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Abstract. These are colloquium style lecture notes about Hopf rings in al-

gebraic topology. They were designed for use by non-topologists and graduate

students but have been found helpful for those who want to start learning
about Hopf rings. They are not “up to date,” nor are they intended to be, but

instead they are intended to be introductory in nature. Although these are
“old” notes, Hopf rings are thriving and these notes give a relatively painless
introduction which should prepare the reader to approach the current litera-

ture.

This is a brief survey about Hopf rings: what they are, how they arise, examples,
and how to compute them. There are very few proofs. The bulk of the technical
details can be found in either [RW77] or [Wil82], but a “soft” introduction to the
material is difficult to find.

Historically, Hopf algebras go back to the early days of our subject matter, ho-
motopy theory and algebraic topology. They arise naturally from the homology of
spaces with multiplications on them, i.e. H-spaces, or “Hopf” spaces. In our lan-
guage, this homology is a group object in the category of coalgebras. Hopf algebras
have become objects of study in their own right, e.g. [MM65] and [Swe69]. Hopf al-
gebras were also able to give great insight into complicated structures such as with
Milnor’s work on the Steenrod algebra [Mil58]. However, when spaces have more
structure than just a multiplication, their homology produces even richer algebraic
stuctures. In particular, with the development of generalized cohomology theories,
we have seen that the spaces which classify them have a structure mimicking that
of a graded ring. The homology of all these spaces reflects that fact with a rich
algebraic structure: a Hopf ring, or, a ring in the category of coalgebras. This then
is the natural tool to use when studying generalized homology theories with the
aim of developing them to the point of being useful to the average working alge-
braic topologist. Hopf rings lead to elegant descriptions of the answers and new
techniques for computing them.

The first known reference to Hopf rings was in Milgram’s paper [Mil70]. Lately,
the theoretical background for Hopf rings has been greatly expanded, [Goe99]
and [HT98], i.e. Hopf rings have begun to be studied as objects in their own
right, and more and more applications are being found for them. An incom-
plete list of references is: [Mil70] [RW77] [RW80] [TW80] [Wil82] [Wil84] [Har91]
[Str92] [Tur93] [Kas94] [BJW95] [GRT95] [HH95] [HR95] [Kas95] [KST96] [RW96]
[ETW97] [Tur97] [HT98] [Goe99] [BWb] [BWa] [Kas].

Although these notes have been around for awhile, the demand for them has
been increasing and so it seemed it might be appropriate to publish them as a
survey. They are intended to be readable to all in the way that colloquium lectures
should be understandable to graduate students and those in other fields entirely.
However, their main use seems to be to serve as an introduction to the material for
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algebraic topologists so that both old and new technical papers can be approached
with some confidence. As an introduction, it is not intended, nor is it necessary,
that these notes be “up to date.” This very lack of completeness adds a great deal
to their readability.

A topologist studies topological spaces and continuous maps. The typical example
of a nice topological space is a CW complex ; i.e., a space built up from cells. Let
us say we have built X. We can add an n-dimensional cell, Dn, to X using any
continuous map

f : Sn−1 ∼= ∂Dn → X;

just glue Dn to X by identifying x ∈ Sn−1 with f(x) ∈ X. We get a space
Y = X

⋃
f D

n. In this way we can build a large class of topological spaces which
have a certain amount of geometric intuition behind them.

A homotopy theorist feels that there are far too many topological spaces and
continuous maps to deal with effectively. Perhaps this is a cowardly approach, but
we immediately put an equivalence relation on the continuous maps from X to Y .
We say f ∼ g, f is homotopic to g, if f can be continuously deformed into g ; i.e., if
there is a continuous map F : X× I → Y , (I = [0, 1]), such that F | X×0 = f and
F | X × 1 = g. This is an equivalence relation and we denote the set of equivalence
classes by [X,Y ] and call this the homotopy classes of maps from X to Y . We
say X and Y are homotopy equivalent or of the same homotopy type if we have
maps f : X → Y and g : Y → X such that g ◦ f ∼ IX and f ◦ g ∼ IY . Two
fundamental problems in homotopy theory are to determine if X and Y are of the
same homotopy type and to compute [X,Y ].

Other than being too cowardly to approach all topological spaces and maps at
once, what other good reasons are there for studying homotopy theory? The main
reasons are that homotopy theory has a strong give and take with many other
areas of mathematics, particularly geometry and algebra. plus some intrinsically
interesting questions of its own. Most of these lectures will be concerned with the
algebraic aspects of homotopy theory but first we give some geometric applications.

We look first at vector bundles over a space X. A vector bundle assigns a vector
space to every point of X. This is done in a continuous fashion. The k-dimensional
vector bundles over X are equivalent to the homotopy classes of maps from X to
a fixed space BOk: [X,BOk], [Ste51]. So, as is the case with many geometric
problems, the classification of isomorphism classes of k-dimensional vector bundles
is reduced to the computation of homotopy classes of maps. Furthermore, it is clear
that studying BOk is very useful for this problem. It comes about by a standard
construction which builds a classifying space, BG, for any group G. This is just
the special case of the orthogonal group of k × k matrices.

We can push this example even further to give one of the deepest applications
of homotopy theory to mathematics. We consider n-dimensional smooth compact
manifolds, Mn. In the 1940’s Whitney showed that any such manifold immerses
in R2n, [Whi44]. An immersion is just a differential map to the Euclidean space
such that df is injective on the tangent bundle, τ , at every point. Any immersion
Mn ↪→ Rn+k gives rise to a k-dimensional normal bundle, ν. It has the property
that if you add ν to τ as bundles, the sum is Mn × Rn+k. The normal bundle
must come from a map Mn → BOk, and be the pull-back of the universal bundle,
ξk , over BOk. In particular, Whitney’s theorem says you always can have an n-
dimensional normal bundle for Mn, Mn → BOn. Hirsch and Smale, [Hir59] and
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[Sma59], reduced the geometric question for immersions to homotopy theory by
showing that if this map to BOn lifted to BOk, k < n , then Mn ↪→ Rn+k.

