A1-module and U is as above, then for s > 0

Exts,tA1
(U ⊗M,Z2) ≈ Exts+2,t+2

A1
(M,Z2).

Proof. There is a SES of A1-modules

0 → G → F → U → 0,

where F is a free A1-module on a generator of degree 2, and G = ⟨ι5, Sq2 ι5, Sq3 ι5⟩.
After tensoring with M , the exact Ext sequence yields an isomorphism for s > 0

Exts,tA1
(G⊗M,Z2) → Exts+1,t

A1
(U ⊗M,Z2).

Let P = Σ5A1/(Sq
1). There is a SES of A1-modules

0 → Σ10Z2 → P → G → 0.

Then P ⊗M is free by Wall’s theorem, since H∗(P ;Q1) = 0 and H∗(M ;Q0) = 0. So

tensoring this sequence with M yields isomorphisms for s > 0

Exts,tA1
(Σ10M,Z2) → Exts+1,t

A1
(G⊗M,Z2).

Combining the two yields

Exts,tA1
(Σ10M,Z2) ≈ Exts+2,t

A1
(U ⊗M,Z2).

The Q0-free module U ⊗M has v41-periodicity in Ext

Exts,tA1
(U ⊗M,Z2) ≈ Exts+4,t+12

A1
(U ⊗M,Z2)

for s > 0 by [1, Theorem 5.1]. This is isomorphic to Exts+2,t+12
A1

(Σ10M,Z2) ≈
Exts+2,t+2

A1
(M,Z2).



10 DONALD M. DAVIS AND W. STEPHEN WILSON

We let UMk and UMkzj1 · · · zjr denote reduced modules after tensoring with U .

By Proposition 3.7, their Ext charts are obtained from those of Mk or Mkzj1 · · · zjr
by decreasing filtrations by 2.

The summand S in [8, Proposition 2.11] is the reduced summand of tensor products

of the summands of the type that we have been considering here with an E1-module

N with Q1-homology class x9. We have an analogous construction in the A1 context.

Using the classes wj in the proof of Theorem 2.1, let N be the A1-module

N = ⟨w2, w0w2, w1w2, w3, w
2
2⟩.

This satisfies Sq2 Sq3(w2) = Sq1(w3) = w2
2 with |w2| = 5. It has the property that if

M is a Q0-free A1-module, then

ExtA1(N ⊗M,Z2) ≈ ExtA1(Σ
9M,Z2) (3.8)

in positive filtration as is easily seen from the Ext sequence obtained from the SES

0 → N ′ ⊗M → N ⊗M → Σ9M → 0,

where N ′ is the A1-submodule of N generated by w2, since N/N ′ = Σ9Z2 and N ′⊗M

is a free A1-module by Wall’s theorem. For any of our modules U εMkzJ , we let

NU εMkzJ denote a reduced submodule ofN⊗U εMkzJ . It is isomorphic to Σ9U εMkzJ .

The analogue of [8, Proposition 2.11] is given in Theorem 3.9. We let y21 = u4
0; it is

annihilated by Sq1 and Sq2.

Theorem 3.9. There is an A1-module splitting

H∗K2 = P [y21]⊗ (Z2 ⊕ U ⊕N ⊕NU)⊗ (Z2 ⊕
⊕
k≥4

MkΛk−1)⊕ F,

where F is free and Λk−1 = E[zj : j ≥ k−1] is an exterior algebra. The interpretation

of Mkzj1 · · · zjr is as in Definition 3.3, and U ⊗ MkΛk−1, N ⊗ MkΛk−1, and NU ⊗
MkΛk−1 mean the reduced summand. For reduced cohmology, one can remove the Z2

summand from the splitting.

Theorem 3.9 is obtained from [8, Proposition 2.11] by modifying the E1 summands

(where necessary) to make them A1 modules that still retain the same Q1 and Q0

homologies.
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Proof. The correspondence with [8, Proposition 2.11] is R ↔
⊕

MkΛk−1, S = NR,

⟨u2
2⟩ ↔ U , and P [u2

2] ↔ P [y21]⊗(Z2⊕U). TheQ0- andQ1-homology classes correspond

and fill out the Qi-homology of H∗K2. The quotient of H
∗K2 by this large submodule

is A1-free by Wall’s theorem.

The E2 page is obtained by applying ExtA1(−,Z2) to the summands of Theorem

3.9. Earlier in this section, we have done that for the summands involving MkΛk−1.

The others are small modules whose Ext is easily seen to be as in Figure 3.10.

Figure 3.10. ExtA1(−,Z2).

·· ·

s s
8 12 2 4 8 5 9 9 13 17
⟨y41⟩ U N NU

··· ···
···

Here NU means the reduced summand of the A1-module N ⊗ U .

4. ko-cohomology and duality

Our main focus is on ko∗(K2), in part because of its relationship with Spin cobor-

dism. In this short section, we explain briefly how we compute ko∗(K2) and the

duality between it and ko∗(K2).

The Adams spectral sequence for ko−∗(K2) is obtained by applying ExtA1(Z2,−)

to the same A1-modules used for ko∗(K2), with corresponding differentials. As we

did for ku in [8], we display the ko-cohomology groups increasing from right to left.

In Figure 4.1, we show the beginning of the charts for ExtA1(Z2,Mk) for k = 5, 6, 7.

This should be enough to suggest the entire pattern. These charts are the analogue

of those in Figure 3.1. They can be easily obtained from Figure 2.3.
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Figure 4.1. ExtA1(Z2,Σ
−2kMk)

s s s sss s s
s ss

s s ssss s s
s ss ss

s s s sssss s s
4 0 8 04 9 4 0

k = 5 k = 6 k = 7

The analogue of Propositions 3.5 and 3.7 is as follows. It is proved using the exact

sequences derived in Section 3.

Proposition 4.2. (a). For distinct ji ≥ k, ExtA1(Z2,Mkzj1 · · · zjr) is formed from

ExtA1(Z2,Σ
2j1+2+···+2jr+2

Mk) by increasing filtrations by r and extending to the left by

v41-periodicity.

(b). IfM is a Q0-free A1-module, then ExtA1(Z2, U⊗M) is formed from ExtA1(Z2,M)

by increasing fitrations by 2 and extending to the left using v41-periodicity.

Analogously to [8, Theorem 1.16], we have the following remarkable duality result,

where the group on the right hand side is the Pontryagin dual.

Theorem 4.3. There is an isomorphism of ko∗-modules ko∗(K2) ≈ (ko∗+6K2)
∨.

This is deduced from [11, Corollary 9.3] similarly to the ku proof in [10]. The

subtlety of the result is suggested by the observation that there is nothing like it for

the E2 pages. We anticipate illustrating it in subsequent work in which differentials

and extensions are determined.
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