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1. Introduction

For any space X, the Steenrod algebra A of stable cohomology operations acts on
the ordinary cohomology H*(X;[F,) to make it an .A-algebra. Milnor discovered [22]
that it is useful to treat H*(X;F,) as a comodule over the dual of A, which becomes
a Hopf algebra. Adams extended this program in [1, 3] to multiplicative generalized
cohomology theories E*(—), under appropriate hypotheses. The coefficient ring E*
is now graded, and E*(X) is an E*algebra.

Our purpose is to describe the structure of the stable operations on E*(—) in a
manner that will generalize in [9] to unstable operations. Unlike some treatments,
we impose no finiteness or connectedness conditions whatever on the spaces and
spectra involved, only a single freeness condition on E. We emphasize universal
properties as the appropriate setting for many results. An early version of some of
the ideas is presented in [8], which is limited to ordinary cohomology, MU, and BP.

For general E, the stable operations form the endomorphism ring A = E*(E, 0)
of E (in our notation). For each z € E*(X), we have the E*module homomorphism
z*: A —» E*(X) given by z*r = £ rxz. The key idea is (roughly) that given an E*
module M, we define SM as the set of all E*~module homomorphisms A — M;
this is to be thought of as the set of candidates for the values of all operations on
a typical element of M.

Generally, we encode the action of A on a stable module M as the function
pm: M — SM given by (payz)r = £ rz. There is an E*module structure on SM
(different from the obvious one) that makes pjpr a homomorphism of E*modules.
This is not yet enough; composition of operations makes the functor S what is
known as a comonad, and we need (M, pas) to be a coalgebra over this comonad.
When M is an E*algebra, so is SM, and we can similarly define stable algebras.

This work serves as more than just a pattern for the promised unstable theory of
[9]. To compare unstable structures with the analogous stable structures, we shall
there construct suitable natural transformations; this is far easier to do when both
theories are developed in the same manner. Much of the basic category theory is the
same for either case; we keep it all here for convenience. Finally, we need specific
stable results for later use.

Outline. In section 2, we introduce five assorted ring spectra F, which will serve
throughout as our examples. We review some elementary category theory and set
up notation.

In sections 3 and 4, we study E-(co)homology in enough detail to suggest what
categories to use. In section 9, we consider (co)homology in the stable homotopy
category of spectra. It is essential for us to work in the correct categories, in order
to make our categorical machinery run smoothly; otherwise it does not run at all.
We therefore take pains in section 6 to say precisely what our categories are.

In section 7, we discuss the various kinds of algebraic object, such as group,
module, and ring, that we need in general categories. In section 8, we rework the
definition of a module over a ring until we find a way that will generalize to the
unstable context.
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In section 10, we discuss stable modules from several points of view. We introduce
the comonad S, and define a stable module as an S-coalgebra. Theorem 10.16 shows
that E*(X) is (more or less) a stable module.

In section 11, we make the homology E, (E,0) a coalgebra (in a sense), provided
only that it is a free E*module. A stable module then becomes a comodule over it;
indeed, Thm. 11.13 shows that the theories of stable modules and stable comod-
ules are entirely equivalent. Theorem 11.14 provides a useful universal property of
E.(E,0). Theorem 11.35 shows that our structure on E.(E,0) agrees with that
introduced by Adams [1].

Everything mentioned so far works for spectra X, too. In section 12, we take
account of the multiplication present on E*(X) when X is a space by making SM
an E*algebra whenever M is. This leads to the definition of a stable algebra. Again,
there is an equivalent comodule version.

All our examples of E-cohomology come with a complex orientation. This has
standard implications for the structure of E*(CP) etc., which we review in section
5. In section 13, we study the consequences for operations.

In section 14, we present the structure on E,(E,o0) in detail for each of our five
examples E. We do not actually construct the operations, which are all well known.
It is clear that many other examples are available.

In section 15, we study the special case of BP-cohomology in greater depth. For a
general introduction, see Wilson [37]. Stable BP-operations are well established; a
short early history would include Landweber [17], Novikov [28], Quillen [30], Adams
[3], Zahler [41, 42], Miller-Ravenel-Wilson [21], and more recently, Ravenel’s book
[31]. We review Landweber’s filtration theorem, for imitation in [9].

An index of symbols is included at the end.

Acknowledgements. We thank Dave Johnson and Steve Wilson for making this
paper necessary. As noted, it serves chiefly as a platform for [9]. It incorporates
several suggestions of Steve Wilson, especially the use of corepresented functors in
section 8. We also thank Nigel Ray for pointing out some useful references.

2. Notation and five examples

Our five examples of commutative ring spectra E are:

H(F,) The Eilenberg-MacLane spectrum, for a fixed prime p > 2, which rep-
resents ordinary cohomology H*(—;F,) and is a ring spectrum (see e.g.
Switzer [34, 13.88]);

BP The Brown-Peterson spectrum, for a fixed prime p > 2 (which is sup-
pressed from the notation), a ring spectrum by Quillen [29];
MU The unitary (or complex) cobordism Thom spectrum, which is a ring
spectrum (see e.g. Switzer [34, 13.89]);
KU The complex Bott spectrum (often written K'), which represents topolog-
ical complex K-theory and is a ring spectrum [ibid., 13.90];
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K(n) The Morava K-theory spectrum, for a fixed prime p > 2 (again suppressed
from the notation), and any n > 0. (We take p > 2 in order to ensure that
the multiplication is commutative as well as associative; see Morava [26],
and especially Shimada-Yagita [33, Cor. 6.7] or Wiirgler [38, Thm. 2.14].
See [16] for background information.)
In particular, K(0) = H(Q) (for any p), and K(1) is a summand of
KU-theory mod p.

Indeed, all our ring spectra are understood to be commutative. Each E defines a
multiplicative cohomology theory E*(X) and homology theory E,(X), which we
discuss in sections 3 and 4. They have the same coefficient ring E*.

Because we deal almost exclusively in cohomology, we assign the degree n to
cohomology classes in E™(X) and elements of E™; this forces homology classes in
E,(X) to have degree —n. Note that under this convention, elements of BP* and
MU* are given negative degrees.

For any space X, E*(X) and E,(X) are E*modules. We therefore adopt E* as
our ground ring throughout, and all tensor products and groups Hom(M, N) are
taken over E* unless otherwise specified. Except for (co)homology, we generally
follow the practice of [25] in writing a graded group with components M™ as M
rather than M*. When we do write M* (e.g. E* as above), we mean the whole
graded group, not a typical component.

All our rings and algebras are associative and are presumed to have a unit element
1, which is to be preserved by homomorphisms. Dually, coalgebras are assumed to
be coassociative.

Summations are often understood as taken over all available values of the index.

We do not attempt to give each construct a unique symbol. For example, all mul-
tiplications are named ¢, which we decorate as ¢g etc. only as needed to distinguish
different multiplications. All actions are named A\ and all coactions are named p.
To compensate, we generally specify where each equation takes place.

Signs. We follow the convention that a minus sign should be introduced whenever
two symbols of odd degree become transposed for any reason. As explained in [7],
this is a purely lexical convention, which depends only on the order of appearance
of the various symbols, not on their meanings. The principle is that consistency will
be maintained provided one starts from equations that conform and performs only
“reasonable” manipulations on them. The main requirement is that each symbol
having a degree should appear exactly once in every term of an equation.

Category theory. Our basic reference is MacLane’s book [20], which also provides
most of our notation and terminology.

In any category A, the set of morphisms from X to Y is denoted A(X,Y),
or occasionally Mor(X,Y). If A is a graded category (always assumed additive),
A™(X,Y) denotes the abelian group of morphisms from X to Y of degree n. Un-
marked arrows are intended to be the obvious morphisms. We write p;: X xY — X
and p2: X xY — Y for the projections from the product X x Y to its factors, and
dually i1: X - X IIY and i2:Y — X IIY for coproducts. We also write g: X — T
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for the unique morphism to a terminal object T.
We denote by I: A — A the identity functor of A. We sometimes find it useful
to write a natural transformation o between functors F, F': A — B as

aF->F:A->B.

If A and B are graded, we can have deg(a) = m # 0; in this case, we require
aYoFf = (=1)"de()F' foaX for each morphism f: X — Y. In contrast, our
graded functors invariably preserve degree.

If o/: F' — F" is another natural transformation, we have the composite nat-
ural transformation o/ oa: F — F". There is the identity natural transformation
1: F — F. Given also G: B — C, we denote the composite functor as GF: A — C
(never Go F), and define the natural transformation Ga: GF — GF': A — C by
(Ga)X = G(aX). Similarly, given 8: G — G', we define BF:GF — G'F: A — C by
(BF)X = B(FX). We also have fa = fF'cGa = G'aoBF:GF — G'F": A - C
(or £ G'ao BF in the graded case).

We make incessant use of Yoneda’s Lemma [20, III.2].

Adjoint functors. It should be no surprise that we have numerous pairs of adjoint
functors. Suppose given a functor V: B — A (which is usually, but not necessarily,
some forgetful functor) and an object A in A.

Definition 2.1. We call an object M in B V-free on A, with basis i:A — VM, a
morphism in A, if for each B in B, any morphism f: A - VB in A “extends” to
a unique morphism g: M — B in B, called the left adjunct of f, in the sense that
Vgoi=f:A— VB.

In the language of [20, IIL.1], i is a universal arrow, which induces the bijection
B(M,B) = A(A,VB). The free object M is unique up to canonical isomorphism,
but there is no guarantee that one exists. In the favorable case when we have a free
object F'A for each A in A, with basis nA: A — VF A, there is a unique way to
define F'h for each morphism h in 4 to make n natural; then F' becomes a functor
and the isomorphism

B(FA,B) = A(A,VB), (2.2)
is natural in both A and B. Explicitly, we recover f: A - VB from g: FA — B as
f=VgonA:tA— VFA— VB in A. (2.3)

For any B, we define eB: FVB — B in B as extending 1: VB — VB. Then
e: F'V — I is also natural, and we may construct the left adjunct g of f as

g=eBoFf:FA—»FVB—B inB. (2.4)
The fact that this is inverse to eq. (2.3) is neatly expressed by the pair of identities

(i) VeopgV=1.V —V:B— A

2.5
(ii) eFoFp=1:F — F:A— B 25)

We summarize the basic facts about adjoint functors from [20, Thm. IV.1.2].
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Theorem 2.6. The following conditions on a functor V:B — A are equivalent:

(i) V has a left adjoint F: A — B;
(il) V is a right adjoint to some functor F: A — B;

(iii) There is a functor F: A — B and an isomorphism (2.2), natural in A and
B .

)

(iv) For all A in A, we can choose a V-free object F'A and a basis nA of it;

(v) There is a functor F: A — B with natural transformations n: I — VF and
e: F'V — I that satisfy egs. (2.5). O

In view of the symmetry in (v), or between (i) and (ii), we have the dual result,
which we do not state. Nevertheless, we do give the dual to Defn. 2.1.

Definition 2.7. The object N in B is V-cofree on A, with cobasis p: VN — A,
a morphism in A, if for each B in B, any f:VB — A in A “lifts” uniquely to a
morphism g: B — N in B, called the right adjunct of f, in the sense that poVg = f.

3. Generalized cohomology of spaces

In this section and the next, we review multiplicative cohomology theories E*(—)
and their associated homology theories E,(—) in sufficient depth to decide what
objects our categories should contain. We also establish much of our notation.

Spaces. We find we have to work mostly with unbased spaces. The most convenient
spaces are CWw-complexes. We denote by T the one-point space. It is sometimes
useful to allow also spaces that are homotopy equivalent to CW-complexes, so that
we can form products and loop spaces directly. A pair (X, A) of spaces is assumed
to be a Cw-pair (or homotopy equivalent, as a pair, to one).

Ungraded cohomology. For our purposes, an ungraded cohomology theory is
a homotopy-invariant contravariant functor h(—) that assigns to each space X an
abelian group h(X), and satisfies the usual two axioms:

(i) h(—) is half-exzact: If X = AU B, where A and B are well-

behaved subspaces (e.g. subcomplexes of a Cw-complex X),

and y € h(A) and 2 € h(B) agree in h(A N B), there exists

x € h(X) (not in general unique) that lifts both y and z; (3.1)
(if) h(—) is strongly additive: For any topological disjoint union

X = ]I, Xa, the inclusions X, C X induce h(X) =

[1, h(Xa)-

For a space X with basepoint 0 € X, we may define the reduced cohomology
h(X, 0) by the split short exact sequence

0 — h(X,0) — R(X) — h(0) — 0. (3.2)
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We recover the absolute cohomology h(X) by constructing the disjoint union X+ of
X with a (new) basepoint; by (ii), h(X ) = h(X)® h(o) and the inclusion X C X+
induces an isomorphism

h(Xt,0) = h(X) . (3.3)
For a good pair (X, A) of spaces, we may define the relative cohomology as
h(X, A) = h(X/A,0), (3.4)

and these groups behave as expected. We generalize eq. (3.2).

Lemma 3.5. If A is a retract of X, we have the split short exact sequence
0 — h(X,A) > h(X) > h(A) > 0.

If A has a basepoint o, we have also the split short exact sequence
0 — h(X,A) — h(X,0) — h(4,0) — 0. |

With no basepoints, we have to be a little careful in representing h(—). Let Ho be
the homotopy category of spaces that are (homotopy equivalent to) Cw-complexes.

Theorem 3.6. Let h(—) be an ungraded cohomology theory as above. Then:

(a) h(=) is represented in Ho by an H-space H, with a universal class 1 €
h(H,0) C h(H) that induces an isomorphism Ho(X,H) = h(X) of abelian groups
by f— h(f)e for all X;

(b) For any cohomology theory k(—), operations 6: h(—) — k(=) correspond to
elements . € k(H).

Proof. What Brown’s representation theorem [10, Thm. 2.8, Ex. 3.1] actually
provides is a based connected space (H', 0), which represents h(—, 0) on based con-
nected spaces (X, 0) only. Then West [35] shows that h(—,0) is represented on all
based spaces by the product space

H=hT)x H, (3.7)

where we treat the group h(T) as a discrete space. By eq. (3.3), H also represents
h(—) in the unbased category Ho.

The map w: T — H that corresponds to 0 € h(T') furnishes H with a (homotopi-
cally well-defined) basepoint, and the exact sequence (3.2) shows that + € h(H, o).
Yoneda’s Lemma represents the addition

Ho(X, Hx H) = h(X) x h(X) —— h(X) = Ho(X, H)

by an addition map p: H x H — H which makes H an H-space, and also gives (b).
(Lemma 7.7(a) will tell us much more about H.) O

Example: KU. For finite-dimensional spaces X, the ungraded cohomology theory
KU(X) is defined (e.g. Husemoller [15]) as the Grothendieck group of complex
vector bundles over X. The class of the vector bundle ¢ is denoted [¢], and every
element of KU (X) has the form [£] — []. The trivial n-plane bundle is denoted
simply n. Addition is defined from the Whitney sum of vector bundles, [£] + [n] =
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[€ @ 7], and multiplication from the tensor product, [£][n] = [ ® n]. In particular,
KU(T) = Z, as aring.

Let (X, 0) be a based connected space, still finite-dimensional. Because any vector
bundle £ over X has a stable inverse 5 such that & & 7 is trivial, every element of
KU(X,o0) can be written in the form [{] — n for some n-plane vector bundle &,
provided n is large enough. The bundle £ has a classifying map X — BU(n) C BU,
which leads to the representation Ho(X,BU) = KU(X,0). As in the proof of
Thm. 3.6, this extends to an isomorphism Ho(X,Z x BU) = KU(X), valid for all
finite-dimensional spaces X.

To extend KU(—) to all spaces as an ungraded cohomology theory, we must
define KU(X) = Ho(X,Z x BU). It remains true that any vector bundle £ over X
defines an element [¢] € KU(X), but in general, not all elements of KU (X) have
the form [¢] — [n].

Splittings. All our splittings depend on the following elementary result.

Lemma 3.8. Assume that 0: h(—) — h(—) is an idempotent cohomology operation,
006 =0. Then the image Oh(—) also satisfies the axioms (3.1).

Proof. For (i), given y € Oh(A) and z € 6h(B) that agree in h(A N B), the
half-exactness of h yields an element z € h(X) that lifts y and z. Because 6 is
idempotent, 8z € Oh(X) also lifts y and z, to show that (i) holds.

For (ii), we need only the naturality of 6. Given elements z, = 0z, € Oh(X,),
axiom (ii) for h provides z' € h(X) that lifts each z!,. Then z = 02" € Oh(X) lifts
each z,, and is unique because h satisfies (ii). O

We immediately deduce the standard tool for constructing splittings. Theorem
3.6(b) allows us to write the identity operation as ¢.

Lemma 3.9. Let 8 be an additive idempotent operation on the ungraded cohomology
theory h(—). Then:
(a) ¢— @ is also idempotent;
(b) We can define ungraded cohomology theories
h'(X) = Ker[: L(X) — h(X)] = Im[t — 6: L(X) — h(X)]
and
h'(X) = Ker[t — 0: h(X) — h(X)] = Im[f: h(X) — h(X)];
(c) We have the natural direct sum decompositon h(X) = h'(X) & h"(X);
(d) If the H-spaces H' and H" represent h'(—) and h" (=) as in Thm. 3.6(a),
then H' x H" represents h(—). O

For future use in [9], we extend this result to certain nonadditive idempotent
operations. To emphasize the nonadditivity, we retain the parentheses in 6(—).

Lemma 3.10. Assume the nonadditive operation 6 on the ungraded cohomology
theory h(—) satisfies the axioms:
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(il) 6(z +y —0(y)) = 0(x) for any z,y € h(X). (3.11)

Then:
(a) 6 and . — 0 are idempotent;

(b) We can define the kernel cohomology theory h'(—) = Kerf = Im(:—6) as a
subgroup of h(—);

(¢) We can define the coimage cohomology theory h"(X) = Coimf =
h(X)/h(X) as a quotient of h(X), with projection w: h(X) — h"(X);

(d) We have the natural short exact sequence of ungraded cohomology theories

0 — B(X) — h(X) — B"(X) — 0; (3.12)

(e) 6 induces a nonadditive operation 0: h''(X) — h(X) which splits (3.12) and
induces the bijection of sets h"(X) = Coim 6 = Im[#: h(X) — h(X)];

(f) The short exact sequence (3.12) is represented by a fibration of H-spaces and
H-maps

H —H—H"

in which H — H'" admits a section (not an H-map) and H ~ H' x H" as spaces.

Remark. Note the asymmetry of the situation. It is necessary to distinguish (cf.
[20, VIIL.3]) between the coimage of 6, which is a quotient group of h(X), and the
image of 6, which in interesting cases is only a subset of h(X), not a subgroup
(otherwise Lemma 3.9 would be available).

Proof. For (a), we put = 0(y) in (ii) to see that 6 is idempotent. If we put z =0
instead, we see that 8(y — 6(y)) = 0, which implies that + — 6 is idempotent.

For (b), we have just seen that Im(1—6) C Ker 6. The opposite inclusion is trivial,
because if 6(z) = 0, we can write x = (1—6)(x).

To see that h'(X) is a subgroup, we first note that 0 € h'(X) by (i). Take any
z € h'(X), which we may write as z =y — 6(y). Then by (ii), z + z € h'(X) if and
only if z € h'(X). Therefore by Lemma 3.8 (which did not require 8 to be additive),
h'(—) is a cohomology theory.