BOk

��

ξk ⊕ Rn−koo

��
Mn //

77ooooooo
BOn ξnoo

The map from BOk to BOn comes from classifying the bundle ξk ⊕Rn−k. One of
the great theorems of homotopy theory is the result of Ralph Cohen, [Coh85], that
all n-dim manifolds, Mn, immerse in R2n−α(n) where α(n) is the number of ones
in the binary expansion of n; i.e., α(n) = Σai where ai = 0 or 1, and n = Σai2i.
This conjecture has been around for a long time. Brown and Peterson, [BP79],
constructed a space Xn and a map Xn → BO (BO∞) such that the conjecture is
true if this map lifts

BOn−α(n)

��
Xn

//

55llllllll
BO.

R. Cohen finished the theorem from there.
Since manifolds are a great meeting ground for all mathematics, this is a theorem

with content that any mathematician can appreciate.
Because so many geometric properties can be classified by homotopy theory there

is sometimes a feeling that homotopy theory is just a service department for other
areas of mathematics. It does, however, interact on other levels with other fields.

Our next reason for going to homotopy theory is that it is much more accessible
to algebraic techniques. Therefore we move on now to algebraic topology. Here we
want to have a rule that assigns some algebraic object to every space: X 7−→ E∗X.
This may just be a set, or have some complicated algebraic structure: groups, rings,
algebras, etc. For every map f : X → Y we want a corresponding algebraic map
f∗ : E∗X → E∗Y . If f ∼ g we want f∗ = g∗. However, this property usually holds
for most algebraic invariants anyway, so we are usually forced to go to homotopy
theory if we use these algebraic techniques. (We also use algebraic objects E∗X
where the algebraic map reverses direction from that of the topological map.) So if
f∗ 6= g∗ then f 6∼ g. If X ∼ Y , then E∗X ∼= E∗Y . The more algebraic theories we
have, the better the chance of distinguishing two maps. The richer the algebraic
structure, the more difficult it is to have an isomorphism. For example, it is much
easier for two sets to be the same than for them to be isomorphic as groups or rings.
Of course a third thing we want is computability, which we usually do not have. It
is much easier to define algebraic invariants than to compute them.

Our first examples of algebraic invariants of this sort are the usual mod 2 ho-
mology, H∗X, and cohomology, H∗X. They both satisfy our homotopy condition.
The cohomology is the dual to the homology which is just a collection of Z/2 vector
spaces H∗X = {HiX}i≥0. HnX is defined using maps of generalized n-dimensional
triangles into X. In particular, HnX tells us something about how the n-cells of X
are related to the n+1 dimensional cells and the n−1 dimensional cells. Of course
the first thing we do is invent homological algebra to deal with homology and get
away from the geometry.
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The cohomology has more structure than just a collection of vector spaces. Ap-
plying H∗(−) to the diagonal map 4 : X → X ×X we get

H∗X ← H∗(X ×X) ∼= H∗X ⊗H∗X .

The isomorphism is the Künneth theorem but we must define the graded tensor
product for this to make sense. We have

Hn(X ×X) ∼=
⊕
i+j=n

HiX ⊗HjX .

What we have now is an algebra, or more precisely, a graded algebra. It allows us
to multiply xi ∈ HiX and xj ∈ HjX to get an element xixj ∈ Hi+jX. This gives
us a richer, stronger structure of the sort we want. It is easy to find X and Y with
H∗X ∼= H∗Y as collections of vector spaces but not as graded algebras. Dually,
the homology also has a more complex structure. The diagonal gives

H∗X // H∗(X ×X) ∼= H∗X ⊗H∗X

x
ψ // Σx′ ⊗ x′′

with the degree of x = the sum of the degrees of x′ and x′′, we call this structure
a coalgebra. It contains the same information as the dual algebra in cohomology
contains.

For our next algebraic example we use real K-theory KO(X), [Ati89]. To define
this we let two vector bundles ξ and η be equivalent if ξ ⊕ Rk ∼= η ⊕ Rk. We can
add vector bundles just like vector spaces. Now we formally insert additive inverses
for vector bundles. Then there is a space, BO, such that

KO(X) ∼= [X,Z ×BO],

where Z is the set of integers with discrete topology. KO(X) is an abelian group
because we can now add and subtract our bundles. (It is abelian because V ⊕W ∼=
W ⊕ V for vector spaces.) We can also multiply two vector spaces by taking the
tensor product. This gives us a product in KO(X) and turns KO(X) into a ring.
A major theme in these lectures is that all structure must be reflected in structure
on the classifying space. In this case, Z×BO must be a ring in some suitable sense.
First there must be a product

⊕ : (Z ×BO)× (Z ×BO) −→ Z ×BO.

We can construct this geometrically along with the construction of BO or we can use
a general nonsense proof using Brown’s representability theorem, [Bro62]. Brown’s
theorem states that if you assign some algebraic object F (X) to every space X and
it has certain homotopy properties, then there is a space F such that

F (X) ∼= [X,F ],

and furthermore, all algebraic properties of F (X) are reflected in F . In our case,
if we have two elements of KO(X), f and g, and we want to add then we can do
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it simply by the following diagram

⊕ : (Z ×BO)× (Z ×BO) // Z ×BO

X ×X

f×g

OO

X

∆

OO

The same discussion goes through for the ring map obtained from ⊗;

⊗ : (Z ×BO)× (Z ×BO)→ Z ×BO.
Z×BO does not really become a ring, or even a group. If we write down diagrams

that we would want to commute, for the inverse, commutativity or associativity,
then these diagrams only commute up to homotopy! Likewise for the ring structure.
We say Z ×BO is a ring in the homotopy category. The basis for distributivity is
the vector space isomorphism

V ⊗ (U ⊕W ) ∼= (V ⊗ U)⊕ (V ⊗W ).

In general, if F (X) ∼= [X,F ] is a ring, then F is a ring, up to homotopy. We can
now give our first example of a Hopf ring. For concreteness, think of F as Z×BO.
We take the mod 2 homology H∗F . First, this is a coalgebra as it is with all spaces.
Second, since F is an abelian group (up to homotopy) we have a product

∗ : F × F → F

(corresponds to ⊕ for F = Z × BO). Applying H∗(−), we have H∗F is a graded
ring

∗ : H∗F ⊗H∗F ∼= H∗(F × F )→ H∗F.

This map is a map of coalgebras. This fact together with simultaneous algebra and
coalgebra structures makes up a Hopf algebra, [MM65]. For us it would be better
to call it a coalgebraic group because it is the structure which comes from the group
structure of F , which in turn comes from the group structure of F (X). We should
think of this ∗ product as our “addition”.

From the ring structure, ◦ : F × F → F , of F we get another map

◦ : H∗F ⊗H∗F ∼= H∗(F × F )→ H∗F

which we think of as “multiplication”. Altogether we call this total structure on
H∗F a Hopf ring, or more appropriately, a coalgebraic ring. Such an object is a ring
object in the category of coalgebras, much the same as F is a ring in the homotopy
category. Before we go into more detail we should give the distributivity law for
Hopf rings. In this case it is (recall the coproduct of x is Σx′ ⊗ x′′)

x ◦ (y ∗ z) = Σ(x′ ◦ y) ∗ (x′′ ◦ z).
Hopf rings are our objects of study. They occur frequently in algebraic topology.

In particular, anytime we define an algebraic invariant which is a ring and an ap-
propriate homotopy invariant, then we can apply mod 2 homology to the classifying
space and we have a Hopf ring.

We have seen the coalgebra structure show up in the distributivity law, but we
have not really made clear the theoretical necessity of the coalgebra in the Hopf
ring. It goes back to the definition of a group (or ring) object in an arbitrary
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category. When we define an ordinary group we must define an operation, given
by a map

G×G→ G .

Well, here is the problem. What is that product on the left in an arbitrary category?
The answer is that it does not always exist. For topological spaces F (X) a group
gives rise to a map on the classifying space level

F × F → F.

When we apply homology to this map we get

(1) H∗F ⊗H∗F ∼= H∗(F × F )→ H∗F.

For this to be a group object in some sense then H∗F ⊗H∗F must be the product
of H∗F with itself. However, this is not what we would choose as a “product”
for graded vector spaces. Categorically speaking, what is a product? If we have
X and Y in a category C, then the product X × Y is an object of C with maps
PX : X × Y → X and PY : X × Y → Y such that for any other object Z and
maps f : Z → X, g : Z → Y , there is a unique map (f, g) such that the diagram
commutes:

X

Z

77nnnnnnnnnnnnnnn

''PPPPPPPPPPPPPPP
(f,g) //______ X × Y

PY

��

PX

OO

Y

For two graded vector spaces, C∗ and D∗, such as H∗F , the product is (C∗×D∗)n =
Cn × Dn. This has nothing to do with our information in (1). If our category is
coalgebras, not graded vector spaces, then we have a different product entirely. If
C∗ and D∗ are coalgebras, then C∗ ⊗D∗ is the product! If Z∗ is a coalgebra with
maps f∗ : Z∗ → C∗ and g∗ : Z∗ → D∗, we can define the map (f, g) by

Z∗
ψ // Z∗ ⊗ Z∗

f⊗g // C∗ ⊗D∗ .

This makes the coalgebras necessary. Now (1) works perfectly as it is a map of
H∗F ×H∗F → H∗F in the category of coalgebras. It is now easy to see how the
coproduct works into the distributivity law. For an ordinary ring, R, distributivity,
a(b+ c) = ab+ ac, can be written in the form

a×b×c a×a×b×c a×b×a×c ab×ac

R×R×R

I×+

��

ψ×I // R×R×R×R
I×T×I// R×R×R×R

×
∏
× // R×R

+

��
R×R

× // R

a× (b+ c) a(b+ c) = ab+ ac

The use of the diagonal map, a → a × a, translates to our new category as the
coalgebra coproduct, and our new style distributivity law follows.

Having gone to so much trouble to say that H∗(Z × BO) (mod 2 homology)
is a Hopf ring, we should describe it in detail. Z × BO is a familiar space to
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all topologists and the homology is well known to most, so this is an example of a
Hopf ring in a familiar setting. First, H∗(Z×BO) is isomorphic to H∗(Z)⊗H∗BO.
H∗Z is just Z/2 [Z], the group ring of Z over Z/2. However, we now keep all of the
structure of Z, so H∗(Z) is the “ring-ring” of Z over Z/2. It is a Z/2 vector space
with basis given by all [n], n ∈ Z. We compute the three operations as

ψ([n]) = [n]⊗ [n] ,

[n] ∗ [m] = [n+m] and

[n] ◦ [m] = [nm] .

The Hopf algebra structure of H∗BO is not as familiar as that of H∗BO, but it is
still very simple. We begin with RP∞ (the infinite real projective space). HiRP

∞,
i ≥ 0 is a Z/2 with generator βi. We take the usual line bundle, η, over RP∞.
Subtract the formal inverse of the trivial line bundle. This gives a map

η − 1 : RP∞ −→ BO.

Let the image of βi be bi ∈ HiBO. Now it is known that H∗BO is a polynomial
algebra on the bi, i > 0. The coproduct comes from RP∞ (dual to a polynomial
algebra on one generator), i.e., bn → Σi+j=nbi ⊗ bj . This completely describes the
Hopf algebra, or “group”, structure of H∗(Z × BO). The only new thing we are
talking about is the ◦ product, i.e., the Hopf ring, or “ring”, structure. Chasing
down this structure will give us some practice with Hopf rings. We need some
notation. Define β(s) = Σβisi in H∗RP

∞[[s]]. The coproduct of H∗RP∞ patches
together to give β(s) → β(s) ⊗ β(s). Now we know that RP∞ has a product on
it making H∗RP

∞ an algebra. In fact H∗RP∞ is a divided power algebra, i.e.,
βiβj = (i, j)βi+j where (i, j) is the binomial coefficient. In our new notation this is
just β(s)β(t) = β(s+ t). To see this, just look at the coefficient of sitj on both left,
βiβj , and right, βi+j(i, j). The product on RP∞ fits into a commuting diagram
with Z ×BO

RP∞ ×RP∞

��

// RP∞

��
⊗ : (X ×BO)× (Z ×BO) // Z ×BO.

Unfortunately, the map RP∞ → Z × BO is not the one discussed earlier, η − 1,
but it goes to the first component, 1 × BO, not 0 × BO. It is just the map η, so
we can get it on homology by “adding” 1, that is β(s) → b(s) ∗ [1]. So, applying
homology to the above diagram we get

β(s)⊗ β(t)

��

// β(s+ t)

��
(b(s) ∗ [1])⊗ (b(t) ∗ [1]) // (b(s) ∗ [1]) ◦ (b(t) ∗ [1]) = b(s+ t) ∗ [1].