This allows us to define the coimage h'(X) in (c) as an abelian group. By (ii)
and (b), § in (e) is well defined and provides the inverse bijection to Imé C h(X) —
h"(X). By Lemma 3.8, Im 6 and hence h"(—) satisfy the axioms (3.1), and h" is a
cohomology theory. Then (d) combines (b) and (c).

For (f), we represent m by a fibration H — H", which is an H-map of H-spaces.
Then 6 is represented by a section. It follows from the short exact sequence (3.12)
that the fibre of 7 represents h'. O

Graded cohomology. A graded cohomology theory E*(—) consists of an ungraded
cohomology theory E™(—) for each integer n, connected by natural suspension iso-
morphisms

S E"(X) = E"M(S' x X, 0% X) (3.13)
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of abelian groups, much as in Conner-Floyd [12, §4]. By Lemma 3.5, there is a split
short exact sequence

0 E"(S'x X, 0xX) — E"(§'xX) — E"" ' (0xX) — 0. (3.14)

For a based space (X,0), ¥ induces, with the help of eq. (3.4), the commutative
diagram of split exact sequences

E"(X,0) E™(X) E™(0)

>y _{E ~

v
Stx X
n+1 n+1
E"(2X,0) —— E <oxX’O)

x (3.15)

» E"1(S' x0,0)

whose bottom row comes from Lemma 3.5, where the suspension of X is
SixX _ S'xX

~ 1
SIvX  oxX S xo.

YX =8'AX=

We deduce the more commonly used reduced suspension isomorphism ¥: E™ (X, 0) =
E"Y(XX,0). In view of eq. (3.3), we recover eq. (3.13) as a special case.

By iteration of eq. (3.13), or analogy, there are k-fold suspension isomorphisms
forall £ >0

TR EN(X) = E"PR(SE x X 0x X) . (3.16)
Theorem 3.17. Any graded cohomology theory E*(—) is represented in Ho by an

Q-spectrum n — E, , consisting of H-spaces E ,, equipped with universal elements
tn € E"(E,,0) C E"(E,) and isomorphisms (in Ho) of H-spaces E, ~ QE, ..

Proof. Theorem 3.6 provides the H-spaces E ,, and elements ¢,,. Then as a functor
of X, the sequence (3.14) is represented by the fibration of H-spaces

0F,.; — Enyy — B
(which is not to be confused with the path space fibration). In particular,
E"H(S'x X,0x X) & Ho(X,QE ., 1), (3.18)
and eq. (3.13) is represented by the desired isomorphism E, ~ QF, . O

Similarly, ¥ in eq. (3.16) is represented by the iterated homotopy equivalence
En = Qkﬁn—l—k‘

We find it more convenient to work with the left adjunct ¥E, — E, ,, of the
isomorphism. We introduce a sign, which is suggested by section 9.

Definition 3.19. For each n, we define the based structure map f,:¥E,, = E,
by

Fotngr = (=1)"Ze, in E"*1(SE,,, o). (3.20)
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Theorem 3.17 gives a 1-1 correspondence between cohomology classes and maps.
We suspend in both senses and compare.

Lemma 3.21. Given a based space X, suppose that the class x € E™(X,0) cor-
responds to the based map xy: X — E,. Then the map fpo¥zy:¥X — XE, —
E, ., corresponds to the class (—1)"Sz € E"T1(2X,0) (see diag. (3.15)).

Proof. In E*(XX,0), we have (Zzy)* fiint1 = (—1)"(Zzy)* T, = (-1)"3z. O

Multiplicative graded cohomology. The cohomology theory E*(—) is multi-
plicative if E*(X) is naturally a commutative graded ring (with unit element 1x
and the customary signs) and eq. (3.13) is an isomorphism of E*(X)-modules of
degree 1, where we use the projection ps: S! x X — X to make (3.14) a short exact
sequence of E*(X)-modules. Explicitly, X(zy) = (—1)!(p5z)Zy for z € E{(X) and
y € E*(X). The coefficient ring is defined as E* = E*(T).
The natural ring structure on E*(X) is equivalent to having natural cross product
pairings
x: E*(X) x E™(Y) — EM™(X xY)
that are biadditive, commutative, associative, and have 17 € E*(T') as the unit.
They may be defined in terms of the ring structure as z xy = (piz)(p3sy); conversely,
given z,y € E*(X), we recover zy = A*(z x y), using the diagonal map A: X —
X xX.
By means of X = T x X, E*(X) becomes a module over E* = E*(T), and we
may rewrite the x-product more usefully as
x:E*(X)® E*(Y) — E*(X xY), (3.22)

where the tensor product is taken over E*. On the rare occasion that this is an
isomorphism, it is called the cohomology Kiinneth isomorphism.

Definition 3.23. We define the canonical generator u; € E'(S',0) C E'(S?!)
as corresponding to X1y € E'(S'xT,0xT) = E'(S',0), by taking X = T in
eq. (3.13).

Then by naturality, for any z € E™(X) we have
Yr=u; xz in E"(S1x X, 0xX). (3.24)

Similarly, ¥z = u;, x z in eq. (3.16), where the canonical generator u; € E*(S*,0)
corresponds to X¥ 1.

Theorem 3.25. A multiplicative structure on the graded cohomology theory E*(—)
is represented by multiplication maps ¢:E, x E,, — E, NE,, — E; . and a
unit map :T — E,, such that:

(a) The cross product of x € E¥(X) and y € E™(Y) is

¢
Xy X XY S B x B, — B (3.26)
(b) The unit element of E*(X) is 1x =noq: X =T — E;
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(c) Given v € E", the module action v: E¥(=) — E*¥th(=) is represented by
the map

1 ¢
gv:EkETxEkL)Ethk—)Ek—{-h; (327)
(d) The structure map XE, — E | of Defn. 3.19 is

(=1)"usAl

@
fuSE,=S'ANE,——— E,ANE,—E, ;. (3.28)
Proof. We take 1 X 1, € E¥*™(E X E,.) as ¢ and 17 € E°(T) as n; then (a)
and (b) follow by naturality. By definition, vz corresponds to v x x € E¥*F(T'x X).
Thus by eq. (3.26), scalar multiplication by v in E*(X) is represented by eq. (3.27);

equivalently, we use the identity vz = (v1)z in E*(X). By eq. (3.24), the map (3.28)
takes tp41 to (—1)"%4, and is therefore f,. |

From now on, we shall assume that E*(—) is multiplicative. We shall have much
more to say (in Cor. 7.8) about the spaces E,,, once we have the language.

Example: KU. The key to making a graded cohomology theory out of KU(—)
is Bott periodicity, in the following form. (See Atiyah-Bott [6] or Husemoller [15,
Ch. 10] for an elegant proof that is close to our point of view.) It gives us everything
we need to build a periodic graded cohomology theory.

Theorem 3.29. (Bott) The Hopf line bundle ¢ over CP' = S? induces an isomor-
phism

([€] = 1) x = KU(X) = KU(S*x X,0x X)
for any space X.

Definition 3.30. We define the graded cohomology theory KU*(—) as having the
representing spaces KU,, = Z x BU and KU ,, ., = U for all integers n, so that
KU?"(X) = Ho(X,ZxBU) = KU(X) and KU?"t}(X) = Ho(X,U).

In odd degrees, we use the suspension isomorphism

KU (X) = KU (S x X,0x X) 2 Ho(X, Q(Z x BU)) (3.31)

represented by U ~ QBU = Q(Z xBU). In even degrees, rather than specify
Y:KU?™(X) = KU (S x X, 0x X) directly, we use the double suspension iso-
morphism %2: KU?"(X) & KU?"*2(5% x X, 0x X) provided by Thm. 3.29.

The ring structure on KU(X) makes KU*(X) multiplicative, with the help of
eq- (3.31). (The only case that presents any difficulty is

KU (X)) x KU Y(X) — KUXmntl (X)),

which requires another appeal to Thm. 3.29.)

The coefficient ring is clearly Z[u, u™1], where we defineu € KU=2 = KU(T) = Z
as the copy of 1. To keep the degrees straight, all we have to do is insert appropriate
powers u” everywhere. (It is traditional to simplify matters by setting u = 1, thus
making KU*(—) a Z/2-graded cohomology theory; however, this strategy is not
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available to us, as it would allow only operations that preserve this identification.)
For example, Thm. 3.29 provides the canonical element

up =u ([(]=1)  in KU?(S?,0) C KU%(S?). (3.32)

The skeleton filtration. The cohomology E*(X) is usually uncountable for
infinite X, which makes Kiinneth isomorphisms (3.22) unlikely without some kind
of completion. This suggests that it ought to be given a topology.

Given any space X (which we take as a CwW-complex), the skeleton filtration of
E*(X) is defined by

FPE*(X) = Ker[E*(X) — E*(X*~Y)] = Im[E* (X, X*~!) — E*(X)] (3.33)

for s > 0, where X™ denotes the n-skeleton of X, and this filtration is natural. It
is a decreasing filtration by ideals,

E*(X)=F'E*(X)D F'E*(X) D F?E*(X) D ...
Moreover, it is multiplicative,
(F*E*(X))(F'E*(X)) C F*ME*(X) (for all s,t), (3.34)

because X*~!x X U X x X! contains the (s+t—1)-skeleton of X x X, as in [34,
Prop. 13.67].

When X is connected, with basepoint o, we recognize F'E*(X) from the exact
sequence (3.2) as the augmentation ideal

F'E*(X) = E*(X,0) = Ker[E*(X) — E*(0) = E*]. (3.35)
Filtered modules. We need to be somewhat more general.

Definition 3.36. Given any E*module M filtered by submodules F®M, the asso-
ciated filtration topology on M has a basis consisting of the cosets x + F'* M, for all
z € M and all indices a.

For this to be a topology, we need the directedness condition, that given F°M
and FPM, there exists ¢ such that F°M C FM N F*M.

We consider the projections M — M/F*M. We observe that M is Hausdorff if
and only if the induced homomorphism M — lim, M/F®M is monic, and that M
is complete (in the sense that all Cauchy sequences n — z, € M converge) if and
only if it is epic. (A Cauchy sequence is one that satisfies x,, —z, — 0. However,
its limit is unique only if M is Hausdorft.)

Definition 3.37. We define the completion of the filtered module M as M =
lim, M/F®M. The projections M — M/F*M lift to define the completion map
M — M.

We shall observe in section 6 that M has a canonical filtration that makes it
complete Hausdorff.
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In particular, we have the skeleton topology on E*(X). It is of course discrete
when X is finite-dimensional. Since E*(X)/F*E*(X) C E*(X*~!), Milnor’s short
exact sequence [24, Lemma 2]

0 — lim' E*}(X*) — E*¥(X) — lim E*¥(X*) — 0 (3.38)
s

8

may be written in the form

0 — FXE*(X) — E¥(X) — lim E¥(X)/F°E¥(X) — 0, (3.39)

where F®E*(X) =, F*E*(X) and we recognize the limit term as the completion
of E¥(X). Thus the skeleton filtration is always complete, but examples show that
it need not be Hausdorff. The elements of F*° E*(X) are called phantom classes. In
this case, the completion is simply the quotient of E¥(X) by the phantom classes.

Remark. The terminology is unfortunate, but standard. The word “complete” is
sometimes understood to include “Hausdorff”, which would leave us with no word
to describe our situation. Here, completion is really Hausdorffification.

4. Generalized homology and duality

Associated to each of our multiplicative cohomology theories E*(—) is a multiplica-
tive homology theory E,(—), whose coefficient ring E,(T) we can identify with
E*(T) = E*. In this section, we study the relationship between them. We shall see
in section 9 that the situation is quite general. In line with a suggestion of Adams
[1], we have two main tools: a Kiinneth isomorphism, Thm. 4.2, and a universal
coefficient isomorphism, Thm. 4.14. (With our emphasis on cohomology, we never
write E, for E* or E_, for E", as is often done.)
Homology too has external cross products

X:E(X)® E(Y) — E (X xY), (4.1)
that make E,(X) an E*module. This is more often than (3.22) an isomorphism.

Theorem 4.2. Assume that E.(X) or E«(Y) is a free or flat E*~module. Then the
pairing (4.1) induces the Kiinneth isomorphism E,(X xY) = E,(X) ® E.(Y) in
homology.

Proof. See Switzer [34, Thm. 13.75]. Assume that E,(Y") is flat. The idea is that
as X varies, (4.1) is then a natural transformation of homology theories, which is
an isomorphism for X = T and therefore generally. O

This is particularly useful for E = K(n) or H(F,), for then all E*modules are
free. When E,(X) is free (or flat), we can define the comultiplication

~

W By (X) —s By (X x X) —— By(X) @ E.(X), (4.3)

which, together with the counit € = g.: E.(X) = E.(T) = E* induced by ¢: X — T,
makes E,(X) an E*coalgebra.
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The homology analogue of Milnor’s exact sequence (3.38) is simply [24, Lemma 1]

E,(X)= colsim E,(X?). (4.4)

Duality. Our only real use of homology is the Kronecker pairing
(= =) E*(X) ® E(X) — E7,

which is E*bilinear in the sense that (vz,z) = v(z,2) = (=1)"(z,vz) for z €
Ei{(X), z € E.(X), and v € E". We convert it to the right adjunct form

d: E*(X) —» DE,(X) (4.5)
by defining (dz)z = (z,z). Here, DM denotes the dual module Hom* (M, E*) of
any E*module M, defined by (DM)™ = Hom" (M, E*). (But we still like to write
the evaluation as (—,—): DM ® M — E*.) This is the correct indexing to make
DM an E*module and d a homomorphism of E*modules. It is reasonable to ask

whether d is an isomorphism. We shall give a useful answer in Thm. 4.14.
There is an obvious natural pairing (p: DM ® DN — D(M ®N), defined by

(p(f®@9),z@y) = (-1)*ED O (f a)(g,y)  in E*. (4.6)

All these structure maps fit together in the commutative diagram
" " d®d ¢p
E*(X)® E*(Y) —> DE.(X)® DE,(Y) — D(E.(X)® E.(Y))

x Dx (4.7

E*(X xY) d DE,(X xY)

which, algebraically, states that (zxy,axb) = +(x,a)(y, b). Its significance is that
if any four of the maps are isomorphisms, so is the fifth.

We need more. We need a topology on DE, (X) to match the topology on E*(X).
There is an obvious candidate. (We stress that the homology E,(X) invariably has
the discrete topology.)

Definition 4.8. Given any E*module M, we define the dual-finite filtration on
DM = Hom*(M, E*) as consisting of the submodules FX DM = Ker[DM — DL,
where L runs through all finitely generated submodules of M. It gives rise by
Defn. 3.36 to the dual-finite topology on DM.

This filtration is obviously Hausdorff, and we see it is complete by writing DM =
limy, DL, the inverse limit of discrete E*modules. It certainly makes d continuous,
because any finitely generated L C E,(X) lifts to E.(X?®) for some s, by eq. (4.4).

The profinite filtration. The skeleton filtration is adequate for discussing spaces
of finite type (those having finite skeletons), but not all our spaces have finite type.
We need a somewhat coarser topology that has better properties and a better
chance of making d in (4.5) a homeomorphism.
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Definition 4.9. Given a CW-complex X, we define the profinite filtration of E*(X)
as consisting of all the ideals

FE*(X) = Ker[E*(X) — E*(X,)] = Im[E*(X, X,) — E*(X)],

where X, runs through all finite subcomplexes of X. We call the resulting filtration
topology (see Defn. 3.36) the profinite topology.

The particular indexing set is not important and we rarely specify it. The ideals
FeE*(X) do form a directed system: given F'® and F?, there exists X, such that
F¢ C F*NF? namely X, = X, U X,.

This is our preferred topology on E*(X), for all spaces X. It is natural in X:
given amap f: X —» Y, f*: E*(Y) — E*(X) is continuous, because for each finite
X, C X, there is a finite Y, C Y for which fX, C Y}, so that f*(F®) C F°. Indeed,
it is the coarsest natural topology that makes E*(X) discrete for all finite X.

Of course, it coincides with the skeleton topology when X has finite type. How-
ever, it has one elementary property that the skeleton topology lacks.

Lemma 4.10. For any disjoint union X = [[, X., the profinite topology makes
E¥(X) 21, E*(Xs) a homeomorphism. O

Definition 4.11. For any space X, we define its completed E-cohomology E*(X)"
as the completion of E*(X) with respect to the profinite filtration.

A result of Adams [2, Thm. 1.8] shows that the profinite topology is always
complete, that

E*(X) — lim E*(X)/F*E*(X) C lim E*(X,)
a a
is surjective, which allows us to identify canonically

E*(X) = E*(X)/ (| F*B*(X) = lim B*(X,) (4.12)

for all spaces X. This completed cohomology is not at all new; it was discussed at
some length by Adams [ibid.].

As before, the topology on E*(X) need not be Hausdorff. The intersection
N, F*E*(X) (which contains F*°E*(X)) need not vanish, and its elements are
called weakly phantom classes. In practice, one hopes there are none, so that
E*(X)" = E*(X).

Strong duality. We note that the morphism d in eq. (4.5) remains continuous
with the profinite topology on E*(X).

Definition 4.13. We say the space X has strong duality if d: E*(X) — DE.(X)
in (4.5) is a homeomorphism between the profinite topology on E*(X) and the
dual-finite topology on DE,(X) (see Defn. 4.8).

Theorem 4.14. Assume that E.(X) is a free E*-module. Then X has strong dual-
ity, 1. e. d: E*(X) = DE,(X) is a homeomorphism between the profinite topology on
E*(X) and the dual-finite topology on DE,(X). In particular, E*(X) is complete
Hausdorff.
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This is best viewed as a stable result, and will be included in Thm. 9.25.

Kiinneth homeomorphisms. The cohomology Kiinneth homomorphism (3.22)
is rarely an isomorphism, but our chances improve if we complete it. Generally, given
E*modules M and N filtered by submodules F*M and F*N, we filter M @ N by
the submodules

F* (M ®N) =Im[(F*M®N) ® (M®F"N) — M ® N]

(4.15)
=Ker[M @ N — (M/F"°M) ® (N/F"N)]

where the second form follows from the right exactness of ®. (Often, but not always,
FeM ® N and M ® F°N are submodules of M ® N.) We construct the completed
tensor product M & N as the completion of M ® N with respect to this filtration.

The filtration makes x-multiplication (3.22) continuous, because given Z. C Z =
X x Y, the inverse image of F°E*(Z) contains F**(E*(X)®E*(Y)), provided
Z. C X, X Yy. We may therefore complete it to

x:E*(X)® E*(Y) — E*(X xY)" (4.16)
and ask whether this is an isomorphism. Again, we need more than a bijection.

Definition 4.17. If the pairing (4.16) is a homeomorphism and E*(X xY)" =
E*(X xY), we call the resulting homeomorphism E*(X xY) =2 E*(X)@ E*(Y) a
Kiinneth homeomorphism. (Note that we require E*(X xY) to be already Haus-
dorff.)

Similarly, (p: DM ® DN — D(M®N) is continuous. We therefore complete
diag. (4.7) to

E*(X)®E*(Y) aeq DE.(X)® DE.(Y) o D(E.(X)® E.(Y))
X Dx (4.18)

E*(XxY) d DE, (X xY)

Theorem 4.19. Assume that E.(X) and E.(Y) are free E*-modules. Then we have
the Kiinneth homeomorphism E*(X xY) = E*(X) ® E*(Y) in cohomology.

Proof. The hypotheses, with the help of Thms. 4.2 and 4.14, make (4.18) a diagram
of homeomorphisms. (For {p, we may appeal to Lemma 6.15(e).) |

5. Complex orientation
All five of our examples of cohomology theories E*(—) are equipped with a complex

orientation. This will provide Chern classes and a good supply of spaces with free
E-homology.
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The Chern class of a line bundle. Denote by M (£) the Thom space of a vector
bundle £. A complex orientation (for line bundles) assigns to each complex line
bundle @ over any space X a natural Thom class t(§) € E*(M(f)), such that for
the line bundle 1 over a point, t(1) = uy € E?(S5?).

Remark. We assume here a specific homeomorphism between S? and the one-
point compactification of C, as determined by some orientation convention. In some
contexts, it is useful to allow the slightly more general normalization ¢(1) = Aua,
where A € E* may be any invertible element; but then A=1#(#) is a Thom class in
the stricter sense. We have no need here of this extra flexibility.

For our purposes, a closely related concept is more useful.

Definition 5.1. Given E, a line bundle Chern class assigns to each complex line
bundle § over any space X a class z(f) € E?(X), called the (first) E-Chern class
of 8, that satisfies the axioms:

(i) Tt is natural: Given a map f: X' — X and a line bundle 6 over X, for the
induced line bundle f*§ over X' we have z(f*0) = f*x(f) in E*(X");

(i) It is normalized: For the Hopf line bundle ¢ over CP! = S2) we have
z(£) = up € E?(S?), the canonical generator of E*(S?).

It is easy to see that xz(f) = i*t(f) satisfies the axioms, where i: X C M(6)
denotes the inclusion of the zero section. (Conversely, Connell [11, Thms. 4.1, 4.5]
shows that every line bundle Chern class arises in this way, from a unique complex
orientation.)

For E = KU, it is obvious from eq. (3.32) that

z(0) =u ([6] - 1) € KU*(X) (5.2)
is a line bundle Chern class.

Complex projective spaces. Of course, Chern classes need not exist for general
E. As the Hopf line bundle £ over CP* = BU(1) is universal, it is enough to have
z = z(§) € E?(CP>~). We start with CP™.

Lemma 5.3. (Dold) Assume that the Hopf line bundle £ over CP™ has the Chern
class x = z(£) € E?>(CP™), where n > 0. Then:

(a) E*(CP") = E*[z : 2" = 0], a truncated polynomial algebra over E*;

b) We have the duality isomorphism d: E*(CP™) = DE,(CP"™);

)
(¢) E.(CP™) is the free E*-module with basis {Bo,f1,B2,---,Pn}, where B; €
E»;(CP™) is defined as dual to z'.

Proof. See Adams [3, Lemmas I1.2.5, I1.2.14] or Switzer [34, Props. 16.29, 16.30].
The idea is that the presence of x forces the Atiyah-Hirzebruch spectral sequences
for both E*(CP™) and E.(CP™) to collapse. (There is of course no topology on
E*(CP") to check.) One has to verify that z"+! = 0 exactly. In terms of the skeleton
filtration, = € F2E*(CP"). Then by eq. (3.34), 2"+! € F2""2E*(CP") =0. O
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The result for CP> follows immediately, by eq. (4.4) and Thm. 4.14, and also
clarifies exactly how non-unique a complex orientation is. Similarly named elements
correspond under inclusion.

Lemma 5.4. (Dold) Assume that we have the Chern class © = z(§) € E*(CP*).
Then:

(a) E*(CP*>) = E*[[z]], the algebra of formal power series in x over E*, filtered
by powers of the ideal (z);

(b) We have strong duality d: E*(CP*) &£ DE,(CP>);
(¢) E.(CP™) is the free E*-module with basis {Bo, b1, 82,0553, ..}, where p; €
E»;(CP*) is dual to x* for i > 0. O

Chern classes of a vector bundle. We proceed to BU by way of CP*® =
BU(1) C BU. A useful intermediate step is the torus group 7'(n) = U(1) x...xU(1),
for which BT (n) = BU(1) x ... x BU(1). We have Kiinneth isomorphisms

E,(BT(n)) 2 E.(CP®) ® E,(CP®) ® ... ® E,(CP®)
in homology by Thm. 4.2, and

E*(BT(n)) = E*[[z1,22,...,2,]] = E*(CP®)®...® E*(CP>) (5.5)
in cohomology by Thm. 4.19, where z; = pfz(§) = z(p}§).

Lemma 5.6. Assume E has a line bundle Chern class. Then:

(a) E*(BU) = E*[[c1,c¢2,c¢3,-..]], where ¢; € E*(BU) restricts to the ith
elementary symmetric function of the z; € E*(BT(n)) for any n > i, and
E*(BU(n)) = E*[[c1,¢2,-..,¢n]] is the quotient of this with ¢; = 0 for all i > n;

(b) We have strong duality d: E*(BU) = DE.(BU) and d: E*(BU(n)) =
DE.(BU(n)), and in particular, E*(BU) and E*(BU(n)) are Hausdorff;

(¢) E«(BU) = E*[B1,2,03,-..], where B; is inherited from ; € Eq;(CP>)
by CP> = BU(1) C BU and By — 1, and E.(BU(n)) C E.(BU) is the E*free
submodule spanned by all monomials of polynomial degree < n in the f3;.

Proof. See Adams [3, Lemma II1.4.1] or Switzer [34, Thms. 16.31, 16.32]. a

From this it is immediate, as in Conner-Floyd [12, Thm. 7.6], Adams [3, Lemma
I1.4.3], or Switzer [34, Thm. 16.2], that general Chern classes exist. The axioms
determine them uniquely on BT'(n), and this is enough.

Theorem 5.7. Assume E has o complex orientation. Then there exist uniquely E-
Chern classes ¢;(§) € E?(X), for i > 0 and any complex vector bundle £ over any
space X, that satisfy the axioms:

(i) Naturality: c;(f*€) = f*c;(€) € E*(X") for any vector bundle & over X
and any map f: X' > X;
(ii) For any n-plane bundle &, ¢;(§) =0 for all i > n;
(iii) For any line bundle &, c1(§) = z(£);
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(iv) For any vector bundles & and 1 over X, we have the Cartan formula

k-1
ck(®n) =cr() + Z ck—i(§)ci(n) + cx(n) in E*(X). a

The unitary groups. We study the unitary group U by means of the Bott map
b: X(Z x BU) — U, one of the structure maps of the Q-spectrum KU. The Hopf
line bundle 8 over CP™! defines the unbased inclusion

CP™!' c CP*® = BU(1) C BU =1 x BU C Z x BU. (5.8)
Its fibre over the point A € CP" ! is Homc(A4, C), where we also regard A as a
line in C".
When we apply Bott periodicity as in Thm. 3.29, we obtain the element
(E-1) x [0] = [(€®0) & 6] —n  in KU(S?xCP™1),
where 8+ denotes the orthogonal complement bundle having the fibre Hom¢(A+, C)

over A € CP™!. The n-plane bundle (£®6) @ 6+ is, by design, trivial over D? x
CP™! for any 2-disk D? C S?, and its clutching function

h:S' x CP"' — U(n) (5.9)

induces the Bott map b, restricted as in (5.8). Here, S C C is to be regarded as the
circle group. We read off that (for suitable choices of orientation) h(z, A): C* — C"*
is the well-known map that preserves A* and on A is multiplication by z; explicitly,
on any vector Y € C", it is

h(z,A)Y =Y + (z-1){(V, X)X  inC", (5.10)

where X is any unit vector in A. (From the group-theoretic point of view, the image
of h is the union of all the conjugates of U(1) C U(n).)

In [40], Yokota used (essentially) this map h and the multiplication in U(n) to
construct explicit cell decompositions of SU(n) and hence U(n), and deduce their
ordinary (co)homology. The method works equally well for E-(co)homology.

Lemma 5.11. Assume that E has a line bundle Chern class. Then E,.(U(n)) is a
free E*-module with a basis consisting of all the Pontryagin products Vi, Vi, - - - Yis s
where n > 41 > g > ...ip = 0, k > 0 (we allow the empty product 1), v; =
hi(2% B;) € E2i11(U(n)) with h as in eq. (5.9), and z € Ey(S*) is dual to u;.

Proof. Because we are decomposing U(n) rather than SU(n), we use a slightly
different (and simpler) decomposition. We regard U (n) as a principal right U (n—1)-
bundle over $2"~1, with projection map 7: U(n) — S?"~! given by 7g = ge,, where
en = (0,0,...,0,1) € C* and we recognize U(n—1) as the subgroup of U(n) that
fixes ey,. Given g € U(n) — U(n—1), so that mg # e, it is easy to solve eq. (5.10),
as in [40], for a unique pair (z, A) such that h(z, A)e, = mg, which allows us to
write g = h(z,A)g’ for some g’ € U(n—1). Moreover, z # 1 and A ¢ CP"~?; in
other words, 7o h identifies the top cell of ST x CP*~! with S2n~1 —e¢,,.
It follows that the map

1 n—1 hx1 H
St x CP xU(n—1) —— U(n) xU(n-1) — U(n)
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induces the isomorphism in the commutative square

E.(S'xCP" !)® E,(U(n—1)) E.(U(n))

| |

~

E,(S'xCP" ! K)® E,(U(n—1)) — E.(U(n),U(n—1))

where K = S' x CP*2 U1 x CP™!'. From Lemma 5.3, we deduce that both
vertical arrows are split epic and obtain the decomposition
E.(U(n)) = E.(U(n—1)) & Yn-1E.(U(n—1))
of E,(U(n)) as the direct sum (with a shift) of two copies of E,(U(n—1)), as the
multiplication by 7,1 is an embedding. The result now follows by induction on n,
starting from U (1) = S*.
Alternatively, we apply the Atiyah-Hirzebruch homology spectral sequence to the

map h, to deduce that the spectral sequence for E,(U(n)) collapses whenever that
for E,(CP"1) does. O

Corollary 5.12. Assume that E has a line bundle Chern class, and that E* has
no 2-torsion. Then E,(U) = A(y0,71,72,- - -), an exterior algebra on the generators
i = bi(2xf;), where b: X(ZxBU) — U denotes the Bott map and 8; € E;(ZxBU)
is inherited from CP> by the inclusion (5.8).

Proof. We let n — oo in the Lemma and use eq. (4.4). The homotopy commuta-
tivity of U gives v;v; = —viy; and hence 77 = 0. 0

The formal group law. Conspicuous by its absence is any formula for ¢;(§ ® 7).
For line bundles, the universal example is pj¢ ® p3& over CP* x CP*°, where &
denotes the Hopf line bundle. In view of eq. (5.5), there must be some formula

s(€@mn) =z(€) +x(n) + ) ai; 2(&)’z(n) = F(x(£), (n)) (5.13)
.’j
that is valid in the universal case, and therefore generally, where
F(z,y) =z+y+ Y ai;zy  in E*{x,y]] (5.14)
i,j

is a well-defined formal power series with coefficients a;; € E~%72%2 for § > 0
and j > 0. (In the common case that the series is infinite, it may be necessary to
interpret eq. (5.13) in the completion E*(X)" of E*(X).) By use of the splitting
principle (working in BT'(n)) and heavy algebra, one can in principle determine
formulae for ¢;(£ ® ) for general complex vector bundles.

The series F(z,y) is known as the formal group law of E (or more accurately, of
its Chern class x(—)). It satisfies the three identities:

(i) F(z,y) = F(y, 7);
(ii) F(F(2,9),2) = F(z, F(y,2)); (5.15)
(il) F(z,0) == .
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The first two reflect the commutativity and associativity of ®. The last comes from
§® e = ¢ for a trivial line bundle €, and shows that F(z,y) has no terms of the
form a;0z* other than z.

In the case £ = KU, we can write down
z(§®n) = (§) + z(n) +ux(§)z(n)  in KUMX) (5.16)

directly from eq. (5.2), since (£ ® n) = w1 ([¢][n] — 1); in other words, the formal
group law for KU is F(z,y) = x + y + uxy.

6. The categories

In this section we introduce the major categories we need, based on the discussion
in section 3. We also fix some terminology and notation. Our basic reference for
category theory is MacLane [20]. The ground ring throughout is our coefficient ring
E*, a commutative graded ring.

A°P denotes the dual category of any category A. It has a morphism f°P:Y —
X for each morphism f:X — Y in A. If A is graded (and therefore ad-
ditive), deg(f°?) = deg(f) and composition in A°P is given by fPog°? =
(_1)deg(f) deg(g) (go f)or.

Set denotes the category of sets. Cartesian products serve as products and disjoint
unions as coproducts. The one-point set T is a terminal object, and the empty set
is an initial object.

Ho denotes the homotopy category of unbased spaces that are homotopy equiva-
lent to a cw-complex. This will be our main category of spaces. Milnor proved [23,
Prop. 3] that it admits products X x Y, with never any need to retopologize. The
one-point space T is a terminal object. Arbitrary disjoint unions serve as coprod-
ucts; in particular, any space is the disjoint union of connected spaces. We identify
E¥(X) = Ho(X, E,) according to Thm. 3.17.

Of course, any equivalent category will serve as well. We reserve the option of
taking any specific space to be a CW-complex, extending constructions to the rest
of Ho by naturality.

Ho' denotes the homotopy category of based spaces as in Ho, where the basepoint
o is assumed to be non-degenerate; all maps and homotopies are to preserve the
basepoint. Although this category is more common, we use it only rarely. Milnor
proved [23, Cor. 3] that the loop space QX of such a space X again lies in the
category. Finite cartesian products remain products, but the one-point space T
becomes a zero object and arbitrary wedges (one-point unions) serve as coproducts.
The exact sequence (3.2) identifies E*¥(X,0) = Ho'(X, E ).

Stab denotes the stable homotopy category (in any of various equivalent versions,
e.g. [3]). It is an additive category, and has the point spectrum as a zero object.
Arbitrary wedges of spectra serve as coproducts. It is equipped with a stabilization
functor Ho' — Stab, which we suppress from our notation. There is a biadditive
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smash product functor A: Stab x Stab — Stab, which (up to coherent isomorphisms)
is commutative and associative, has the sphere spectrum 7T as a unit, and is
compatible with the smash product in Ho'. We define the suspension ¥X = S'AX,
which is therefore compatible with ¥: Ho' — Ho'.

Stab* denotes the graded stable homotopy category; it has the same objects as
Stab, with maps of any degree as morphisms. It is a graded additive category. We
write Stab™(X,Y) = {X,Y}" for the group of maps of degree n (in the conventions
of section 2). Given a fixed choice of one of the two isomorphisms S* ~ T+ in Stab*
of degree 1, we define the canonical natural desuspension isomorphism

EX=S'"AX~TtAX~X (6.1)
of degree 1 for any spectrum X. (We do not give it a symbol.) Composition with
it yields isomorphisms, for any n > 0:

{X, 2"V} ={X,Y}" {X,) Y} "=2{Z"X,Y};
which express Stab™ in terms of Stab and X.

However, there is a difficulty with smash products. Given maps f: X — X' and
g:Y = Y’ of degrees m and n, the diagram

fAY
XANY — X'AY

X/\g\ (71)mn {X’/\g
AY'
XAY — X'AY!

commutes only up to the indicated sign (—1)™", owing to the necessity of shuffling
suspension factors. Consequently, the graded smash product is a functor defined not
on Stab™ x Stab™ but on a new graded category (which might be called Stab®®Stab™)
with the biadditivity and signs built in. All we need to know is how to compose:
given also f': X' = X" of degree m’ and ¢": Y’ — Y", we have

(' AF)olg A F) = ()™ "(glog) A (f'of): X AY — X" AY".  (6.2)

From the topological point of view, this is the source of the principle of signs (see
section 2). For example, a map f: X — Y of degree n induces, for any W and Z,
the homomorphisms of graded groups of degree n:

S Stab* (W, X) — Stab*(W,Y) given by f.g= fog;

6.3
f*:Stab*(Y, Z) — Stab*(X,Z) given by f*g = (—1)"de89) g, f. (6.3)

Ab denotes the category of abelian groups. It is the prototypical abelian category
and needs no review here.

Ab* denotes the graded category of graded abelian groups, graded by all integers
(positive and negative).
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Mod denotes the additive category of (necessarily graded) E*modules, in which
the morphisms are E*module homomorphisms of degree 0. Degreewise direct prod-
ucts [, M, and sums €, M, serve as products and coproducts. It is equipped
with the biadditive functor ®: Mod x Mod — Mod (taken over E*), which is asso-
ciative, commutative, and has E* as unit (up to coherent isomorphisms).

We note that the homology functor E,(—): Ho — Mod preserves arbitrary co-
products, i. e. is strongly additive.

Mod* denotes the graded category of E*modules, in which homomorphisms of
any degree are allowed. That is, Mod™* (M, N) is the graded group whose component
Mod™ (M, N) in degree n is the group of E*module homomorphisms f: M — N of
degree n, with components fi: M? — N7 that satisfy fit"(vz) = (—1)"v(fix)
for z € M? and v € E". The sign must be present if the algebra is to imitate the
topology.

Moreover, Mod* (M, N) is an E*module in the obvious way, with vf defined by
(vf)x = v(fz) = £f(ve) for v € E*. Given E*module homomorphisms g: L' — L
and h: M — M', we define Hom(g, h): Mod* (L, M) — Mod* (L', M") by

Hom(g, h) f = Mod*(g,h)f = (—1)deslo)(dee(H)+desM o fo g 1) — M', (6.4)

to make it a homomorphism of E*modules. Similarly for tensor products: given
morphisms f:L — L' and g: M — M', we define the morphism f ® ¢g:L ® M —
L' ® M' in Mod* by

(fegzey) = (1)@ frq gy .
If also f": L' — L" and ¢': M' — M", composition is given, like eq. (6.2), by

(9@ f) (9@ f) = (~1)*8I 48D (glog) @ (f'of): Lo M — L" @ M" . (6.5)

We imitate the suspension isomorphisms (3.13) and (3.16) algebraically by intro-
ducing suspension functors into Mod and Mod*.

Definition 6.6. Given an E*module M and any integer k, we define the k-fold
suspension ¥ M of M by shifting everything up in degree by k: (X¥M)? is a formal
copy of M*~*  consisting of the elements Xz for z € Mk,

To make the function ¥¥: M — ¥ M an isomorphism of E*modules of degree
k, we must define the action of v € E* on ©*M by

v(ZFz) = (=1)"*Sk(vz)  in DFM. (6.7)
Further, ©*: M = %* M becomes a natural isomorphism I = ©* of degree k of func-
tors on Mod™ if we define X* f: ¥ M — B¥N by (B* f)(Zkz) = (=1)¥"Z*(fz) on a
morphism f: M — N of any degree n. (Here, 3 denotes both a natural isomorphism
and a functor.)

Alg denotes the category of commutative E*algebras. It admits arbitrary degree-
wise cartesian products [[, A« as products. The tensor product A ® B of algebras
serves as the coproduct of A and B, and E* is the initial object.
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Categories of filtered objects. The discussion in sections 3 and 4 strongly
suggests that for cohomology, we need filtered versions of Mod, Mod*, and Alg.

FMod denotes the category of complete Hausdorff filtered E*modules and con-
tinuous E*module homomorphisms of degree 0. An object M is an E*module M,
equipped with a directed system of E*submodules F®M, and hence a topology
as in Defn. 3.36. (We do not require the indexing set to be the integers, or even
countable.) These are required to satisfy M = lim, M/F®M, to make the topology
complete Hausdorff. The category remains an additive category.

The forgetful functor V: FMod — Mod simply discards the filtration. Conversely,
any E*module M may be treated as a discrete filtered module by taking 0 as the
only submodule F'*M; this defines an inclusion Mod C FMod. Generally, a filtered
module M is discrete if and only if some F'*M is zero.