To evaluate b(s+ t) we can apply ∗[−1] to both sides. The right side is

b(s+ t) ∗ [1] ∗ [−1] = b(s+ t) ∗ [0] = b(s+ t).

The left side is more complicated. We begin with

((b(s) ∗ [1]) ◦ (b(t) ∗ [1])) ∗ [−1].
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Let x = b(s) ∗ [1], y = b(t) and z = [1]. We use the distributive law

x ◦ (y ∗ z) = Σ(x′ ◦ y) ∗ (x′′ ◦ z).

We need to compute ψ(x).

ψ(b(s) ∗ [1]) = ψ(b(s)) ∗ ψ([1]) = (b(s)⊗ b(s)) ∗ ([1]⊗ [1])

= (b(s) ∗ [1])⊗ (b(s) ∗ [1]) .

So
(b(s) ∗ [1]) ◦ (b(t) ∗ [1]) = ((b(s) ∗ [1]) ◦ b(t)) ∗ ((b(s) ∗ [1]) ◦ [1]) .

The ◦ multiplication by [1] is the “ring” unit. So (b(s) ∗ [1]) ◦ [1] = b(s) ∗ [1]. On
the other part we use the distributivity law from the right.

(b(s) ∗ [1]) ◦ b(t) = (b(s) ◦ b(t)) ∗ ([1] ◦ b(t))

= b(s) ◦ b(t) ∗ b(t) .

Making our substitutions we have

((b(s) ∗ [1]) ◦ (b(t) ∗ [1])) ∗ [−1] = ((b(s) ∗ [1]) ◦ b(t)) ∗ ((b(s) ∗ [1]) ◦ [1]) ∗ [−1]

= (b(s) ◦ b(t)) ∗ ([1] ◦ b(t)) ∗ (b(s) ∗ [1]) ∗ [−1]

= b(s) ◦ b(t) ∗ b(t) ∗ b(s) .

We have proven the relation

b(s) ◦ b(t) ∗ b(t) ∗ b(s) = b(s+ t).

Looking at the coefficients of sitj , i+ j = n, we see that bn can always be written
in terms of lower bk and ◦ and ∗ unless n is a power of 2. Thus H∗(Z×BO) can be
described completely from the elements b2i . Most of the Hopf rings that we discuss
will have this property: algebraically they are generated by very few elements. This
is possible because we have two products we can use to construct more elements
with.

The cohomology,H∗(BO), is a polynomial algebra on the Stiefel-Whitney classes.
If this is viewed as a module over the Steenrod algebra we know we only need to
start with the ω2i also; but the Steenrod algebra is much more complicated than
the structure I have been discussing.

Since these notes were first written a truly gruesomely detailed description of
this Hopf ring has been obtained, [Str92].

Our next example of a Hopf ring comes again from our algebraic invariants for
homotopy theory. We can also demonstrate various levels of richness in algebraic
structure and show how this is reflected in the classifying spaces again.

Our example is just the mod 2 cohomology, H∗X. This is really a sequence of
algebraic invariants and so requires a sequence of classifying spaces. We have that
there exist spaces, Hn, generally denoted K(Z/2, n) and called Eilenberg–MacLane
spaces, such that

Hn(X) ∼= [X,Hn] .

The Hn are fun spaces to study. Another property that they have which charac-
terizes them is that

[Sk,Hn] = 0 if k 6= n
Z/2 if k = n .
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Because HnX is a group (it is a vector space) we must have a map Hn×Hn → Hn

which turns Hn into a group up to homotopy. As it happens, because Eilenberg–
MacLane spaces are so basic, these spaces can actually be constructed as abelian
groups, but they are the only such spaces which can be, [Mil67].

As we have discussed already, H∗X is a graded ring. Its multiplication must be
reflected in its classifying spaces, and so it is, with maps

Hi ×Hj → Hi+j

which can be used to define the product just as ⊕ and ⊗ were used with K-theory to
define addition and multiplication. Before we look at the implication of this graded
ring structure on our concept of Hopf rings we want to revert to our discussion of
richer structure on our algebraic invariants.

Cohomology satisfies certain basic axioms which imply the fact about [Sk,Hn].
These axioms also imply that H∗X ∼= H∗+1ΣX, where ΣX is the suspension of X.
It is a homotopy theoretic fact that

[ΣX,Y ] ∼= [X,ΩY ]

where ΩY is the loop space of Y (i.e. the topological space of all maps of the unit
interval into Y which start and stop at the same “base” point). Combined, we get

[X,Hn] ∼= HnX ∼= Hn+1ΣX ∼= [ΣX,Hn+1] ∼= [X,ΩHn+1]

which can be used to show that ΩHn+1
∼= Hn.

The cohomology H∗X is a module over an algebra called the Steenrod algebra.
This algebra is very complicated and the module structure gives us a much richer
structure than only the cohomology algebra structure. Of course the Steenrod
algebra, A, is a graded algebra and H∗X is a graded module. The Steenrod algebra
has a homotopy interpretation:

Ai ∼= [Hn,Hn+i] ∼= Hn+iHn, n > i.

Given a map f : Hn+1 → Hn+i+1 we can get another map Ωf : ΩHn+1 = Hn →
ΩHn+i+1

∼= Hn+i. This is an isomorphism of maps for n > i. This allows us to
think of the Steenrod algebra module structure as composition

X → Hn → Hn+i

if we wanted to. In particular, the Steenrod algebra is not commutative.
More precisely, the Steenrod algebra is generated by elements Sqi ∈ Ai, i ≥ 0.

With the relations, however, only the Sq2
i

are needed to generate. It is possible to
mix up the Steenrod algebra module structure of H∗X and the algebra structure
of H∗X to make an even richer structure. We have that

Sqn(xy) =
∑
i+j=n

Sqi(x)Sqj(y) .

This looks a little familiar, and, in fact, can be used to put a coalgebra structure
on A. A becomes a Hopf algebra and H∗X an algebra over the Hopf algebra A.

The coalgebra structure comes from the map Hn∧Hn → H2n. This Hopf algebra
structure on A has many practical applications. First and foremost, the dual, A∗ is
also a Hopf algebra. The algebra structure is commutative and A∗ is a polynomial
algebra

A∗ ∼= Z/2[ξ1, ξ2, . . .] , |ξn| = 2n − 1 .
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The entire Hopf algebra structure is given by this and a simple coproduct formula
for the ξn (ξn →

∑
ξ2

n−j

j ⊗ ξn−j).
We now go back to our new example of a Hopf ring. We have already said that

whenever we have a ring in algebraic topology we can get a Hopf ring by applying
the mod 2 homology to the classifying space. In the case of H∗X we have a graded
ring, not just a ring. This will also give rise to a Hopf ring, but this time the Hopf
ring will be a graded Hopf ring. We make this translation in two steps, as usual,
with the classifying spaces in the middle. The mod 2 cohomology H∗X is a graded
ring, i.e., a collection of abelian groups {HnX}n≥0 with a (distributive, associative,
commutative, etc.) product that pairs these groups, HiX ⊗ HjX → Hi+jX. In
turn, the classifying spaces, H∗ = {Hn}n≥0, form a graded ring object in the
homotopy category. That is, each Hn is a group in the sense already discussed and
there is a pairing Hi × Hj → Hi+j between these “groups” which make all the
appropriate diagrams commute up to homotopy. Applying mod 2 homology we get
H∗H∗ is a graded ring object in the category of coalgebras, that is, a collection of
“abelian groups” (bicommutative Hopf algebras), {H∗Hn}n≥0. This “addition” we
denote by ∗. The “graded ring” structure is a collection of pairings

◦ : H∗Hi ⊗H∗Hj → H∗Hi+j ,

which are associative, etc. They obey our previous distributivity law.
In these lectures it is the graded object which is what we mean when we say

Hopf ring. We think of H∗(Z×BO) as a simple case of this concentrated in degree
zero.

We give a complete description ofH∗H∗ as a Hopf ring. H1 is just the spaceRP∞

which we have already described. We denote β(i) = β2i . For I = (i0, i1, ...) a finite
sequence of non-negative integers, define βI = β◦i0(0) ◦ β

◦i1
(1) ◦ · · · , and `(I) = Σik.

Then H∗Hn is the exterior algebra on generators βI , `(I) = n. The coalgebra
structure follows from H∗H1.

This has another, more appealing, description. H∗H∗ is the “free” Hopf ring over
the Hopf algebra, H∗H1. Of course we must ask; what is a “free” Hopf ring. For
that matter, what is a free anything? If we have a set S and we want to construct
the free abelian group on S, F (S), it has the property that any set map f : S → A
to an abelian group factors uniquely through a canonical inclusion in F (S).

S
f // A⋂

F (S)

==z
z

z
z

Likewise, for a graded collection of Hopf algebras, C(∗), the free Hopf ring on C(∗),
FC(∗), is a Hopf ring with a map of Hopf algebras C(∗) → FC(∗) such that any
map of C(∗) into a Hopf ring factors uniquely through FC(∗):

C(∗)
f // H(∗)⋂

FC(∗)

;;v
v

v
v

v
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It is a very elegant “global” description of H∗H∗ to say it is the free Hopf ring
on H∗H1. Although the idea of a free Hopf ring has been around for some time, it
has only recently been rigorously defined, [Goe99] [HT98].

Needless to say, we could do the entire discussion for H∗(X,F), the cohomology
of X with coefficients in a field F. Replacing Hn we have the Eilenberg–MacLane
spaces K(F, n). We apply H∗(−; F) to these spaces to obtain a Hopf ring. Actually
the first place F occurs we only need a ring R. Then H∗(K(R, ∗),F) is a Hopf ring.
We need F in the homology in order to insure a coalgebra.

We have just seen how quickly and easily our first example generalizes to dif-
ferent coefficients. We can now generalize this even further. Our generalization
will include many known examples, whose computation and description depended
heavily on the concept of Hopf rings. Later we will look at some techniques for
computing Hopf rings.

Homology with coefficients, H∗(−;G), satisfies a certain set of axioms, [ES52].
One of these simply states that the homology of a point is G. The cohomology the-
ory H∗(−;G) is classified by Eilenberg–MacLane spaces K(G,n), i.e., Hn(X;G) ∼=
[X,K(G,n)]. We have ΩK(G,n+1) ∼= K(G,n). Also, the homology can be defined
using these spaces. We have maps ΣK(G,n)→ K(G,n+ 1).

HnX = lim
i→∞

[Si+n,K(G, i) ∧X] .

If we weaken the axioms slightly by eliminating the “axiom of a point” then
we obtain generalized homology and cohomology theories which have many of the
same formal properties of ordinary homology and cohomology [Whi62] [Ada69].
In particular, a (generalized) cohomology theory, E∗(X), is a collection of abelian
groups {En(X)}. We always assume we are working with ring theories so we have
E∗(X) is a graded ring. Brown’s theorem tells us that there is a collection of
spaces, E∗ = {En}, such that E∗(X) = [X,E∗], i.e., En(X) = [X,En]. The
axioms still give a suspension isomorphism and ΩEn+1

∼= En follows as above. The
generalized homology is given by En(X) = limi→∞[Sn+i,Ei ∧X]. The collection,
E∗ = {En}, with the property ΩEn+1 = En is called an Ω-spectrum. Any Ω-
spectrum gives us a cohomology (and homology) theory and vice versa, so the
study of cohomology theories is equivalent to the study of Ω-spectra. In particular,
if you have a generalized cohomology theory you wish to study, all information you
can find about its Ω-spectrum should be useful in the long run. In our case, since
we assume E∗(X) is a ring, not only is each En an abelian group in the homotopy
category, but E∗ is a graded ring object in the homotopy category. So, if we apply
homology with field coefficients to E∗ we have a Hopf ring! However, we are trying
to generalize so that is not enough. Let G∗(X) be our cohomology theory classified
by G∗, and let E∗(X) be our homology theory. Let us look at E∗G∗. It is clear
that E∗Gn is an algebra and we have maps

E∗Gi ⊗ E∗Gj → E∗Gi+j ,

but in order to have our rich structure, the Hopf ring, we must have each E∗Gn be
a coalgebra. We have maps

E∗Gn → E∗(Gn ×Gn)← E∗Gn ⊗ E∗Gn .