We frequently encounter filtered E*modules M that are not complete Hausdorff.
We defined the completion M = lim, M /F*M of M in Defn. 3.37. The completion
map M — M is “monic if and only if M is Hausdorff, and epic if and only if M is
complete. Each M- M/F®M is epic, because M — M/F*M is.

We filter M in the obvious way, by FeM = Ker[M - M /F“ ] This filters
the completion map and induces isomorphisms M/F°M = M /F“M ; it is now
obvious that M is indeed complete Hausdorff (as the terminology demands) and so
an object of FMod. If M happens to be already complete Hausdorff, M — M is an
isomorphism in FMod. We make frequent use of the expected universal property:
given an object N of FMod, any continuous E*module homomorphism M — N
factors uniquely through a morphism M — Nin FMod. In the language of Defn. 2.1,
M is V-free on M, with the completion map M — M as a basis.

If F°M C FbM we can write F°M/FM = Ker[M/F*M — M/F°M]. If we
now fix F®M and apply the left exact functor lim,, we see that the completion of
FYM, filtered by those F*M contained in it, is just Ker[M — M/F*M] = F*M,
as expected

None of the above facts requires the filtration to be countable.

The obvious filtration (4.15) on the tensor product M ® N is rarely complete,
even when M and N are. We therefore complete it to define the completed tensor
product M & N in FMod. In view of the second form of (4.15), it may usefully be
written

M®N = lim [(M/F*M) ® (N/F'N)]. (6.8)

This makes it clear that M®N = M &N , that it does not matter whether we
complete M and N first or not. (We continue to write f ® g rather than f & g for
the completed morphisms, leaving it to the context to indicate that completion is
assumed.)

FMod* denotes the graded category of complete Hausdorff filtered E*modules,
in which continuous E*module homomorphisms of any degree are allowed.

We give the E-cohomology E*(X) of a space X the profinite topology from
Defn. 4.9, and complete it to E*(X)" as in Defn. 4.11 if necessary; by Lemma 4.10,
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the functor E*(—)": Ho°®® — FMod takes arbitrary coproducts in Ho to products in
FMod. Thus cohomology remains strongly additive in this enriched sense.

As noted in section 4, the profinite topology on E-cohomology makes cup and
cross products continuous,which suggests our other main category.

FAlg denotes the category of complete Hausdorff commutative filtered E*algebras
A, with multiplication ¢: A ® A — A and unit n: E* — A. We filter objects as in
FMod, except that the filtration is now by ideals F*A. Then ¢ is automatically
continuous, and it is sometimes useful to complete it to A® A — A. We have the
forgetful functor FAlg — FMod.

Degreewise cartesian products serve as products, and we note that the cohomol-
ogy functor E*(—)": Ho°® — FAlg takes coproducts in Ho to products in FAlg. The
initial object is just E* itself. Coproducts in FAlg are less obvious.

Lemma 6.9. The completed tensor product A® B of algebras serves as the coprod-
uct in the category FAlg.

Proof. We first consider the uncompleted tensor product A ® B, made into an
E*algebra in the standard way, filtered as in (4.15) by the ideals

F’"(A® B) = Im[(F*A®B) ® (A® F’B) — A®B].

We define continuous injections i: A -+ A® B and j:B— A®Bbyixr=2®1 and
jy = 1 ® y. Given continuous homomorphisms f: A - C and g: B — C, where C
is any object in FAlg, there is a unique homomorphism of algebras h: A® B — C
satisfying hoi = f and hoj = g, defined by h(z ® y) = (fz)(gy), thanks to the
commutativity of C. It is also continuous: given F¢C C C, choose F*A and F*B
such that f(F®A) C F°C and g(F*B) C F°C;then h(F**(A®B)) C F°C. Because
A ® B is rarely complete, we complete it, and the homomorphism A, to obtain the
desired unique algebra homomorphism h: A® B — C in FAlg. O

Although E*(—)" does not in general take products in Ho to coproducts in
FAlg, it does in the favorable cases when we have the Kiinneth homeomorphism
E*(XxY) =2 E*X(X)® E*(Y) as in Defn. 4.17.

The module of indecomposables. If (A, ¢,n,¢) is a (completed) algebra with
counit (or augmentation) e: A — E* (which is required to be a morphism of algebras
as in e.g. a Hopf algebra), the augmentation ideal A = Kere splits off as an E*
module, A = E* @ A. One can define the module of indecomposables QA = AJ/A A,
i.e. Coker[p:A ® A — A] (or Coker[¢p: A® A — A] in the completed case). A
cleaner way to write this categorically is

QA =Coker[p —ARe—ec®@ A AR A — A in Mod, (6.10)
as we see by using the splitting of A; the homomorphism here is zero on A®1 and
1® A and —1 on E* = E* ® E*.

Lemma 6.11. The functor Q, defined on (completed) E*-algebras with counit, pre-
serves finite coproducts: Q(A® B) = QA @ QB (or Q(A®B) = QA ® QB) and
QE* =0.
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Proof. For C = A®B (and similarly A ® B) we have the direct sum decomposition
C=(A®1)® (1®B) ® (A®B).

Then ¢(C ® C) contains A A® 1 from (A®1)® (A®1), 1® B B similarly, and A® B
from (A®1) ® (1®B). The image is the direct sum of these, because the other six

pieces of C ® C give nothing new. This allows us to read off the cokernel. O

Coalg denotes the category of cocommutative E*coalgebras, with comultiplica-
tion : A - A ® A and counit e: A — E*.

When E.(X) is a free E*module, eq. (4.3) and ¢.: E.(X) — E* make it an
object in Coalg.

Lemma 6.12. In the category Coalg:

(a) The tensor product A ® B of two coalgebras is again a coalgebra (see e.g.
[25, §2]), and serves as the product;

(b) E* is the terminal object;

(c) Arbitrary direct sums @, Ao of coalgebras serve as coproducts. 0

There are also the slightly more general completed coalgebras A, where A is
filtered as above and we have instead 9: A - A® A. If A and B are completed
coalgebras, so is A® B.

The module of primitives. If (4,1,¢€,7) is a (completed) coalgebra with unit
(e.g. a Hopf algebra), where n: E* — A is required to be a morphism of coalgebras,
we can define, dually to eq. (6.10), the module of coalgebra primitives

PA=Ker[p —A@n—n®A:A— AQA|CA (6.13)

in Mod (or FMod, with A® A in place of A ® A), a submodule of A. The dual of
Lemma 6.11 holds.

Lemma 6.14. The functor P, defined on (completed) coalgebras with unit, pre-
serves finite products: P(A® B) = PA® PB (or P(A®B) = PA® PB) and
PE* =0. O

Dual modules. We warn that the completed tensor product ® does not make
FMod a closed category (as — ® M admits no right adjoint). Nor do we attempt to
topologize FMod (M, N) in general.

Nevertheless, we found it useful in Defn. 4.8 to filter the dual DM =
Mod* (M, E*) of a discrete E*module M by the submodules FL DM = Ker[DM —
DL], where L runs through all finitely generated submodules of M. Then DM =
limp, DL in FMod, where each DL is discrete; in particular, DM is automatically
complete Hausdorff.

The dual Df: DN — DM of any homomorphism f: M — N is continuous,
because (Df) Y (FFDM) = FfLDN. In the important case when M is free, we
obtain topologically equivalent filtrations by taking only those L that are (i) free
of finite rank, or (ii) free of finite rank, and a summand of M, or (iii) generated by
finite subsets of a given basis of M.
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Lemma 6.15. Let M, M,, and N be discrete E*~modules. Then:

(a) The canonical isomorphism D(M & N) =2 DM & DN = DM x DN is a
homeomorphism;

(b) The canonical isomorphism D(@, Ma) = [[, DM, is a homeomorphism,

(¢) If f: M — N is epic, then the dual Df: DN — DM is a topological embed-
ding;

(d) The functor D takes colimits in Mod to limits in FMod;

(e) ¢(p:DM DN = D(M ® N) in FMod, if M or N is a free E*module.

Proof. In (a), D(M@®N) — DM x DN is continuous because D is a functor. Given
a basic open set FYD(M@®N) C D(M@N), where L C M@ N is finitely generated,
there are finitely generated submodules P C M and () C N such that L C P & Q;
then FPDM @ FRDN C FED(M @ N) shows that we have a homeomorphism.
More generally, we get (b).

In (c), we can lift any finitely generated submodule L C N to a finitely generated
submodule K C M such that fK = L. Then F*DN = DNNFKDM in DM.

If C' = Coker[f: M — NJ], we have DC = Ker[D f: DN — DM] as an E*module.
By (c), the topology on DC is correct, so that D sends cokernels to kernels. This,
with (b), gives (d).

In (e), we may assume M is free. Equality is obvious for M = E* and therefore,
by additivity, for M free of finite rank. By (d) and eq. (6.8), the general case is the
limit in FMod of the isomorphisms DL ® DN = D(L ® N) as L runs through the
free submodules of M of finite rank that are summands of M. O

The evaluation e: DL ® L — E*, which we write as e(r ® ¢) = {r, ¢), is standard.
The dual concept, of a homomorphism E* — DL ® L for suitable L, is far less
known, even for finite-dimensional vector spaces.

Lemma 6.16. Let L be a discrete free E*module. We can define the universal
element w = ur, € DL ® L by the property that for any r € DL = Mod*(L, E*), the
homomorphism

DL&(r,—):DL®L — DL ® E* = DL

takes u to r. It induces the following isomorphisms of E*-modules:

(a) Mod*(L, M) = DL& M for any discrete E*-module M, by f — (DL ® f)u,
with inverse r @ x > [c > (—1)de8(c) deg(@) (. ¢) 7];

(b) FMod*(DL,N) = N &L for any object N of FMod, by g — (9 ® L)u,
with inverse y @ ¢ — [r = (=1)¢(r,c) y], where e = deg(r) deg(c) + deg(r) deg(y) +
deg(c) deg(y);

(¢) FMod*(DL,E*) = E*Q L = L, by g <> ¢, where ¢ = (9 ® L)u and
gr = (_1)deg(7‘) deg(c) (r,c).

Remark. We are not claiming to have isomorphisms in FMod. Indeed, for reasons
already mentioned, we do not even topologize FMod™ (DL, N) etc. In any case, the
obvious E*module structures are the wrong ones for our applications.
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Proof. In terms of an E*basis {cq:a € A} of L, u is given by
u=ur = Z(—l)deg(c“)c(’; ®cq € DLRL,

«
where ¢ denotes the linear functional dual to ¢4, given by (c%,cq) = 1 and
(ct,cp) = 0 for B # a. In effect, (a) generalizes the definition of w, and is clearly
an isomorphism when L has finite rank, with inverse as stated.

For general L, we let K run through all the free submodules of L of finite rank.
The functor Mod*(—, M) automatically takes the colimit L = colimg K to a limit.
On the right, the functor — & M preserves the limit DL = limg DK by eq. (6.8).

Similarly, (b) is obvious when L has finite rank and N is discrete. For general
L and discrete N, any continuous homomorphism DL — N must factor through
some DK, so that on the left, we have the colimit colimg Mod* (DK, N). On the
right, we also have a colimit, N ® L = colimg N ® K (as no completion is needed).
This gives (b) for discrete N and general L. For general N, we observe that both
sides preserve the limit N = lim, N/F®N, with the help of eq. (6.8).

In the special case (¢) of (b), the defining property of u implies by naturality that
gr = £(r, (¢ ® L)u) for any r € DL and any g: DL — E*. |

It will be convenient to rearrange the signs in (b).

Corollary 6.17. The general element Za(—l)deg(y“)deg(c‘*)ya Qcq € NRL of
degree k corresponds to the general morphism DL — N of degree k given by

re (_l)kdeg(r) Z(’F, ca>ya - O

7. Algebraic objects in categories

It has been known for a long time (e.g. Lawvere [19]) how to define algebraic
objects in general categories. We are primarily interested in abelian group objects
and generalizations, especially E*module and E™algebra objects, where E* is a
fixed commutative graded ring. We review the material on categories we need from
MacLane’s book [20, Chs. VI, VII].

Group objects. Let C be any category having a terminal object T' and (enough)
finite products. (Recall that T is the empty product.)

A group object in C is an object G equipped with a multiplication morphism
pw:G x G = G, a unit morphism w:T — G, and an inversion morphism v:G —
G, that satisfy the usual axioms, expressed as well-known commutative diagrams
(which may be viewed in [32, §1]). Then for any object X, C(X, G) becomes a group
(as we see generally in Lemma 7.7), whose unit element is woq: X - T — G. In
the group C(G, G), v is the inverse of 15.

An abelian group object G has u commutative (another diagram); in this case,
we call y the addition and w the zero morphism. Then the group C(X, G) is abelian.

If H is another group object in C, a morphism f:G — H is a morphism of group
objects if it commutes with the three structure morphisms; as is standard for sets
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and true generally (again by Lemma 7.7), it is enough to check u. Thus we form
the category Gp(C) of all group objects in C; one important example is Gp(Ho).

Example. In the category Set, one writes the structure maps of an abelian group
object as u(z,y) = z +y, w(a) = 0, and v(z) = —=z, where T = {a}. Then the
axioms take the form (zx +y)+z =+ (y+2),z+0 =z, z + (—z) = 0, and
T +y =y + z, the usual axioms for an abelian group.

Example. An (abelian) group object A in Coalg is a cocommutative Hopf algebra
over E*, with (commutative) multiplication ¢: A® A — A and unit 7: E* — A; the
canonical antiautomorphism x: A — A is by [25, Defn. 8.4] the inversion v. (Recall
from Lemma 6.12(a) that A ® A is the product in Coalg.)

Dually, a cogroup object in C is simply a group object G in the dual category C°P.
That is, we use coproducts instead of products, an initial object I instead of T', and
reverse all the arrows; so that G is equipped with a comultiplication G — G II G,
counit G — I, and inversion G — G, satisfying the evident rules.

Example. A commutative Hopf algebra A over E* may be regarded as a cogroup
object in Alg with comultiplication ¥: A -+ A ® A, counit e: A — E*, and inversion
x: A — A. (As in Lemma 6.9, A ® A is the coproduct.)

Example. In the based homotopy category Ho', the circle S', and hence the
suspension XX, are well-known cogroup objects.

In any additive category, we have abelian group objects for free.

Lemma 7.1. In a (graded) additive category C:

(a) Every object admits a unique structure as abelian group object and as abelian
cogroup object;

(b) Every morphism is a morphism of abelian (co)group objects;

(¢c) The (graded) abelian group structure on C(X,Y) resulting from the group
object Y or the cogroup object X is the given one.

Proof. The zero object is terminal, which forces w = 0. The sum G @ G serves as
both product and coproduct. The axioms force u = p; + p2 and v = —1g: G — G,
and these choices work. The dual of an additive category is again additive. O

The product G x H of two group objects is another group object, with the obvious
multiplication

,u:GxHxGxHEGxGxHxH#—Xu>GxH, (7.2)

unit w Xw:T =2 T xT — G x H, and inversion v X v: G x H — G x H. This serves
as the product in the category Gp(C). The trivial group object T', with the unique
structure morphisms, serves as the terminal object.

This allows one to define group objects in Gp(C), as follows. To say that G is
an object of Gp(C) means that it is equipped with a multiplication ug, unit wg,
and inversion vg that make it a group object in C. In diag. (7.2) we made G x G
an object of Gp(C). Then G is a group object in Gp(C) if it is equipped also with
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morphisms u:G X G = G, w:T — G, and v:G — G in Gp(C) that satisfy the
axioms. The following useful result is well known.

Proposition 7.3. Let G be a group object in the category Gp(C). Then the two
group structures on G coincide and are abelian.

Proof. Lemma 7.7 will show that it is sufficient to consider the case C = Set,
where the result is a standard exercise (e.g. [20, Ex. I11.6.4]). O

Module objects. A graded group object M in C is a function n — M™ that
assigns to each integer n (positive or negative) an abelian group object M™ in C.
(Note that the infinite product [],, M™ and coproduct are irrelevant.)

An E*module object in a (graded) category C is a graded group object n — M™
that is equipped with morphisms &v: M™ — M™ " of abelian group objects (of
degree h) for all v € E* and all n, where h = deg(v), subject to the axioms:

(i) £(v+v') = &v + &' in the group C(M™, M), for v,v' € E";
(i) &(vv') = Evo &' for all v,v' € E*; (7.4)
(iii) €1 = 1: M™ — M™

It follows that the inversion v = £(—1) = —1in C(M™, M™).

In an additive category, Lemma, 7.1 shows that all we need is a graded object n —
M™ equipped with morphisms év: M™ — M™*h that satisfy the axioms (7.4). If C is
graded, we often (but not always) have only a single object M, with M™ = M for all
n; then the definition reduces to a graded ring homomorphism ¢&: E* — Endg (M).

In a graded category, the concept of E*module object is self-dual, thanks to the
commutativity of E* (provided we watch the signs and indexing): n — M™ is an
E*module object in C, with v acting by fv: M™ — M™% if and only if n — M " is
an E*module object in C°P, with v acting by (£v)°P: M™th — M™ in C°P. (But we
note that this observation fails in general in ungraded additive categories, because
the required signs are absent.)

Algebra objects. A (commutative) monoid object in C is an object G equipped
with a multiplication morphism ¢: G x G — G and a unit morphism 7: T — G that
satisfy the axioms for associativity, (commutativity,) and unit. Apart from the lack
of inverses and a change in notation, this is like a group object.

A graded monoid object is a graded object n — M™, equipped with multiplica-
tions ¢: M*¥ x M™ — MF*+™ and a unit n: T — MP°, that satisfy the axioms for
associativity and unit. (There is a problem in defining commutativity for graded
monoid objects, because extra structure is needed to handle the signs.)

An E*-algebra object in C is an E*module object that is also a graded monoid
object, with the two structures related by three commutative diagrams that inter-
pret the two distributive laws and (vz)y = v(zy) = £z (vy). It is commutative if
yx = + zy, interpreted as another diagram. Here, the sign (—1)™ becomes £((—1)").
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It is often useful to replace the v-action £v: M™ — M™t" in an E*algebra object
by the simpler morphism 7, = fvon: T — M", so that 5, = n; the diagram

nxXM" Eux M™
TxM" —— M°%x M™ — M" x M™

~

un —

Mn-‘rh

shows that we can recover &v from 7, as the composite

w X M™
co: MP =T x M7 2 b 2 pgnth, (7.5)

Equivalently, we have interpreted the identity vz = (v1)z.

General algebraic objects. Other kinds of algebraic object can be defined simi-
larly, provided they are (or can be) described in terms of operations a: G*™®) — @
subject to universal laws, where G*™ = G x G x ... x G, with n factors. Frequently,
our algebraic object lies in the dual category C°P and is the corresponding coalge-
braic object in C. Our general results extend without difficulty (except notationally)
to the dual and graded variants, and we omit details.

The following observation is quite elementary but extremely useful.

Lemma 7.6. Let G be an algebraic object in C that is equipped with operations
a:G*™M) 5 @, and V:C — D be a functor.

(a) IfV preserves (enough) finite powers of G, then VG is an algebraic object
in D of the same kind, equipped with the operations

Va
a: (VG)*™@ = y(G*"™)) — VG,

(b) If f:G — H is a morphism of algebraic objects in C, where H is another
algebraic object of the same kind, and V preserves (enough) powers of G and H,
then V f: VG — VH is a morphism of algebraic objects in D;

(¢) If 0:V — W is a natural transformation, where W:C — D is another
functor that preserves (enough) powers of G, then 0G:VG — WG is a morphism
of algebraic objects in D. 0

More precisely, V and W do not need to preserve all finite powers, only the
powers of G and H that actually appear in the operations and laws (including the
terminal object T, if used).