If the one on the right is an isomorphism we say we have a Künneth isomorphism and
then E∗Gn is a coalgebra and E∗G∗ is a Hopf ring. Honesty compels me to admit
that Künneth isomorphisms seldom exist in this general setting. However, with
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special cases or conditions on E and/or G, this does occur. Shortly I will be giving
several examples. The simplest is, of course, the case where E∗(− ) = H∗(− ; F).
We always have our Künneth isomorphism in this case. At any rate, in our general
discussions, we assume we have a Hopf ring.

There is a collection of generalized homology theories called Morava K-theories
[Wür91]. For each odd prime, p, and each n > 0, there is a theory K(n)∗(−). The
coefficient ring, i.e., the Morava K-theory of a point, is K(n)∗ ∼= Z/p[vn, v−1

n ], with
the degree of vn equal to 2(pn − 1). It is rather difficult to give an elementary
presentation of these theories explaining where they originate and how they fit into
the scheme of things. Suffice it to say for now that they are intimately connected
with complex cobordism which we describe soon. The reason we bring them up
now is their property

K(n)∗(X × Y ) ∼= K(n)∗X ⊗K(n)∗Y ,

which implies that K(n)∗G∗ is always a Hopf ring. Several of the known examples
of computed Hopf rings involve K(n)∗(−). In particular, let K∗ = K(Z/p, ∗).
Then K(n)∗K∗ is known [RW80], H∗(K(n)∗, Z/p) is also known as is K(n)∗K(n)∗
[Wil84]. E∗K(n)∗ is known for some more general E∗(−) and K(n)∗G∗ is known
for some other special cases.

We pause now for a moment to discuss our future. We want to give a good exam-
ple of a generalized homology theory and corresponding spectrum. Our example is
complex cobordism. Then we will put a few restrictions on E and G and construct
some elements and relations that always hold in a very general setting. For this
we must introduce some formal groups. Then we will describe the Hopf rings when
G∗ is complex cobordism. After that we will describe some more special cases and
then give some techniques for computations.

We move to our example, complex bordism. We want to define a sequence of
abelian groups Ωn(X). We use manifolds to do this [CF64]. Manifolds are a much
better understood class of topological spaces than the general X we wish to study.
We use this understanding of manifolds to study the general X and in the process
find new information about the manifolds themselves.

We begin by considering all maps of all n-dimensional manifolds into X,

Mn
f // X .

There are too many such manifolds and maps. So much like we did when we
went to homotopy theory or when homology is defined using triangles, we put an
equivalence relation on these maps. If we have another map, g : Nn → X, we say
f and g are equivalent, or bordant, if there is an n+1 dimensional manifold Wn+1

and map F : Wn+1 → X, such that the boundary, ∂Wn+1, of Wn+1 is the disjoint
union of Mn and Nn; and F restricted to this boundary is the disjoint sum of f
and g. Let the equivalence classes be ΩnX. It is a finitely generated abelian group.
All of the axioms for a generalized homology theory can be verified geometrically,
or we could easily build a spectrum. Let On be the n-th orthogonal group (again!)
and BOn its classifying space. Take the Thom space of the universal bundle (the
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one point compactification of the total space of the bundle) to get MOn. Our maps

ξn−1 ⊕R

��

// ξn

��
BOn−1

// BOn

give rise to
ΣMOn−1

// MOn

and Thom transversality gives an isomorphism

ΩnX ∼= lim
i→∞

[Sn+i,MOi ∧X] .

We usually denote ΩnX by MOnX [Ati61]. A generalized cohomology theory can
also be defined as

MOnX ∼= lim
i→∞

[Σi−nX,MOi] .

This is called unoriented cobordism. As

[Σi−nX,MOi] ∼= [X,Ωi−nMOi] ,

we define
MOn = lim

i→∞
Ωi−nMOi .

This is the Ω-spectrum giving unoriented bordism and cobordism. This is not so
exciting because each MOn is just a product of mod 2 Eilenberg–MacLane spaces
[Tho54]. To get something more useful, all we need to do is put a little structure
on the manifolds we use. In particular, we assume that the stable normal bundle
has a complex structure, induced by a map

Mn → BU ,

and that this structure restricts from Wn+1 to the boundary when we define bor-
dism. We now get complex bordism, MUnX [Mil60] [Nov67]. Again, we have Thom
spaces and

MUnX = lim
i→∞

[S2i+nX,MUi ∧X]

and
MUnX = lim

i→∞
[Σ2i−nX,MUi] .

We let MUn = limi→∞Ω2i−nMUi to get our Ω-spectrum.
The spectrumMU = MU∗ = {MUn}n∈Z is well studied and we will give a good

description of its Hopf ring. In particular, H∗(MU∗, Z) has no torsion [Wil73] and
is a Hopf ring. Also MU∗MU∗ can be computed and is a Hopf ring! Furthermore,
many more E∗MU∗ can be computed because of the special torsion free property
of H∗MU∗ [RW77] [Wil82].

Before we move on to general nonsense about E∗G∗ we want to state a few facts
about MU . The first is the coefficient ring, MU∗, the bordism of a point. It is a
polynomial algebra on even dimensional generators [Mil60]

MU∗ ∼= Z[x2, x4, ...] .

A confusing but necessary fact is that E∗ = E−∗ for all theories, so for complex
cobordism its coefficient ring is a polynomial algebra on generators in the negative
even degrees.
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In the case of real K-theory we saw how important RP∞ was. Now in a complex
theory the important space is CP∞. The complex cobordism of CP∞ is a power
series ring, over the coefficient ring, on a two dimensional element, x [Ada74]:

MU∗CP∞ ∼= MU∗[[x]] .
This is dual to MU∗CP∞, which is free over MU∗ on generators βi ∈MU2iCP∞.
The coproduct is βn → Σi+j=nβi ⊗ βj . The space CP∞ has a product on it

CP∞ × CP∞ m // CP∞ .

This turns MU∗CP∞ into a Hopf algebra. Recall that this is a group object and in
fact it is an abelian group object. Dual to this we know MU∗CP∞ as an algebra,
so all of the “group” information is contained in the power series

F (x1, x2) = m∗(x) = Σaijxi1⊗̂x
j
2 ∈MU∗CP∞⊗̂MU∗CP∞ ,

where aij ∈MU−2(i+j−1). This is called a formal group law. The group properties
force restrictions on the coefficients aij . For example, commutativity means that
aij = aji. We can also see that a10 = a01 = 1 and the other an0 and a0n are zero.
We say G has a complex orientation if G∗CP∞ and G∗CP∞ have all of the same
properties as MU has for CP∞. The only one necessary, which implies the rest, is
that

G∗CP∞ ∼= G∗[[xG]] , xG ∈ G2CP∞ .

If this is true, then we also have βGi with the nice coproduct and distinguished
elements aGij ∈ G−2(i+j−1). We have our power series FG(x1, x2). We denote the
formal group law by a formal group sum

FG(x1, x2) = x1 +FG
x2 .

The element x ∈ G2CP∞ can be represented by a map xG ∈ [CP∞,G2]. Assume
also that E has a complex orientation, we define bi by

xG∗ (βEi ) = bEi ∈ E2iG2 .

Of course, this may be zero, but we can still define it. We restrict our attention to
E and G with complex orientation, however, our next construction does not depend
on that.

While we do this, keep in mind the simple case of H∗(Z) (Z the integers), that
we have already discussed,

G∗ = [point, G∗] .
Thus G∗ is just the set of components given a graded ring structure by the ring
structure of G∗. For a ∈ G∗ we have a map a : pt → G∗ and we define the element
[a] ∈ E0G∗ by a∗(1) = [a], 1 ∈ E0 = E0(point).

Thus the “ring-ring” E∗[G∗] is contained in the Hopf ring E∗G∗. In particular
we have elements [aGij ] ∈ E0G−2(i+j−1) and we can use the ring structure of the
Hopf ring, with its ∗ for addition and ◦ for multiplication to define a new formal
group law!

x+[FG] y = ∗i,j [aGij ] ◦ x◦i ◦ y◦j .
We are nearly ready to state our main relation which relates the formal group

laws for E and G to give unstable homotopy information. Let b(s) = Σbisi ∈
E∗G2[[s]] as usual. Then
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(Main relation) b(s) +[FG] b(t) = b(s+FE
t) ∈ E∗G∗[[s, t]] .

We are now ready to state the main theorems. In E∗MU2∗, which is (an evenly
graded) Hopf ring, we have E∗[MU∗], and the bi. We claim that E∗MU2∗ is
generated by these elements and the only relations are those given by the main
relation. In particular this completely describes MU∗MU2∗. To give all of E∗MU∗
it is only necessary to add e1 ∈ E1MU1, with e1 ∗ e1 = 0 and e1 ◦ e1 = ±b1. The
plus or minus depends on the orientation you choose for CP∞. The plus is the most
pleasing to the eye but the minus works best with formulas for unstable operations,
[BJW95].

Thus we see that the “main relation” contains a lot of information about complex
cobordism. It is, however, easy to prove, so we do it here. We just write down the
maps

CP∞ × CP∞ m // CP∞ xG
// G2 .

We apply E∗(−) and evaluate the image of β(s)⊗ β(t) in E∗(G2). By duality it is
fairly easy to show thatm∗(β(s)⊗β(t)) = β(s+FE

t) in E∗CP∞. Thus, the notation
which worked so well for us with H∗(RP∞) is working even better here, where it
would be impossible to write down the coefficients precisely. Apply xG∗ β(s+FE

t) to
get b(s+FE

t). Our second evaluation thinks of xG as an element of G2CP∞. Apply
m∗ to xG to get x1+FG

x2 in G2(CP∞×CP∞). Apply this element (x1+FG
x2)∗ to

β(s)⊗ β(t) to get (x1)∗β(s) +[FG] (x2)∗β(t) = b(s) +[FG] b(t). This follows because
the + and × in G∗(−) go to ∗ and ◦ respectively in E∗G∗.

The main relation is easy to prove but the theorem that says that it gives all
relations is very hard [RW77].

Let us look at some more examples of Hopf rings in this setting. Then we
will describe an approach to computing this type of example. We have had one
example of this type already, H∗H∗, the mod 2 homology of the mod 2 Eilenberg-
MacLane spectrum. Let p be an odd prime and we will consider the Hopf ring
H∗(K(Z/p, ∗);Z/p), which we will also denote by H∗H∗, letting Hn = K(Z/p, n)
and H∗(−) be the mod p homology. Now H1 = BZ/p with well known homology.
Each HiH1 is a Z/p with generator e1 ∈ H1H1 and ai ∈ H2iH1. The element
e1 is an exterior generator and the ai give a divided power Hopf algebra. We let
a(i) = api . We use the standard map

CP∞ // H2

which gives an inclusion H∗CP∞ ↪→ H∗H2. This defines elements bi ∈ H2iH2.
The “main relation” can be applied to this case but it tells us only that this image
is a divided power algebra which we already know. Again define b(i) = bpi .

One way to describe H∗H∗ is as a free Hopf ring on H∗H1 and H∗CP∞ ↪→ H∗H2

with the relation e1 ◦ e1 = ±b1. Signs enter in seriously in this Hopf ring. What
do we mean? With a graded algebra, the concept of commutativity incorporates
some signs. If x has degree i and y has degree j, then xy = (−1)ijyx. Now if
x has odd degree, then x2 = −x2. At an odd prime, as we are now, this implies
that x2 = 0. This is a very powerful statement. For a (graded) Hopf ring we must
have a corresponding sign convention. We have a “minus one”, [-1], which is just
the abelian group “inverse map” or, in Hopf algebra language, a conjugation. If
HR∗(∗) is a Hopf ring, with each HR∗(n) a Hopf algebra, then for x ∈ HRi(k),
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y ∈ HRj(n), then

x ◦ y = (−1)ij [−1]◦kn ◦ y ◦ x .

This applies to our case. For a(i) and a(j) we get

a(i) ◦ a(j) = [−1] ◦ a(j) ◦ a(i) .

Computing [−1] ◦ a(j) to be −a(j) we get a(i) ◦ a(j) = −a(j) ◦ a(i). If i = j, then
a(i) ◦ a(i) = −a(i) ◦ a(i) and this implies a(i) ◦ a(i) = 0 . No such restrictions are
placed on the b’s. It is fairly easy to write down the Hopf algebras, H∗Hn, but this
is done elsewhere and is not enlightening [Wil82].