Example. As S! is a cogroup object in Ho', (a) shows that the loop space QX on
any based space X becomes a group object in Ho', and hence in Ho. If X is already
a group object in Ho', (a) provides a second group object structure on QX; but by
Prop. 7.3, these two group structures coincide and are abelian.

One common case where this lemma applies trivially is when V is an addi-
tive functor between additive categories. There are other functors of interest that
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automatically preserve products: for any object X in C, the corepresented func-
tor C(X,—):C — Set preserves products by definition, and dually, C(—,X) =
C°P(X,—):C°P — Set takes coproducts in C to products in Set. Then Lemma, 7.6
gives parts (a), (b), and (c) of the following.

Lemma 7.7. Let G and H be fized objects in the category C, and V and W be the
contravariant represented functors C(—,G),C(—, H):C°? — Set (or dually, covari-
ant corepresented functors C(G,—),C(H,—):C — Set).

(a) If G is a (co)algebraic object in C, then for any object X in C, VX is
naturally an algebraic object in Set of the same kind;

(b) With G as in (a), then for any morphism f: X =Y inC,Vf:VY - VX
(or Vf:VX — VY ) is a morphism of algebraic objects in Set;

(¢) Any morphism f:G — H of (co)algebraic objects in C induces a natural
morphism C(X, f): VX = WX (or C(f,X):WX — VX) of algebraic objects in
Set;

(d) Conversely, if VX has a natural algebraic structure, it is induced as in (a)
by a unique (co)algebraic structure on G of the same kind, provided the necessary
(co)powers of G exist in C;

(e) Any natural transformation of algebraic objects VX — WX (or WX —
VX ) in Set is induced as in (c) by a unique morphism f:G — H of (co)algebraic
objects in C.

Proof. In (d), we may identify C(X,G)*™ with C(X,G*™). Then by Yoneda’s
Lemma, each natural transformation a:C(—,G)*" — C(—,G) is induced by a
unique morphism, which we also call a: G*™ — G; the uniqueness shows that the
same laws apply, thus making G an algebraic object. Part (e) is similar. O

This allows us to clarify Thm. 3.17.

Corollary 7.8. We have the E*-algebra object n — E, in the category Ho; in
particular, each E, is an abelian group object in Ho. Moreover, each equivalence
E, ~QF, , is an isomorphism of group objects.

Proof. We apply (d) and (e) to the cohomology functors E™(—): Ho°® — Set,
represented according to Thm. 3.17 by the spaces E,,. Part (e) also gives the last
assertion; by Prop. 7.3, the group structure on QE, ,, is well defined. 0

Symmetric monoidal categories. The theory presented so far is not gen-
eral enough. In order to express the multiplicative structures, we need symmetric
monoidal categories. We review the few basic facts we need from MacLane [20,
Ch. VII].

A (symmetric) monoidal category (C,®, K) is a category C equipped with a bi-
functor ®:C x C — C and unit object K = K¢. (But if C is graded, we need a
more general kind of bifunctor ® that is biadditive and includes signs, with com-
position as in eq. (6.5).) It is understood (but suppressed from our notation) that
the specification includes [ibid.] coherent natural isomorphisms for associativity,
(commutativity, with signs if C is graded) and K @ X 2 X 2 X ® K.
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As examples, we have (Ab,®z,Z), (Mod,®, E*), (FMod,®, E*), (Stab, A, T™),
the graded versions of all these, and the dual (C°P, ®, K) of any symmetric monoidal
category. The original example was (C, x,T'), for any category C that admits finite
products (including the empty product T).

Example. We define the symmetric monoidal category (SetZ, x,T) of graded
sets. For this purpose, the graded set n — A" is best treated as the disjoint union
A =11, A", equipped with the degree function A — Z given by deg(A™) = n. The
product A x B is given the degree function deg((z,y)) = deg(x) + deg(y). The unit
object is the set T' consisting of one point in degree zero.

The purpose (for us) of a (symmetric) monoidal category is to extend the defini-
tion of monoid object. A (commutative) monoid object in (C,®, K) is an object M
of C that is equipped with a multiplication morphism ¢: M ® M — M and a unit
morphism 7: K — M (both of degree 0 if C is graded) that satisfy the usual axioms
for associativity, (commutativity,) and left and right unit. In (Set, x,T’), this re-
duces to the usual concept of (commutative) monoid; more generally, in (C, x,T),
it reduces to the concept of (commutative) monoid object as before.

A graded monoid object in (C,®, K) is a graded object n — M™ in C equipped
with multiplications ¢: M¥* @ M™ — M*+™ and unit n: K — M° (with degree 0)
that satisfy the axioms for associativity and two-sided unit. (Again, we defer the
discussion of commutativity.) Morphisms of monoids are defined in the obvious way.

A (symmetric) monoidal functor (F,(r,zr): (C,®,K¢) — (D,®,Kp) between
(symmetric) monoidal categories consists of a functor F:C — D, together with a
natural transformation (r: FXQ®FY — F(X ®Y') and a morphism zr: Kp — FK¢
in D. Of course, (¢ and zF are required to respect the isomorphisms for associativity,
(commutativity,) and unit. If M is a (commutative) monoid object in C, FM will
be one in D, equipped with the obvious multiplication

Cr(M,M) F¢
¢ FMQFM ———— FIM® M) —— FM
and unit Fnozp: Kp - FK¢ — FM.

We do not require (¢ and zp to be isomorphisms (but if they are, so much the
better). One example is the duality functor

(DJCDJ‘ZD): (M0d0p7®7E*) — (FMOda@)aE*)

defined by DM = Mod* (M, E*) and filtered in Defn. 4.8, where zp: E* = DE*
is obvious and (p was originally defined in eq. (4.6) and completed later for
diag. (4.18). By Lemma 6.15(e), {p is sometimes an isomorphism. Another example
is the symmetric monoidal functor

(C(X,-),¢,2):(C, x,T) —> (Set, x,T)

used in Lemma 7.7 to map an algebraic object in C to the corresponding algebraic
object in Set; in this case, ( and z are automatically isomorphisms.

Monoidal functors compose in the obvious way. Given another (symmetric)
monoidal functor (G, (g, 2¢): (D,®, Kp) = (£,®, K¢), the composite (symmetric)
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monoidal functor (GF, (grF,z2ar): (C,®,Kc) — (£,®, Kg) uses the natural trans-
formation

¢ G¢r
(er:GFX ® GFY — G(FX ® FY) —— GF(X ®Y)

and morphism

za Gzp
zar. Kg —— GK'D _— GFKC .
Given two (symmetric) monoidal functors
(FJ CFa ZF)? (GJ CG; ZG): (C7 ®, KC) — (D7 ®, KD):

a natural transformation 6: F — G is called monoidal if there are commutative
diagrams

0XROY
FXoFY =2% gxeay  Kp

Cr(X,Y) Ca(X.Y) NG

0(X®Y) 0K
F(X®Y) —= G(X®Y) FK. — GK;

Thus if X is a monoid object in C, §X: FX — GX will be a morphism of monoid
objects in D.
We adapt Lemma, 7.7 to monoidal functors.

Lemma 7.9. Given a graded monoid object n — C™ in the (graded) monoidal
category (C°P,®, K), write (FM)™ = C(C™, M) for any object M in C. Then:
(a) We can make F' a monoidal functor

(F,(r,2r): (C,®, K) —> (Set”, x,T); (7.10)

(b) If the graded monoid object n — D™ defines similarly the monoidal functor
G, then a morphism h:C' — D in C°P of graded monoid objects induces a monoidal
natural transformation 0: F — G.

Proof. Let the multiplications and unit of C be ¢: C*¥ ® C™ — C*¥*™ and n: K —
CY (in C°P). We defined FM as a graded set. Given f € (FM)* and g € (FN)™,
we define (r(f,g) € F(M®N)k™ = C(C*™ M ® N) as the composite

k+m i k m f®g :
C —C*QC™" —— M QN in C. (7.11)
The morphism zp: T — (FK)® = C(C% K) has n°P: C° — K as its image. In (b),
we define (§M)™: (FM)" = C(C™, M) —» C(D™,M) = (GM)™ as composition in C
with h°P: D™ — C™. The necessary verification is routine. 0

Additive symmetric monoidal categories. We need a slightly more general
categorical structure, arranged in two layers. If the category C is both monoidal and
additive, it will be appropriate to use the monoidal structure (C,®, K) to define
multiplication, but to return to the additive structure of C to define addition. In this
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situation, we require the bifunctor ® to be biadditive. Rather than strive for great
generality, we limit attention to the cases we actually need. (We do not attempt to
define the tensor product of E*module objects.)

Because C is additive, an E*module object reduces simply to a graded object
n +— M™ equipped with morphisms £v: M™ — M™P for all v € E* and all n (where
h = deg(v)) that satisfy the axioms (7.4). Further, we can now define commutative
graded monoid objects n — M™, including the expected sign.

Definition 7.12. A (commutative) E*-algebra object in the (possibly graded) addi-
tive (symmetric) monoidal category (C, ®, K) is a graded object n — M™ equipped
with:
(i) morphisms &v: M™ — M™*h for all n, h, and v € E", that make it an
E*module object in C;
(ii) morphisms (¢, n) that make it a graded (commutative) monoid object;

in such a way that the diagrams commute up to the indicated sign:

Mk ® M™ 4‘25, Mk+m Mk ® M™ 4¢> Mk+m
l§v®1 l{v ll@&v (—1)k» lgv (7.13)

Mk+h QM™m — Mk+m+h Mk ®Mm+h > Mk+m+h

In the commutative case, the two diagrams are equivalent.
Example. An E*algebra object in (Ab, ®z,Z) is just an E*algebra.

We can again simplify the structure by replacing the v-actions v by the single
morphism 7, = £von: K — M" for each v € E*; as in eq. (7.5), we recover £v from
7y as the composite

@ M™ @
fo: M= K@ M" —— s MP o M™ 2 MR

Lemma 7.14. Let n — C™ be a (commutative) E*-algebra object in the (graded)

additive (symmetric) monoidal category (C°P,®, K). Then the functor (7.10) be-

comes a (symmetric) monoidal functor

(Fa CF:ZF): (CJ®7K) — (M0d7®7E*) (OI‘ (MOd*7®7E*))'

Proof. For fixed L, the functor C(—, L):C°? — Ab (or Ab*) takes the E*module
object C' in C°P to the E*module FL, by Lemma 7.7(a). The action of v € E"
on FL is the composition Mor((£v)°P,L): FL — FL with (£v)°P:Cnth — Cn
(including signs as in eq. (6.4) if C is graded). As L varies, F' takes values in Mod
by Lemma 7.7(b); diags. (7.13) show that (r: FL x FN — F(L®N) is E*bilinear,
allowing us to write (r: FL® FN — F(L®N). We define zp: E* — FK onv € E"
as

€)™ o o

zpv: Ch s C° y K in C, (7.15)

to make it an E*module homomorphism. O
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8. What is a module?

In this section, we study the relationship between the category R-Mod of left R-
modules and the category Ab of abelian groups from several points of view, in order
to abstract and generalize it to cover all our main objects of interest in a uniform
manner. The central theme is the classical construction by Eilenberg and Moore [13]
(or see MacLane [20, Ch. VI]) of a pair of adjoint functors by means of algebras in
categories, except that the less familiar (but equivalent) dual formulation, in terms
of comonads, turns out to be appropriate.

This will serve as a pattern for our definitions. There are of course variants
for graded categories and graded objects. Graded categories can be handled by
replacing the graded group A*(X,Y) by the group @, A"(X,Y), or sometimes
even the disjoint union of the sets A™(X,Y). Graded objects can be handled by
working in the category A% of graded objects n — X,, in A. We omit details.

The ring R is usually not commutative. Like all our rings, it is understood to
have a multiplication ¢ and a unit element 1g; we define the unit homomorphism
1n:Z — R by nl = 1g. The associativity and unit axioms on R take the form of
three commutative diagrams in Ab:

QR
®R R®
RIR®R —= R®R , pn "E oo n pog ™% por

In this section (only), all tensor products ® and Hom groups are taken over the
integers Z.

First Answer. The standard definition of a left R-module (e.g. [25, Defn. 1.2])
equips an abelian group M with a left action Ay RQ M — M in Ab. It is required
to satisfy the usual two axioms, which we express as commutative diagrams:

POM oM
RORQM ——~ R@ M Z®M ReM
(i) lRmM lAM (ii) S (8.2)
Am

RoM M

M

Second Answer. We make our First Answer more functorial by introducing the
functor T = R ® —: Ab — Ab. We define natural transformations ¢: 77T — T and
Il —+TonAby pA=¢p A RORXA-+R®Aand (nA)z =10z € R®A.
The action on M is now a morphism Ayr: TM — M, and the axioms (8.2) take the
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cleaner form

oM o,
TTM —— TM M ™™

Q) lmM N lAM (ii) \ lAM (8.3)

TM — M M

Third Answer. We have so far attempted to describe a module structure over a
ring without first properly defining a ring structure. In particular, we have not yet
mentioned the fact that R is itself an R-module, as is evident by comparing axioms
(8.2) with two axioms of (8.1). The function of the other axiom (8.1)(iii) is to ensure
that R is a free module on one generator 1g: given x € M, there is a unique module
homomorphism f: R — M that satisfies f1g = z, since fr = f(rlg) =rflg = rz.

The three axioms on R translate into commutative diagrams of natural transfor-
mations in Ab:

oT " T
T s TT

() lw , l(ﬁ (ii) k o (iii) K

7T — T T T

¢ (8.4)

Thus a ring structure on R is equivalent to what is known as a monad (or triple)
structure (¢,n) on the functor T'. By analogy, we call ¢ the multiplication and n
the wnit of the monad T. We recognize an R-module as being precisely what is
known as a T-algebra, namely, an object M equipped with an action morphism
Av:TM — M that satisfies the axioms (8.3).

Fourth Answer. More generally, the first two axioms of (8.4) show that for any
abelian group A, the action ¢pA:TTA — T A makes TA an R-module, which we
call FA; this defines a functor F: Ab — R-Mod. We thus have the factorization
T = VF, where V: R-Mod — Ab denotes the forgetful functor. We similarly factor
¢ = VeF:TT = V(FV)F — VF = T, where e: FV — [ is defined on the R-
module M as eM = Ay: RQ M — M; by axiom (8.3)(i), eM lies in R-Mod. In this
formulation, axiom (8.4)(i) simply defines the natural transformation Vee F': TTT =
V(FVFV)F — VF =T, while the other two reduce to the identities (2.5) relating
7 and €.
All this works in any category A, as an application of Thm. 2.6(v).

Theorem 8.5. (Eilenberg-Moore) Given a monad (T, $,n) in A, let B be the cat-
egory of T-algebras, V: B — A the forgetful functor, and F: A — B the functor that
assigns to each A in A the T-algebra FA = (T A, pA). Then F is left adjoint to
V, B(FA,M) = A(A,VM) for any M in B, and FA is V-free on A with basis
nA: A —-TA=VFA (in the language of Defn. 2.1).
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Proof. We have already outlined most of the proof in the special case when A = Ab
and T = R ® —, and can apply Thm. 2.6. For further details, see Eilenberg-Moore
[13, Thm. 2.2] or MacLane [20, Thm. VI.2.1]. O

The image of F' is known as the Kleisli category of all V-free objects.

Fifth Answer. The problem with our answers so far is that they rely heavily
on the tensor product, which really has little to do with modules. While tensor
products are (as we shall see) convenient for computation, they are simply not
available in the nonadditive context of [9].

We therefore replace the functor T = R ® — by its equivalent right adjoint
H = Hom(R, —): Ab — Ab. The right adjoint of ¢: TT — T is the comultiplication
¢: H — HH, which is given on A as the homomorphism

Y A:Hom(R, A) — Hom(R,Hom(R, A))
that sends f: R - A to s — [r — f(rs)]. The right adjoint of n: I — T is the counit

e: H — I, where eA: Hom(R, A) — A is simply evaluation on 1g. The axioms (8.4)
dualize to

v H—¢>HH H—¢>HH
H— HH

(i) ldz o le (ii) \\He (iii) xld{ (8.6)

HH —— HHH H H

which state that (H,1,€) is what is known as a comonad in Ab.

Similarly, we replace the action Ay, on a module M by the right adjunct coaction
pyv: M — HM = Hom(R, M). This is given explicitly by (pamx)r = rz, which also
shows us how to recover the action from pps. The way to think of Hom(R, M) is as
the set of all possible candidates for the R-action on a typical element of M; then
pum selects for each x € M the action r — rx. The action axioms (8.3) become

2 M g
M— HM
(i) lpM lw (ii) =
Hpm
oM 2 gHM

M

which state that M is what is called a coalgebra over the comonad H. Occasionally, it
is useful to evaluate the right side of (i) on a typical r € R, to yield the commutative
square

™

M - M

lpM

Hom(R, M)

PM
Hom(r*,M)
Hom(R, M)
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where rpr: M — M denotes the action of » on M and r*: R — R denotes right
multiplication by 7.

A homomorphism f: M — N of R-modules is now a morphism in Ab for which
we have the commutative square

PM

M HM

lf le (8.9)
PN

N HN

This description successfully avoids all tensor products. It too works quite gen-
erally.

Theorem 8.10. Given a comonad H in A, let C be the category of H-coalgebras,
V:C — A the forgetful functor, and C: A — C the functor that assigns to each A in
A the H-coalgebra H A with the coaction WA: HA — HHA. Then C is right adjoint
toV, A(VM,A) = C(M,CA) for all M in C, and CA = (HA,vA) is V-cofree on
A with cobasis eA: HA = VCA — A (in the language of Defn. 2.7).

Proof. This is just Thm. 8.5 in the dual category .A°P. O

Sixth Answer. The previous answer is certainly elegant, but we shall need an
alternate description of R-modules that does not use 9 and e. The key to achieving
this is not to take adjuncts of everything.

Given an element z € M, we put f = pyz: R — M (given by fr = rz). Then
commutativity of the square

PR
R HR
lf le (8.11)
M2 HM

expresses the law (sr)z = s(rz). In other words, f: R — M is a homomorphism of
R-modules. The law 1gx = z is expressed as flg = z.

Seventh Answer. The first level of abstraction in category theory is to avoid
dealing with the elements of a set. The next level is to avoid dealing with the objects
in a category. We have not yet used the fact that H is a corepresented functor. Given
any functor F: Ab — Ab, Yoneda’s Lemma (dualized) yields a 1-1 correspondence
between natural transformations §: H — F and elements (§R)idg € FR, where
OR:Hom(R,R) = HR — FR and idg € HR denotes the identity morphism of
R. For example, 9y: H — HH corresponds to pg € HHR, the coaction on the
R-module R, and e: H — I corresponds to 1z € R = IR. We note that pglg = idg.

To this end, we replace the object M by the corepresented functor Fpy =
Hom(M,—): Ab — Ab. (We already did this for M = R, to get Fr = H.) We
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replace the coaction morphism ppr: M — HM by the equivalent natural transfor-
mation pps: Fyy — FarH: Ab — Ab; explicitly, pprN: Fyy N — Fpy HN is

H Hom(pas,1)
paeN:Hom(M, N) —— Hom(HM, HN) — """, Hom(M, HN) . (8.12)

The axioms (8.7) translate into equivalent commutative diagrams of natural trans-
formations

PM
M FMH FM —>FMH

(i) lpM lFsz (ii) - Fare (8.13)

pmH
Fy

We observe that if we take M = R, these reduce to axioms (8.6)(i) and (ii).

Eighth Answer. In our applications, we do not have the luxury of starting out
with a comonad; we have to construct it. Consequently, we are not able to invoke
Thm. 8.10 directly. Instead, we generalize our Sixth Answer. We have to treat
modules and rings together.

We assume that 4 is a category of sets with structure in the sense that we are
given a faithful forgetful functor W: A — Set. We assume given:

(i) A functor H: A — A;
(ii) An object R in A that corepresents H in the sense that
WHM = A(R, M), naturally in M;
(iii) An element 1g of the set WR; (8.14)

(iv) A morphism pgr: R — HR in A, which we call the pre-coaction
on R, such that Wpgr: WR — WHR = A(R, R) in Set carries
1r € WR to the identity morphism idg: R — R of R.

We impose no further axioms at this point. In fact, we call any morphism ppr: M —
HM a pre-coaction on M, and a morphism f: M — N a morphism of pre-coactions
if it makes diag. (8.9) commute. To see what it takes to make pps a coaction, we
consider the function

Wop:WM — WHM = A(R, M) in Set .
Definition 8.15. Given an object M of A, a coaction on M is a pre-coaction

pu:M — HM such that for any element z € WM, the morphism f =
(Wpr)z: R — M in A satisfies:

(i) f makes diag. (8.11) commute, i.e. is a morphism of pre-coactions;
(ii) Wf:WR —- WM sends Il € WR to z € WM.
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We do not assume yet that pg is itself a coaction. Lemma 8.20 will show that in
the presence of suitable additional structure, this definition does agree with previous
notions of what a coaction should be.

Ninth Answer. We generalize our Seventh Answer to the category A as above.
We convert everything to corepresented functors. We make no claims to elegance,
only that the machinery does what we need.

We replace an object M by the corepresented functor Fpy = A(M,—): A —
Set, and a pre-coaction ppr: M — HM by the equivalent natural transformation
pyv:Fy — FyH: A — Set. Explicitly, ppyN: FyyN — FiypHN s (cf. eq. (8.12))

H A(pm,HN)
puN:AM,N) — A(HM,HN) ——— A(M,HN) . (8.16)

In particular, we convert the pre-coaction pr to the natural transformation
pr:WH — WHH, where ppN:WHN — WHHN is

H A(pr,HN)
prN: A(R,N) — A(HR,HN) ———  A(R,HN) . (8.17)

Similarly, if g: M — N is a morphism of pre-coactions, we obtain the natural
transformation Fy: Fy — Fy and from diag. (8.9) the commutative square

PN

ng ngH (8.18)

Fy 22 FyH

We now assume that H is equipped with natural transformations:

(i) ¥:H — HH such that W¢:WH — WHH is the natural
transformation pg of eq. (8.17);

(ii) & H — I such that WeR:WHR = A(R,R) - WR sends idg
to ]-R-

(8.19)

We assume no further properties of ¢ and e. In particular, (i) implies (and by
naturality is equivalent to) the statement that

WyR
A(R,R) =WHR —— WHHR = A(R, HR)

takes idg to the morphism pg.

Lemma 8.20. Assume we have a category A equipped with W, H, R, 1, and €,
satisfying the axioms (8.14) and (8.19). Then given an object M of A, a pre-coaction
pym:M — HM is a coaction in the sense of Defn. 8.15 if and only if it makes
diags. (8.7) commute.
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Proof. Since W is faithful, we may apply W to diags. (8.7) and work with diagrams
of sets. Thus (i) becomes

Wom =

WM WHM A(R, M)
l Wonm l WHpnm lA(R,pM)
Wy M

WHM —— WHHM ~—— A(R,HM)

A(R, M)

We evaluate on any z € WM and put f = (Wpa)z: R — M. The upper route gives
pm o f: R — HM, while the lower route gives H f o pp: R — HM by axiom (8.19)(i).
These agree if and only if f is a morphism of pre-coactions as in diag. (8.11).

For diag. (8.7)(ii) we consider

Wom WH f
WM —— WHM ~—— WHR

S, e

WM WR

The element f € WHM = A(R, M) lifts to idg € WHR = A(R, R), which by
axiom (8.19)(ii) maps to 1g € WR. Thus (W f)1g = z is exactly what we need. O

As in our Seventh Answer, we convert the objects in diags. (8.7) to corepresented
functors.

Corollary 8.21. The pre-coaction py: M — HM is a coaction (in the sense
of Defn. 8.15) if and only if the associated natural transformation ppr: Fyy —
FyH: A — Set makes diags. (8.13) commute. |

Now we can recover the full strength of Thm. 8.10.

Lemma 8.22. Assume that pg: R — HR is a coaction in the sense of Defn. 8.15,
and that ¥ and € satisfy axioms (8.19). Then:

(a) ¢ and € make H a comonad in A;

(b) A pre-coaction pyr: M — HM makes M an H-coalgebra if and only if it is
a coaction in the sense of Defn. 8.15.

Proof. The first two axioms of (8.6) are just axioms (8.13) for M = R, which we
have by Cor. 8.21. For the third, we have to show that WeHN c Wy N: WHN —
WHN is the identity. We evaluate on ¢ € WHN = A(R,N). From eq. (8.17),
(WyN)g = Hgopg. We consider the diagram in fig. 1, which commutes merely
because e: H — I is natural. We start from idg € A(R, R), which maps to Hgo pg €
A(R,HN), 1 € WR, idgr € A(R,R) (by axiom (8.14)(iv)), and hence to g €
A(R,N).

Part (b) is then a restatement of Lemma 8.20. |

Change of categories. Now assume A’ is a second category, equipped similarly
with W', H', ¢’ etc. satisfying axioms (8.14) and (8.19). We assume that A and A’
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Figure 1. Diagram for the comonad H.

A(R,R) —— WHR —% + wR
l A(R,pr) l WHpr l Wor
A(R,HR) ——~ WHHR X% wHR «~—— A(R,R)
lA(R,Hg) lWHHg lWHg iA(R,g)
A(R,HN) —— WHHN X wHN ~—— A(R,N)

are connected by a somewhat forgetful functor V: A — A’ such that W'V = W.
Then given an object M of A, there is an obvious natural transformation wy: F; —
FypV: A — Set, defined on N in A as V: A(M,N) - A (VM,VN).

We assume that H and H’' are related by a natural transformation 8:VH —
HV:A - A.If ppy: M — HM is a pre-coaction on M in A, we give VM the
pre-coaction

Vom oM , . ,
pyvm:VM —— VHM —— H'VM in A'. (8.23)
This we convert to the commutative diagram of natural transformations

PM

Fr FyH
leH
wv FVMVH
iFvMG
pvmV

FVMV —_— FVMHIV

Because W H is corepresented by R, the natural transformation W'6:WH =
W!'VH — W'H'V is determined by a certain morphism w:R' — VR in A’
(which will be obvious in applications); explicitly, given M in A, W'OM:WHM =
W'VHM — W'H'VM is

v A’ (u,V M)
wW'oM: AR,M) — A'(VR,VM) ——— A (R',VM) .

Lemma 8.24. Assume that u satisfies:

(i) u: R — VR is a morphism of pre-coactions (this uses eq. (8.23));
(i) Wu:W'R' - W'VR = WR sends 1g' to 1g.

Then 6:VH — H'V is a natural transformation of comonads, in the sense that we
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have commutative diagrams

Vi
VH —— VHH

VH
Lo
. ' . Ve
(1) 0 HVH (i) 0
W'V lng ’ A%
HYV — H'H'V BV =V
Proof. We apply W' and expand all the definitions. 0

9. E-cohomology of spectra

In this section, we adapt the results and techniques of sections 3 and 4 to the graded
stable homotopy category Stab* of spectra. Our general reference is Adams [3].
Many results become simpler and most are well known, apart from the topological
embellishments.

Cohomology. Any based space (X,0) may be regarded as a spectrum, via the
stabilization functor Ho' — Stab. Given a spectrum E, whether X is a based space
or a spectrum, we define the reduced E-cohomology of X as E*(X,0) = {X,E}* =
Stab* (X, E), the graded group of morphisms in Stab* from X to E that has the
component E¥(X,0) = {X, E}* in degree k. The universal class € E°(E,o0) is
thus the identity map of E.

The suspension isomorphism E*(X,0) = E*(XX, o) is that induced by the canon-
ical desuspension map ¥ X ~ X of degree 1 in Stab* given by (6.1) (with signs as
in eq. (6.3)). Equivalently, given z € E*(X,0), the class ¥z € E¥*(X,0) is the
composite of the maps XX — X F and ¥FE ~ E (with no sign).

This cohomology is the only kind available in the stable context. For compati-
bility with the unstable notation of section 3, we always write the cohomology of a
spectrum X, redundantly but unambiguously, as E*(X, o).

The skeleton filtration of E*(X,0) can be defined exactly as unstably, in
eq. (3.33). It is quite satisfactory for spectra of finite type (those with each skeleton
finite), which include many of our examples, but is wildly inappropriate for non-
connective spectra such as KU. We therefore give E*(X, 0) the profinite filtration
and topology, exactly as in Defn. 4.9. If necessary, we complete it as in Defn. 4.11
to the completed cohomology E*(X,0)".

A map r: E — E in Stab® of degree h induces the stable cohomology operation
re: B¥(X,0) = E**h(X,0). It commutes with suspension up to the sign (—1)" as
in fig. 2.

Spaces. For a space X, it is more useful, whether or not X is based, to work
with the absolute E-cohomology of X defined by E*(X) = E*(X 1, 0), as suggested
by eq. (3.3). The absolute theory is thereby included in the reduced theory. In
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Figure 2. Operations and suspension.

Tx

E¥(X,0) E*h(X 0)

particular, the coefficient group of E-cohomology is E* = E*(T) = E*(T*,0) =
72 (E, 0). Conversely, every graded cohomology theory on spaces has this form.

Theorem 9.1. Let E*(—) be a graded cohomology theory on Ho in the sense of
section 3. Then:

(a) There is a spectrum E, unique up to equivalence, that represents E*(—) as
above;

(b) Any sequence of cohomology operations ry: E¥(X) — E*"(X), that are
defined and natural for spaces X and commute with suspension up to the sign (—1)"
as in fig. 2, is induced by a map of spectra r: E — E of degree h.

Sketch proof. The representing spaces E,, provided by Thm. 3.17 and the struc-
ture maps f,:XE, — E, ,, from Defn. 3.19 are used to construct the spectrum E
for (a). In (b), Thm. 3.6(b) provides a representing map rx: E, — E, ., for each
operation ri,. We take X = E , in fig. 2 and evaluate on the universal class ¢;. By
Lemma 3.21, the class (—1)**" %r;; corresponds to the upper route fii4 0 X7y in
the square

X
YE, , YEin

lfk lfk+h in Ho' (9.2)

Th41
Eyifiv — Epinn

Meanwhile, by Defn. 3.19, rj41 o fi, corresponds to the class (—1)*r1S1g. Thus the
square commutes, and we may take the maps ry, as the raw material for constructing
the desired map of spectra r: E — E. (However, r need not be unique.) A similar
construction gives the uniqueness in (a). Further details depend on the choice of
implementation of Stab*. ad

Stabilization. In Thms. 3.17 and 9.1 we have two ways to represent E-cohomology,
in the categories Ho and Stab*. Thus for any space X, we may identify:

(i) The cohomology class x € E*(X);
(ii) The map of spectra xs: Xt — E, of degree k, defined by x = x%¢;
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(iil) The map of spaces xy: X — E,, defined by & = x{;¢.
We compare the two maps by taking x = ¢ in (ii).

Definition 9.3. For each integer k, we define the stabilization map of spectra
orp:E, = Eby ojt =1, € E*(E,,0) C E¥(E}). It has degree k.
It follows immediately that for any x € E*¥(X), xs is the composite

2t

vs: Xt — 5 Et— E, % E  in Stab". (9.4)

If z is based, i.e. € E*(X,0), we can simplify this to
TU Ok
o5:X 5 E, 25 E  in Stab". (9.5)

In practice, we normally omit the suffixes g and y and write z for all three. (On
occasion, this can cause some difficulty with signs, as  and zg have degree k, while
zy is a map of spaces and has no degree.)

Lemma 9.6. The structure maps fr:XE, — E,,, and the stabilization maps oy,
are related by the commutative square

T
YE;, — E;

lz ldk+1 in Stab*
E,

E

in which we use the canonical desuspension map (6.1).

Proof. The upper route in the square corresponds to the class fyigpr1 =
(=1)k 2, € E*(ZE,, 0). If we write g: ©E;, ~ E for the desuspension, the lower
route corresponds to (oy 0 g)*t = (—1)kg*ote = (=1)*g*1 = (—=1)* Zyy. 0

These maps display E as the homotopy colimit in Stab®™ of the based spaces E ,,.
The relevant Milnor short exact sequence (cf. diag. (3.38)) is

0 — lim'E*Y(E ,,0) — E*¥(E,0) — lim E¥(E,,0) — 0. (9.7)

Moreover, the profinite topology makes the map from E*(E,0) an open map and
therefore a homeomorphism whenever it is a bijection. (Take the basic open set
F*E*(E,0) defined by some finite subspectrum E, C E. This inclusion lifts (up
to homotopy) to a map of spectra (of degree —n) E, — E,,, C E,, for some n
and some finite subcomplex E,, , of E,. Then the image of F*E*(E,0) contains
FYE*(B,,).)

The maps o, also relate the stable and unstable operations in Thm. 9.1(b).
Suppose the stable operation r of degree h is represented stably in Stab* by a map
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of spectra rs: E — E of degree h, and unstably in Ho by the maps ry: E, — E ;.
These maps are related by the commutative square

TU

E k" E k+h
l(f}c lo'k_'.h in Stab* (98)
TS
E E

because by the definition of o, both routes represent the class ri, € E*(E,0).
Cohomologically,

orr = (=1)*rogy, = (—=1)*ry, in E¥h(E o). (9.9
(Without the sign, r + 7 is not in general an E*module homomorphism.)

Ring spectra. Now let F be a ring spectrum, i. e. a commutative monoid object in
the symmetric monoidal category (Stab, A, T), with multiplication ¢: EAE — E
and unit 7: Tt — E. (All our ring spectra are assumed commutative.)

Given ¢ € E*(X,0) and y € E*(Y,0), we define their cross product x x y €
E*(X ANY,0) as

TNy [
exy: XANY — EANE— E.
These products are biadditive, commutative, associative, and have n € E*(T+,0)
as the unit in the sense that under the isomorphism
E*(TT A X,0) = E*(X,0) (9.10)

induced by X ~ T+ A X, n x x corresponds to .

The coefficient group E* = E*(T™,0) = n2(F, 0) becomes a commutative ring,
using x-products and T+ ~ T+ A T for multiplication; its unit element is 17 =
n € E°(T*,0). Then E*(X,0) becomes a left E*-module if we define vz € E*(X,0)
for v € E* and z € E*(X,0) as corresponding to v X z € E*(TT A X, 0) under the
isomorphism (9.10); expanded, this is

vAT [
v X ~T"ANX — s EAE — E .
Rearranging slightly, we see that scalar multiplication by v on E*(—,0) is repre-
sented by the map
vAE [ *
év:E~T"NE—— EANE —E in Stab™, (9.11)
as in eq. (3.27). The map &v corresponds to the class vi. We apply Lemma 7.7(d).

Lemma 9.12. The actions (9.11) make the ring spectrum E an E*-module object in
the graded category Stab™, which represents the E*-module structure on cohomology
E*(—,0). a

Now that x-products are known to be E*bilinear, we can write them in the more
familiar and useful form

x:E*(X,0)® E*(Y,0) — E*(X AY,0) . (9.13)
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Together with the definition 2: E* = E*(T™,0), they make E-cohomology a sym-
metric monoidal functor
(E*(=,0), x,2): (Stab*°P A, TT) — (Mod*, ®, E*) . (9.14)

For spaces X and Y, we have X TAY T = (X xY)™T, and we recover the unstable
x-pairing (3.22) as a special case of (9.13). The reduced diagonal map At: X+ —
(X x X)* =2 X+ A Xt and projection ¢g*: Xt — T+ make Xt a commutative
monoid object in Stab®?, so that E*(X) = E*(X*,0) becomes a commutative
monoid object in Mod, i.e. a commutative E*algebra. We have a multiplicative
graded cohomology theory in the sense of section 3.

The stable and unstable multiplication maps are related by the commutative
diagram, similar to eq. (9.5),

E\AE, — E,,,.  in Stab’ (9.15)

However, there is a technical difficulty in extending Thm. 9.1 to make E a ring
spectrum.

Theorem 9.16. Assume there are no weakly phantom classes in the groups
E°(E,o0), E°(EAE,0) and E°(ENEAE,0). Then any natural multiplicative struc-
ture that is defined on E*(X) for all spaces X (as in section 3) is induced by a
unique ring spectrum structure on E.

Proof. Theorem 3.25 provides a compatible family of unstable multiplications
¢v:EyxE,, = E;,,, and the unit ny: T — E,. We immediately recover ns from
nu by taking x = 1 € E*(T) in eq. (9.4), but there is a problem with ¢s. We may
regard E A E as the homotopy colimit in Stab® of the spaces E,, A E,, and obtain
the Milnor short exact sequence

0— lirrlnlE_l(En/\En,o) —— E°(EAE,0) — 1175nE0(EnAEn,o) —0

analogous to (9.7). It shows that there exists a lifting ¢s that makes diag. (9.15)
commute for all £ and m, but it is not unique in general. Our hypotheses simplify
the diagrams for E°(E,0), E°(EAE, 0), and the analogue for E°(EAEAE, 0) to the
limit term only, to ensure respectively that ¢g: (i) has ng as a unit; (ii) is unique
and commutative; and (iii) is associative. |

Homology. The companion homology theory to E*(—) is easily defined (see G.
W. Whitehead [36] or Adams [3]) in the stable context. The reduced E-homology
of a spectrum or based space X is simply

E.(X,0)={TT,EAX}* =n3(EAX,o0), (9.17)
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the stable homotopy of E A X. (We observe that 72 (—,0) is itself the homology
theory given by taking E = T, but we do not wish to write it 7,7 (—,0).) It has
the component Ej(X,0) = {T+,EAX}~* = 77 (EAX,0) in degree —k. Again, we
have the suspension isomorphism Ey(X,0) = Ey1(XX,0), induced by (the inverse
of) the canonical desuspension (6.1).

For a space X, we have the absolute E-homology

E.X)=E.X%,0)={Tt,EAXT}",
as suggested by eq. (3.3) for cohomology, and it satisfies axioms dual to (3.1). The
coefficient group is
E.(T) = E.(T*,0) = {TT,EAT}* 2 {T* E}* = E* =S (E,0),
the same as E-cohomology. (But we note that Ey(T) = E~*.)
When F is a ring spectrum, it too is a symmetric monoidal functor

(E«(—,0),%,2): (Stab*, A\, T+) — (Mod*,®, E*), (9.18)
with an obvious x-product pairing
x:E(X,0) ® E.(Y,0) — E. (X AY,0), (9.19)

if we use the above identification z: E* = E, (T, 0). We can ask whether eq. (9.19)
is an isomorphism. The following two results provide all the homology isomorphisms
we need.

Theorem 9.20. Assume that E.(X,0) or E,(Y,0) is a free or flat E*-module. Then
the pairing (9.19) induces the Kinneth isomorphism E.(X AY,0) =2 E.(X,0) ®
E.(Y,0) in homology.

Proof. The proof of Thm. 4.2 works just as well for spectra. O
Lemma 9.21. For E = H(F,), K(n), MU, BP, or KU, E.(E,o0) is a free E*

module.