Of more interest is the Morava K-theory of the Eilenberg–MacLane spaces. We
have already mentioned the existence of Morava K-theories, K(n)∗(−). We con-
tinue to use H∗ for the mod p Eilenberg–MacLane spaces. We have computed
K(n)∗H∗. It is the free Hopf ring on K(n)∗H1. Let us describe K(n)∗H1. There
are elements ai ∈ K(n)2iH1, i < pn with the usual nice coproduct. Defining
a(i) = api , i < n, we have a(i)∗p = 0, i < n − 1, just like a divided power al-
gebra, but a(n−1)∗p = vna(0). The previous sign arguments apply here to give
a(i) ◦ a(i) = 0. All elements

a◦ε0(0) ◦ a
◦ε1
(1) ◦ · · · ◦ a

◦εn−1
n−1 εk = 0, 1 ,

are non-zero in K(n)∗Hε0+···+εn−1 . But notice we get K(n)∗Hk = 0, k > n we can
always compute the p-th powers by the use of Hopf rings. If εn−1 = 0, then the
p-th power is zero. If εn−1 = 1, then we can use the distributive law to compute
the p-th power precisely. In particular, K(n)∗Hn is generated by an element x
with x∗p = ±vnx. This fact and the fact that K(n)∗Hk

∼= 0 (k > n) are the main
ingredients (together with the Morava structure theorem for complex cobordism)
in the original proof of the geometric conjecture of Conner and Floyd [RW80].

For our final example we study the spectrum for Morava K-theory. Let K(n)∗ be
that Ω-spectrum. We can define elements very similar to those already defined. We
can do this for general E∗(−), but E has some very special technical restrictions.
However, E can be either mod p homology, H∗(−), or K(n)∗(−). There are our
usual elements a(i) ∈ E2piK(n)1, i < n, b(i) ∈ E2piK(n)2 and e1 ∈ E1K(n)1. The
p-th powers are computed as above with the additional fact that b(i)∗p = 0. Sign
considerations still give us a(i) ◦ a(i) = 0. The p-th power of a(n−1) is computed

explicitly. The main relation shows how b◦
pn

(k) can be written with lower ◦ powers.
In the end each Hopf algebra is described explicitly and these few elements generate
the Hopf ring [Wil84].

The interesting case here is K(n)∗K(n)∗. For complex cobordism the interesting
case wasMU∗MU∗. These are dual to their respective E∗E∗, which are the same as
[E∗,E∗]; and these are the unstable E∗(−) operations. There are strong applications
of these unstable operations for the MU case.

As promised, we now give a brief description of how to compute Hopf rings such
as E∗G∗. The standard inductive approach to E∗G∗ just uses the bar spectral
sequence for a loop space [RS65], we can use this because ΩGk+1

∼= Gk. The
spectral sequence Er(E∗Gk) ⇒ E∗Gk+1 has E2 ∼= TorE∗Gk(E∗, E∗). We are
assuming that there is a Künneth isomorphism for these spaces so we have a Hopf
ring. This is then a spectral sequence of Hopf algebras. It comes from the geometric
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base construction:

Gk+1
∼= BGk

∼=
∐
n≥0

Dn ×Gk × · · · ×Gk︸ ︷︷ ︸
n-copies

/relations.

This is filtered by

F sBGk
∼=

∐
s≥n≥0

Dn ×Gk × · · · ×Gk︸ ︷︷ ︸
n-copies

/relations.

The spectral sequence is just a spectral sequence of this filtered space. The quotient
is

F sBGk/F
s−1BGk

∼= Σs ∧Gk ∧ · · · ∧Gk︸ ︷︷ ︸
s-copies

,

and E1 ∼= ⊗sE∗Gk.
We can introduce Hopf rings [TW80] into this special sequence in a very simple

way that allows us to keep track of the new (◦) product in an inductive way. We
consider the product

Gk+1 ×Gn −→ Gk+1+n

as
BGk ×Gn −→ BGk+n .

This respects filtration in that

F sBGk ×Gn −→ F sBGk+n .

Immediately we get a pairing

◦ : Er(E∗Gk)⊗ E∗Gn −→ Er(E∗Gk+n)

and differentials respect it: dr(x ◦ y) = dr(x) ◦ y. This says quite a bit as it is, but
we can really evaluate this product precisely, inductively, because the pairing on

F sBGk/F
s−1BGk ×GnOO

'
��

// F sBGk+n/F
s−1BGk+n

Σs ∧Gk ∧ · · · ∧Gk ×Gn
// Σs ∧Gk+n ∧ · · · ∧Gk+n

��
'

OO

is given by the map Gk ×Gn → Gk+n. On the E1 term this means that the ◦
product can be evaluated by

(y1 ⊗ · · · ⊗ ys) ◦ x = Σy1 ◦ x(1) ⊗ y2 ◦ x(2) ⊗ · · · ⊗ ys ◦ x(s)

where x→ Σx(1) ⊗ · · · ⊗ x(s) is the iterated reduced coproduct.
This spectral sequence pairing has been the main tool in most Hopf ring calcu-

lations we have done. Of course you have to know something to begin. If we are
computing the mod p homology, H∗(−), then we know H0(G∗) because it is just
the ring-ring Z/p[G∗]. Knowing H0G∗ means knowing G∗ which is just the stable
homotopy

G−n ∼= Gn ∼= lim
i→∞

[Si+n,Gi].

Then the spectral sequence can be used to compute by induction on degrees. It
helps to know the stable homology,

HnG ∼= lim
i→∞

Hi+n(Gi) .
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We call this technique trapping because, in essence, we trap the homology of G∗
between the stable homotopy and stable homology!

If we want to compute E∗G∗, it is sometimes convenient to compute the homol-
ogy first and then use the Atiyah-Hirzebruch spectral sequence to compute E∗G∗.
In other cases, such as K(n)∗H∗, H0

∼= Z/p, so K(n)∗H0 is just K(n)∗[Z/p] and
we can do the induction by spaces.

The technique seems quite powerful and many more application await the math-
ematician who likes to compute such things.
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