Remark. For E = KU, this is a substantial result of Adams-Clarke [4, Thm. 2.1].

Proof. For E = H(F,) or K(n), all E*modules are free. For E = MU or BP, the
result is well known [3]. For KU, we defer the proof until we have a good description
of KU.(KU,o), in section 14. |

The homology version of the Milnor short exact sequence (9.7) is simply
E.(E,o0) = colim E.(E ,,0), (9.22)

analogous to eq. (4.4). More generally, from the definition (9.17),
E.(X,0) = colim E,(X,,0) (9.23)
for any X, where X, runs over all finite subspectra of X.

Strong duality. The Kronecker pairing (—, —): E*(X,0)® E.(X,0) — E* is easily
constructed for spectra E and X, directly from the definitions. As in section 4, it
makes sense to ask whether the right adjunct form

d: E*(X,0) — DE,(X,0) (9.24)
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is an isomorphism, or better, a homeomorphism. Again, one theorem is all we need.
It includes the unstable result Thm. 4.14.

Theorem 9.25. Assume that E«(X,0) is a free E*-module. Then X has strong du-
ality, i. e. d in (9.24) is a homeomorphism between the profinite topology on E*(X, 0)
and the dual-finite topology on DE, (X, 0). In particular, E*(X, 0) is complete Haus-
dorff.

E-modules. To establish Thm. 9.25, we must take E-modules seriously. An E-
module is a spectrum G equipped with an action map Ag: EAG — G in Stab that
satisfies the usual two axioms (8.3), using the functor T' = E A —. Everything is
formally identical to the R-module case, with the monoid object R in the symmetric
monoidal category (Ab, ®,Z) replaced by E in (Stab®, A, T"). We form the category
E-Mod of E-modules, and the graded version E-Mod*.

Theorem 9.26. The forgetful functor V:E-Mod* — Stab* has the free functor
E A —: Stab* — E-Mod* as a left adjoint, and for any spectrum X and E-module
G, we have a natural homeomorphism

G*(X) = Stab*(X,VG) 2 E-Mod*(E A X, Q) . (9.27)
Proof. Theorem 8.5 provides the isomorphism. We make it trivially a homeomor-

phism by topologizing E-Mod*(E A X,G), not as a subspace of G*(E A X), but by
filtering it by the submodules

F*E-Mod*(EAX,G) = Ker[E-Mod*(EAX,G) — E-Mod*(EAX,,G)],

where X, runs through the finite subspectra of X. O

Corollary 9.28. Let g: EAX — EAY be an E-module morphism (not neces-
sarily of the form E A f). Then for any E-module G, g*: E-Mod*(EAY,G) —
E-Mod*(EAX,G) is continuous.

Proof. The right adjunct of g is a map f: X — E AY of spectra. Given a finite
X, C X, we choose a finite ¥, C Y such that f|X, factors through E AYp; then by
taking left adjuncts, g restricts to a morphism of E-modules EA X, - EAY,. It
follows that g*(F®) C F?, in the notation of the Theorem. 0

The desired theorem follows directly, as in Adams [3, Lemma II.11.1].

Proof of Thm. 9.25. We choose a basis of E.(X,0) consisting of maps S™ —
E AX of degree zero, and use them as the components of a map f: W =\/_ S" —
EAX. By Thm. 9.26, the left adjunct of f is a morphism of E-modules g: EAW —
E A X. By construction, g induces an isomorphism g.: E,(W,0) = E.(X,0) on
homotopy groups, and is therefore an isomorphism in Stab. It follows formally that
g is also an isomorphism in E-Mod. We factor d to obtain the commutative diagram

>~ f(_v )
d: E*(X,0) — E-Mod"(EAX,E) =% DE,(X,0)
lMor(g,E) ng*
7S (=,0)

d: E*(W,0) —— E-Mod"(E AW, E) ——% DE,(W,o0)
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Theorem 9.26 provides the two marked homeomorphisms. By Cor. 9.28, Mor(g, E)
is a homeomorphism. It is clear from Lemma 4.10 that W has strong duality. We
have a diagram of homeomorphisms. O

Kiinneth homeomorphisms. As the Kiinneth pairing (9.13) is continuous, we
can complete it to

x: E*(X,0)® E*(Y,0) — E*(X AY,0)", (9.29)
and the symmetric monoidal functor (9.14) to another one,
(E*(—,0)", X, 2): (Stab*°® A, Tt) — (FMod*, &, E*), (9.30)

for completed cohomology. As in Thm. 4.19, we combine Thm. 9.25 with Thm. 9.20
to deduce Kiinneth homeomorphisms.

Theorem 9.31. Assume that E,(X,0) and E.(Y,0) are free E*~modules. Then the
pairing (9.29) induces the cohomology Kiinneth homeomorphism

E*(X AY,0) = E*(X,0)® E*(Y,0) . a

10. What is a stable module?

In this section, we give various interpretations of what it means to have a module
over the stable operations on E-cohomology, with a view to future generalization in
[9] to unstable operations. We are primarily interested in the absolute cohomology
E*(X) = E*(XT,0) of a space X, and state most results for this case only. Nev-
ertheless, we sometimes need the more general reduced cohomology E*(X,0) of a
spectrum X.

An operation 7: E*(—,0) — E*(—,0) is stable if it is natural on Stab*. Tt is
automatically additive, Stab* being an additive category, but need not be an E*
module homomorphism.

Recall from section 3 (or section 9) that the profinite filtration makes E*(X)
(or E*(X,0)) a filtered E*~module. When Hausdorff, it is an object of FMod*. We
remind that all tensor products are taken over the coefficient ring E* = E*(T) =
E*(T,0) unless otherwise indicated, where T' denotes the one-point space and T+
the sphere spectrum.

First Answer. Since E-cohomology E*(—,0) is represented in Stab* by the spec-
trum E, Yoneda’s Lemma identifies the ring A of all stable operations with the
endomorphism ring End(E) = {E, E}* = E*(E,0) of E. Its unit element is ¢, the
universal class of E. It acts on E*(X) = E*(X™T,0) by composition,

Ax: A® E*(X) = B*(E, 0) ® E*(X) — E*(X) . (10.1)

In particular, for each v € E® we have the scalar multiplication operation = — vz
on E*(X), which by Lemma 9.12 is represented by the map of spectra év: E — E
of degree h in eq. (9.11) or the element v. € E*(E,0). This defines an embedding
of rings (usually not central)

& E* — E*(E,0) = A, (10.2)
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which we used already in eq. (10.1) to make A an E*bimodule under composition
and Ax a homomorphism of E*modules.

Notation. Standard notation for tensor products is ambiguous here, and will soon
become hopelessly inadequate for coping with the future plethora of bimodules and
multimodules. When it is necessary to convey detailed information about the many
E*actions involved, we rewrite Ax as

Ax: E1*(E2,0) ®; E2*(X) — E1*(X), (10.3)

which we call the E*-action scheme of Ax. Here, Ei denotes a copy of E tagged
for identification, and ®; indicates a tensor product that is to be formed using the
two E™*actions labeled by 4. If desired, we can add information about the degrees
by writing

Ax: E14(E2,0) ®; E2/(X) — E17H(X).
For example, the composition
A® A= E*(E,o0) ® E*(E,0) — E*(E,0) = A (10.4)

has action scheme E1*(E2,0) ®2 E2*(E3,0) — E1*(E3,0). We promise to use this
over-elaborate notation sparingly.

The important special case X = T of the action (10.1) gives
AriA= A® E* — E7, (10.5)

which encodes the action of A on the coefficient ring E* = E*(T).
The action (10.1) satisfies the usual two laws:

(sr)x = s(rz); = (10.6)

for any operations s and r and any x € E*(X). This suggests that a stable module
structure on a given E*module M should consist of an action Apy: AQ M — M
that satisfies these laws and is a homomorphism of left E*modules. Because the
tensor product is taken over E*, this implies that Ajs extends the given module
action of E* on M.

Unfortunately, this description is inadequate even for finite X. In the classical
case E = H(F,), A is the Steenrod algebra over F,, which is generated by the
Steenrod operations subject to explicitly given Adem relations. In general, A is
uncountable, which suggests that we should make use of the profinite topology on
it. We described a filtration for tensor products in eq. (4.15). However, the tensor
product in the action (10.1) is formed using the right E*action on A, for which we
have not defined a filtration; worse, the usual E*module structure on the tensor
product is not the one that makes Ax an E*module homomorphism. We have to
find something else.

Second Answer. In [1, 3], Adams suggested that for suitable ring spectra E, one
could avoid the various limit problems and infinite products that are inherent in
cohomology by replacing the action (10.1) by the dual coaction on homology. Stably,
the only difference between homology operations and cohomology operations is the
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possibility of weakly phantom cohomology operations; in practice, these usually
do not exist. Unstably, however, the difference is vast. Our ignorance of unstable
homology operations in general forces us to learn to live with cohomology. We
therefore dualize only partially. We defer the details until section 11.

If E.(E,o0) is a free E*module, we can convert the action Ax in (10.1) into a
coaction (after completion)

px:E*(X) — E*(X)® E,(E, o) (10.7)

(whose action scheme is E2*(X) — E1*(X)®; E1,(E2,0)). There is much struc-
ture on E,(E,0), as explicated in [1, 3]. Dual to the composition (10.4) with unit
(10.2) in E*(E, o), there is a coassociative comultiplication with counit

Y =1s: E.(E,0) — E.(E,0) @ E.(E,0); e =e€s: E.(E,0) — E*;

on E,(E,o). The action axioms (10.6) on Ax translate into the diagrams

B (X) —= E*(X) & E.(E o)
0 l llws
E*(X) ® B.(B,0) Z“"~ B*(X)® E.(E,0) & E.(E,o) (10.8)
E*(X) LN E*(X)® E.(E, o)
(ii) lm“
E*(X) ——— E*(X)®E"

These are in effect the usual axioms for a comodule coaction over E.(E,o0) on
E*(X)", the only novelty being the two distinct E*actions on E, (E,0).

Historically, the original example was developed by Milnor [22] in the case E =
H(F,), to give a description of the Steenrod operations that is both elegant and
more informative; we summarize it in section 14. Even in this case, the completed
tensor product is needed in the coaction (10.7) when X is infinite-dimensional.
For finite spaces or spectra X, one can use Spanier-Whitehead duality to switch
between homology and cohomology. This leads to Adams’s coaction on homology
[1, Lecture 3], except that he used a left coaction in an attempt to make the E*
actions easier to track. It turns out that in cohomology, the right coaction, even
with its notational difficulties, is both more customary and more convenient.

Third Answer. We rewrite our Second Answer in a more categorical form in
order to allow generalization. We still leave the details to section 11.

As the target of px is complete, we lose nothing if we complete the cohomology
E*(—) to E*(—)" everywhere. We define the functor S': FMod* — FMod* by S'M =
M ® E,(E,0). Then we can use g and €g to define natural transformations

YsM =M @1g:S'M — S'S'M,  ésM =M ®eg:S'M — M.
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The coalgebra properties of s and e€s will supply the necessary axioms (8.6) to
make S’ a comonad in FMod*.

We rewrite the coaction (10.7) as a morphism p’y: E*(X)" — S'(E*(X)") in the
category FMod*. This converts the axioms (10.8) into diags. (8.7), which then state
that E*(X)" is precisely an S’-coalgebra in FMod™.

We have condensed our answer down to the single word S’-coalgebra.

Fourth Answer. We are not done rewriting yet. The problem with our Third
Answer is that it still depends heavily on the tensor product, an essentially bilinear
construction that is simply unavailable for operations that are not additive (not
that this has stopped us from trying).

We therefore go back to our First Answer and convert Ax to adjoint form, as
suggested by section 8. We treat x € E*(X) as a map of spectra z: XT — E, and
note that the E*module homomorphism z*: 4 = E*(E,0) — E*(X) is continuous.
(There is the usual sign, z*r = (—1)de8@)deg()yoq = (—1)des(@)des(r)ypy  from
eq. (6.3).)

For convenience, we assume that A is Hausdorff and work in FMod*. Given any
complete Hausdorff filtered E*module M (i.e. object of FMod), we define

SM = FMod* (A, M) = FMod*(E*(E,0), M) . (10.9)
Then for any space X, we define the coaction
px:E*(X) — S(E*(X)") = FMod* (A, E*(X)") (10.10)

on z € E*(X) by pxz = z*: A = E*(E,0) - E*(X)", completing as necessary. In
the important special case X =T, we find

pr: E* = E*(T) —> FMod* (A, E*(T)) = SE*(T) = SE”*. (10.11)
Similarly, we have px: E*(X,0) — S(E*(X,0)") for spectra and based spaces X.

Theorem 10.12. Assume that the E*-module A = E*(E,o0) is Hausdorff (as is
true for E = H(FF,), MU, BP, KU, or K (n) by Lemma 9.21 and Thm. 9.25). Then
we can make the functor S defined in eq. (10.9) a comonad in the category FMod
of complete Hausdorff filtered E*-modules.

Now that we have a suitable comonad, the definition of stable module is clear.
This is the answer that will generalize satisfactorily.

Definition 10.13. A stable (E-cohomology) module is an S-coalgebra in FMod™,
i.e. a complete Hausdorff filtered E*~module M that is equipped with a morphism

pm:M — SM in FMod* (10.14)
that is E*linear and continuous and satisfies the coaction axioms (8.7). We then
define the action of r € A" = E*"(E,0) on x € M* by rz = (—1)*"(pprz)r € M.

A closed submodule L C M is called (stably) invariant if pys restricts to pr: L —
SL. Then the quotient M/L also inherits a stable module structure.

The group SM may be thought of as the set of all candidates for the action of A
on a typical element of M. Then pjs selects for each £ € M an appropriate action
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on z. The axioms (8.7) translate into the usual action axioms (10.6). If we evaluate
the first only partially, we obtain the commutative square

M —" M
lpM lpM (10.15)
wpr M
SM — SM

where the natural transformation w, is defined on f € SM as
(weM)f = (—1)de8(rdesld) fop*: 4 5 M,

using r*: A = E*(E,0) - E*(E,0) = A. It may be viewed as the analogue of
diag. (8.8).

Theorem 10.16. Assume that the E*module A = E*(E,o0) is Hausdorff (as is
true for E = H(F,), MU, BP, KU, or K(n) by Lemma 9.21 and Thm. 9.25).
Then:

(a) We can factor px (defined in eq. (10.10)) through E*(X)" as px: E*(X)" —
S(E*(X)"), to make E*(X)" a stable module for any space X (and similarly
E*(X,0)" for spectra);

(b) p is universal: given an object N of FMod™, any transformation

6X:E*(X,0) — FMod*(N,E*(X,0)")

(or é\X:E*(X, 0)" = FMod*(N,E*(X,0)")) of any degree, that is defined for all
spectra X and natural on Stab*, is induced from px by a unique morphism f: N —
A in FMod* as the composite

0X: E*(X,0) —— SE*(X,0)" = FMod* (A, E*(X,0)")
Hom(/.1) (10.17)

FMod* (N, E*(X,0)") .

Proofs of Thms. 10.12 and 10.16. The discussion in section 8 is intended to
suggest that these two proofs are interlaced. The main proof is in seven steps.
Lemma, 9.12 provides the E*module object E in Stab*. We find it useful to write
id 4 for the identity map 4 — A, considered as an element of SA.

Step 1. We introduce an E*module structure (different from the obvious one) on
the graded group SM defined by eq. (10.9); by hypothesis, A is an object of FMod™
and S is defined. By Lemma 7.6(a), the additive functor

E*(—,0)" Mor(—,M)
FMod*(E*(—,0)", M): Stab* ——— FMod*°** ———— Ab*
takes the E*module object E to an E*module object in Ab*, i.e. makes SM an
E*module. (By Lemma 7.1(a), the additive structure on SM must be the obvious
one.) As M varies, Lemma 7.7(b) shows that SM is functorial, and we have a
functor S: FMod* — Mod*. We enrich it later, in Step 3, to take values in FMod*.
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Step 2. We show that px is an E*module homomorphism. Given a spectrum (or
space) X, the cohomology functor E*(—,0)": Stab*°® — FMod* induces the natural
transformation of additive functors

Stab*(X,—) — FMod*(E*(—,0)", E*(X,0)"): Stab* — Ab* .
We apply this to the E*module object E in Stab™; then Lemma 7.6(c) shows that
px is a homomorphism of E*modules.

Step 8. In order to make S and px take values in FMod*, we must filter SM.
If M is filtered by the submodules F*M, we filter SM in the obvious way by the
F*(SM) = S(F*M), which are E*submodules because S is a functor. We trivially
have the exact sequence

0— SF*°M — SM — S(M/F*M),
which we use to rewrite the filtration in the more useful form
F*SM = Ker[SM — S(M/F°M)]. (10.18)

(In fact, there is a short exact sequence in all our examples. However, we do not
exploit this fact because (a) it requires a stronger hypothesis on E, but more im-
portantly, (b) it does not generalize correctly.)

It is not difficult to see directly that SM is complete Hausdorff. Because M is
complete Hausdorff, we have the limit M = lim, M/F®M, which is automatically
preserved by S. This yields by eq. (10.18) the inclusion

=SM

lim M
a FeSM

M M
_11£nIm SM — SF"IM C hgnSFaM
in Ab*. But this inclusion is visibly epic and therefore an isomorphism, which makes
SM complete Hausdorff.

We have now defined S as a functor taking values in FMod™ as required. Qur
choice of the profinite topology on E*(X,0) and the naturality of p make it clear
that px is continuous and factors as asserted in Thm. 10.16(a).

Step 4. We convert the object E*(X)" of FMod* to the corepresented functor
Fx = FMod*(E*(X)",—): FMod* — Ab* (and similarly E*(X,0)" for spectra X).
As suggested by eq. (8.16), we also convert the coaction px to the natural trans-
formation px: Fx — FxS: FMod* — Ab*. Given M, the homomorphism

px M:Fx M = FMod*(E*(X)", M) — FMod*(E*(X)",SM) = FxSM (10.19)

is defined by (pxM)f = Sfopx: E*(X)" = S(E*(X)") —» SM.
Step 5. We define the natural transformation ¢:S — SS by taking X = E in
eq. (10.19), so that

wM:SM = FMod*(A, M) — FMod* (A, SM) = SSM (10.20)

is given on the element f: 4 — M of SM as the composite

(WM)f: A = B*(E,0) =2 SE*(E,0) = SA —2s SM .
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(In terms of elements, this is 7 — [s = f(r*s) = (—=1)de8(r) de8(s) f(s7)].) When we
substitute the E*module object E for X in diag. (10.19), Lemma 7.6(c) shows that
M takes values in Mod™. Naturality in M shows that 1 is filtered and takes values
in FMod*, as required.

Step 6. The other required natural transformation,

eM:SM = FMod*(A, M) — M, (10.21)

is defined simply as evaluation on the universal class ¢ € A, i.e. (eM)f = fi. Once
again, naturality in M shows that €M is filtered, but we have to verify that eM
is an E*module homomorphism. (All proofs involving € are necessarily somewhat
computational, because the definition is.) Additivity is clear. Take any v € E". By
Lemma 9.12, the structure map £v: E — E induces (£v)*t = ve in E*(E, 0). Given
an element f: 4 = E*(E,0) & M of SM, we defined vf = £ fo(&v)* in Step 1;
then

€(vf) = £ e(fo(€0)") = £ F(E0)t = + F(v0) = vf1 = vef,

using the given E*linearity of f.

Step 7. We show that S is a comonad and that E*(X)"is an S-coalgebra. Natural-
ity of p with respect to the map of spectra z: X+ — E for any x € E*(X) shows that
px is a coaction on E*(X)" in the sense of Defn. 8.15, using R = A = E*(E,0),
PR = pE, and 1 = 1. By Lemma 8.20, px makes E*(X)" (or E*(X,0)") an S-
coalgebra; we constructed 1 and € to satisfy the conditions (8.19). Finally, S is a
comonad by Lemma 8.22(a).

Yoneda’s Lemma gives Thm. 10.16(b) for 6. Because E*(—,0) is represented
by E, 6 is classified by the element f = (§E). € FMod*(N,.A) and so given by
eq. (10.17). If we are given 9 instead, we compose with E* (X,0) = E*(X,0)" to
obtain 8. Conversely, any 6 factors through 0 by naturality. 0

11. Stable comodules

Although the Fourth Answer of section 10, in terms of stable modules, is the cleanest
and most general, the Second Answer, in terms of stable comodules, is usually
available and more practical in the cases of interest. (One could argue that this
feature is what makes these cases interesting.) At least for E = MU or BP, such
comodules are called cobordism comodules. This is the context for Landweber theory,
as developed in [17, 18] and discussed in section 15 for BP.

Rather than develop the Second and Third Answers from scratch, we deduce
them from the Fourth Answer by comparing the algebraic structures on E*(E, o)
and E,(E,0). This section is entirely algebraic in the sense that the only spectrum
we study in any depth is £. In Thm. 11.35 we show that the structure maps ng,
s, and eg on E,(E,0) agree with those of Adams.

We assume later in this section that E.(E,0) is a free E*~module, which is true
for our five examples by Lemma 9.21. The duality d: E*(E,0) = DE,(E,o0) in
Thm. 9.25 allows us to identify the following, with only slight abuse of notation:



60 J. M. Boardman Chapter 1
(i) The cohomology operation r on E*(—) (or E*(—,0));
(ii) The class r. € E*(E,0), which we also write simply as r; (11.1)
(iii) The map of spectra r: E — E, a morphism in Stab™; '
(iv) The E*-linear functional (r,—): E.(E,0) — E*.
The degree of r is the same in any of these contexts (once we remember that E;(E, o)
has degree —i).

The bimodule algebra E.(E,0). As E.(E,o) is better understood and smaller
than E*(E,o0), (iv) is the preferred choice in (11.1). There is much structure on
E.(E,o0). First, like all E-homology, it is a left E*module.

When we apply the additive functor E.(—,0) to the E*module object E in
Lemma 9.12, we obtain by Lemma 7.6(a) the E*module object E«(E,0) in Mod,
equipped with the E*module homomorphism (£v). of degree h for each v € E!.
To extract a bimodule as commonly understood, we define the right action by

c-v=(=1)""(&v)c  forve E" c€ E,(E,o),

to ensure that v'(c¢-v) = (v'¢) - v, with no signs. Nevertheless, we find it technically
convenient to keep all functions and operations on the left and work with (£v)..
The ring spectrum structure (¢,7) on E induces the multiplication

P
¢ = ds: B (E,0) @ Eo(E,0) — E.(EAE,0) —s E.(E,o0)
and left unit
n=ns:E*=E,(T",o0) SN E.(E,o0)

for E.(E,o). In particular, we have the unit element 1 =nl € Ey(E,0).

The equation ve = v(1e) = (vl)e = (nv)c describes the left E*action in terms of
¢ and 7, and implies that 5 is a ring homomorphism. We shall see presently that
the right action is similarly determined by its effect on 1.

Definition 11.2. We define the right unit function ng: E* — E.(E,0) onv € E* =
E*(T*,0) by nrv = v, 1, using the homology homomorphism v,: E* = E, (T, 0) —
E.(FE,o0) induced by the map v: T+ — E in Stab*.

We summarize all this structure. We recall that in general, the left and right
units and E*actions on FE,(FE,0) are quite different.

Proposition 11.3. In E.(E,0), for any ring spectrum E:
(a) E.(E,o) is an E*-bimodule;
(b) The unit element 1 = nl = nrl is well defined;

(¢) The multiplication ¢ makes E.(E,0) a commutative E*-algebra with respect
to the left or right E*-action;

(d) n: E* = E.(E,o0) and nr: E* — E.(E,0) are ring homomorphisms;
(e) The left action of v € E* is left multiplication by v1;
(f) The right action of v € E* is right multiplication by ngrv.
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Proof. For (c), we apply the E-homology symmetric monoidal functor (9.18) to the
commutative monoid object F in Stab, to obtain the commutative monoid object
E.(E,o0) in Mod, i.e. commutative E*algebra, with respect to the left E*action.
We trivially have (b), because the map n: Tt — E is 17 € E°(T). For (f), we
apply E-homology to eq. (9.11), which expresses &v in terms of the multiplication.
This implies that ng is a ring homomorphism. O

Remark. There is a well-known conjugation x: E.(FE,0) — E.(E,0) which inter-
changes the left and right E™actions. We avoid it because it does not generalize to
the unstable situation.

The functor S’. Duality and Lemma 6.16(b) provide the natural isomorphism
S'M = M ® E,(E,0) = FMod*(E*(E,0), M) = SM (11.4)
for any complete Hausdorff filtered E*module M, with action scheme
(8'M)2 = M1®, E1.(E2,0) = FMod; (E1*(E2,0), M1) = (SM)2 .

The functors S and S’ are those of section 10. Moreover, this is an isomorphism of
filtered E*modules in FMod if we filter S’ M as in eq. (4.15), which is the same as
filtering it by the submodules S'F* M. (We remind that E,(E, o), like all homology,
invariably carries the discrete topology.) Explicitly, with the help of Prop. 11.3, the
isomorphism of E*actions is expressed by

(ro(wve), c) = {r,(nrv)c) forr € E*(E,0), v € E*, c € E,(E,0). (11.5)

In view of the proliferation of E*actions, one must be careful in applying duality;
the correct way to establish all properties of S’ is to deduce them from the corre-
sponding properties of S in section 10 by applying the isomorphism (11.4). (Once
our equivalences are well established, we shall normally omit the ' everywhere.)

The coalgebra structure on E,(FE,0). The comonad structure (¢s,€es) on S in
Thm. 10.12 corresponds under eq. (11.4) to a comonad structure on S’ consisting of
natural transformations ¢/'M:S'M — S'S'M and € M:S'M — M. By naturality
and the case M = E*, ' M must take the form M ® ¢ for a certain well-defined
comultiplication

Y =s: E.(E,0) — E«(E,0) ® E«(E,0) (11.6)
(with action scheme E1,(E3,0) — E1.(E2,0) ®2 E2,(E3,0)). It is not cocommu-
tative (in any ordinary sense). Similarly, ¢’ M must have the form

M®es:S'M =M@E,.(E,0) — MQE*=M
for some well-defined counit

€ =¢s: E.(FE,0) — E*. (11.7)

(Here and elsewhere, the isomorphism M ® E* = M always involves the usual sign,
T ® v (—1)de8(z) deg(v) 2 ) Both 15 and eg are morphisms of E*bimodules.

Lemma 11.8. Assume that E.(E,0) is a free E*module. Then the homomor-
phisms Vs and €s in diags. (11.6) and (11.7) make E.(E,0) a coalgebra over E*.
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Proof. By taking M = E*, the comonad axioms (8.6) for S’ translate into the
coassociativity of ¥g,

E.(E,o0) vs E.(E,0) ® E.(E,0)

Ys 1Rys (11.9)

®1
E.(E,0) ® E.(E,0) 2+ E.(E,0) ® E.(E,0) ® E.(E,0)

and the two counit axioms on €g:

E.(E,0) —+ E.(E,0)® E.(E,0) E.(E,0) — ~ E.(E,0)® E.(E,o0)
= es®1 = 1Q®es
E* ® E.(E,0) E.(E,0) ® E*
(i) (i)
(11.10)

These commutative diagrams express precisely what we mean by saying that
E.(E,o) is a coalgebra. a

Comodules. We are now ready to convert Defn. 10.13 of a stable module and
Thm. 10.16, by means of the isomorphism (11.4). The coaction pp: M — SM
in (10.14) on a stable module M corresponds to a coaction ppr: M — S'M =
M ® E.(E, o).

Definition 11.11. A stable (E-cohomology) comodule structure on a complete
Hausdorff filtered E*module M (i.e. object of FMod) consists of a coaction
pu:M — M ® E,(E, o) that is a continuous morphism of filtered E*modules (i. e.
morphism in FMod, with action scheme M2 — M1&, E1,(E2,0)) and satisfies the
axioms

PM ~
M P MBE.(E, o) M — M®E.(E,o)

lpM lM@d;s \ 1M®€s
pr®1 (11.12)

M®E*(an) - M&)E*(an)@E*(an) MQE*
@) (i)

Theorem 11.13. Assume that E.(E,0) is a free E*-module (which is true for E =
H(F,), BP, MU, KU, or K(n) by Lemma 9.21). Then given a complete Hausdorff
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filtered E*-module M (i. e. object of FMod ), a stable module structure on M in the
sense of Defn. 10.13 is precisely equivalent under eg. (11.4) to a stable comodule
structure on M in the sense of Defn. 11.11.

Proof. The axioms (11.12) are just the axioms (8.7) interpreted for S'. O

Theorem 11.14. Assume that E.(E,0) is a free E*-module (which is true for £ =
H(F,), BP, MU, KU, or K(n) by Lemma 9.21). Then:

(a) For any space (or spectrum) X, there is a natural coaction
px:E*(X) — E*(X)® E.(E,0) (11.15)

(or px:E*(X,0) — E*(X,0)®E,(E,0)) in FMod that makes E*(X)" (or
E*(X,0)") a stable comodule, which corresponds by Thm. 11.138 to the coaction
px of Thm. 10.16;

(b) p is universal: given a discrete E*module N, any transformation
0X:E*(X,0) —» E*(X,0)®N (or 8X:E*(X,0)" — E*(X,0) " ®N), that is de-
fined and natural for all spectra X, is induced from px by a unique morphism
f:E«(E,0) > N of E*modules, as

~ 1®f ~
0X: E*(X,0) —— E*(X,0)® E.(E,0) —— E*(X,0)®N .  (11.16)

Proof. For (a), we combine Thm. 11.13 with Thm. 10.16(a).

However, (b) is not a translation of Thm. 10.16(b), although the proof is similar.
Because E*(—, 0) is represented in Stab* by E, 6 is determined by the value (6E) €
E*(E,0)® N, which corresponds to the desired homomorphism f: E,(E,0) - N
under the isomorphism E*(E,0) ® N = Mod*(E.(E,o0), N) of Lemma 6.16(a). [0

Remark. The universal property (b) shows that diags. (11.12), with M =
E*(X,0), may be viewed as defining s and eg in terms of p. Three applications
of the uniqueness in (b) then show that g is coassociative and has eg as a counit.

Remark. From a purely theoretical point of view, one should write the coaction
(11.15) as px: E*(X)" = E*(X)"® E.(E, 0), using three completions, in order to
stay inside the category FMod of filtered modules at all times. This seems excessive.
The way we are writing px, using just the ® (and that only when necessary) and
leaving the other completions implicit, conveys exactly the same algebraic and topo-
logical information after completion. But we warn that in using diag. (11.12)(ii),
M ® E* = M is valid if and only if M is complete Hausdorff. In particular, E*(X)
can only be a stable comodule if it is already Hausdorff.

Linear functionals. Theorem 11.13 establishes the equivalence between stable
modules and stable comodules. For applications, we need to make this correspon-
dence explicit. Given a stable comodule M, we recover the action of r € E*(E, 0)
on the stable module M from p,s as

PM ~ M®{r,—)
M- MEE.(B,0) — s M® E* =~ M, (11.17)

by means of the isomorphism (11.4), whose details are supplied by Lemma 6.16(b).
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To make everything explicit, we choose x € M* and write

puz =Y (—1)t8@)delcaly @ ¢,  in M & E.(E,o0), (11.18)

«
where the sum may be infinite. (We introduce signs here to keep other formu-
lae cleaner. It is noteworthy that in the explicit formulae of section 14, these

signs are invariably +1.) Then from Cor. 6.17, the corresponding element x* €
FMod* (E*(E, 0), M) is given by

z*r = (—1)kdes(n) Z(r, Ca) Ta

and conversely. We rewrite this more conveniently as

re = Z(r, Ca) Ta in M, for all r (11.19)

a

(with no signs at all!), where we emphasize that the ¢, and z, depend only on z,
not on r. The sums here may be infinite, but will converge because eq. (11.18) does.
The statement that pjs is an E*homomorphism may be expressed as

r(vx) = Z(r, (MRY)Cq) Ta in M, for all r, (11.20)
[e4
for any v € E*, with the help of eq. (11.5).

It is important for our purposes not to require the ¢, to form a basis of E,(E, o),
or even be linearly independent; but if they do form a basis, the z, are uniquely
determined by eq. (11.19) as z4 = ¢}z, where ¢!, denotes the operation dual to c4.

As €g is dual to &: E* — E*(E,0), we see that

(t,—) = €s: Ex(E,0) — E*, (11.21)

which is obvious by comparing diag. (11.12)(ii) with eq. (11.17). In other words, the
functional €g corresponds to the identity operation ¢ in the list (11.1). In practice,
€s is always easy to write down; it is g that causes difficulties. Of course, g is
dual to composition (10.4), as we make explicit later in eq. (11.34).

The cohomology of a point. Our first test space is the one-point space T'. We
have enough to determine the stable structure of E*(T') completely.

Proposition 11.22. Let r be o stable operation on E-cohomology and v € E*.
Assume that E.(E, o) is a free E*-module. Then in the stable comodule E*(T) = E*:

(a) The action of the operation r is given by
rv = (r,nRrv) in E*(T) = E*; (11.23)
(b) The coaction pr: E* — E* ® E.(E,0) = E.(E,o0) coincides with the right
unit nr: E* — E.(E,0);
(c) If we write E* = n2(E,0) and regard r:E — E as a map of spectra,
the induced homomorphism r.: E* — E* on stable homotopy groups is given by
TxU = <Ta URU)-
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Proof. If we regard v as a map v: T+ — E and use Defn. 11.2, we find
rv =tv'r = £ (v*r, 1) = (r,v.l) = (r,nrv),

which is (a). We compare eq. (11.19) with eq. (11.18) to rewrite this as prv =
1 ® nrv, which gives (b). Parts (a) and (c) are equivalent, because both rv and r,v
are the same morphism rov: Tt — E — E in Stab*. O

The cohomology of spheres. Our second test space is the sphere S*. By defini-
tion, stable operations commute up to sign with the suspension isomorphism, as in
fig. 2 in section 9. In view of the multiplicativity of E and eq. (3.24), this reduces
to

psur = ug ® 1 in E*(S*,0) ® E.(E,0) (11.24)
for all integers k (positive or negative), where S* denotes the k-sphere spectrum

and uy € E*(S*,0) = E° the standard generator. Equivalently, from eqs. (11.18)
and (11.19), the action of any operation r is given by

rur = (r,1)ux  in E*(S*,0). (11.25)
Both formulae then hold in E*(S*) for the space S*, which exists for k > 0. Also,
eq. (11.20) gives r(vuy).

Homology homomorphisms. In some applications, it is useful to regard the ele-
ment x € E¥(X,0) as a map of spectra z: X — E and compute the homomorphism
induced on E-homology.

Proposition 11.26. Assume that E.(E,0) is a free E*module. Given x €
E*(X,0), suppose that rx is given by eq. (11.19). Then the E-homology homo-
morphism x.: E«(X,0) — E.(E,0) induced by the map of spectra ©: X — E is
given on z € E,(X,0) by

Tz = Z(_l)deg(ca)(deg(waHm) (Tay2) Ca - (11.27)

a

Proof. For a general operation r, we have

(ryzez) = £{x*r, 2) = (rz, 2)

= Z(’ra Ca)Va = <T7 Z(_l)deg(ca) deg(vc,)vaca>,

[e4 «

where vy = (4, 2). Since this holds for all r, eq. (11.27) follows by duality. 0
Conversely, we can recover pxz from z, when X is well behaved.

Proposition 11.28. Assume that E.(X) is a free E*module. Take x € E*(X).
Then under the isomorphism E*(X)Q E,(E,0) = Mod*(E,(X),E.(E,o0)) of
Lemma 6.16(a), the element pxx corresponds to the homomorphism z.: E.(X) —
E.(E,o0) of E*modules.
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Proof. We apply Lemma 6.16(a) to eq. (11.18), using the strong duality E*(X) =
DE,(X) of Thm. 9.25, and compare with eq. (11.27). O

Similarly, it is important to know the E-homology homomorphism r,: E.(E, 0) —
E,(E,o) induced by an operation r, regarded as a map r: E — E of spectra. This
provides a convenient faithful representation of the operations on E.(E,0), as it
is clear that i, = id and (s7)4 = $. o74. From diag. (10.15) and the isomorphism
(11.4) we deduce the commutative square

T

M - M

Py M (11.29)
~ MQ@r. ~
M ® E,(E,0) — M & E,(E,0)

We need to know how to pass between (r, —) and r,. From the identity (r,c) =
(r*t,c) = {1,r«c) and eq. (11.21), we easily recover the functional (r, —) from r, as

(r,—): E,(E,0) —— E(E,0) —s E*. (11.30)

The following result gives the reverse direction.

Lemma 11.31. Let r € E*(E,0) be an operation and assume that E.(E,0) is a
free E*-module. Then:

(a) The diagram

E.(E,o) - E.(E,0)
libs liﬁs (11.32)

1Q7.
B.(E,0) ® B.(E,0) ——» E.(E,0)® E.(E,o)

commutes; in other words, v is a morphism of left E.(E, 0)-comodules;

(b) 7« El(E,0) = E.(E,o0) is the unique homomorphism of left E*-modules
that satisfies eq. (11.30) and is a morphism of left E«(E,0)-comodules as in (a);

(¢) The homomorphism r. is given in terms of the functional {r,—) as

v
rv: B,(E,0) —— E,(E,0) ® E.(E, o)

1®<T7_>
E.(E,o) ® E* 2 E,(E,o) .

(11.33)

Proof. After applying M & —, diag. (11.32) corresponds under eq. (11.4) to the
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square

0-M
SM

SM

ld)sM lwsM

0.SM
SSM —— SSM

where 6,:S — S is defined on f € SM = FMod*(A,M) by (6,M)f =
(—1)des(r)deg(f) f o r*  (Note that 6, only takes values in Ab*, because it fails to
preserve the preferred E*module structure on SM.) Since S is corepresented by
A, commutativity of this diagram reduces to the equality

peor* =Sr*opp: A= E*(E,0) — SE*(E,0) =SA

in SSA, which expresses the naturality of p. (Explicitly, (sr)* = £r*os* for all
s € A, which is the associativity t(sr) = (ts)r for fixed r.)
If we compose diag. (11.32) with

1®es:E(E,0) ® E.(E,0) — E.(E,0) ® E* = E(E, o)

and use eq. (11.30) and diag. (11.10)(ii), we obtain (c). This also establishes the
uniqueness of r, in (b). O

To summarize, eqs. (11.30) and (11.33) express r. and (r,—) in terms of each
other, with the help of ¢ and eg. Conversely, these equations may be viewed as
characterizing 15 and €g in terms of the r, and (r, —) for all r.

We can at last make explicit how g is dual to the composition (10.4). It is
immediate from eq. (11.30) that (sr,—) = (s, —) or.. We substitute eq. (11.33) to
obtain

(sr,—): E.(E,0) —> B.(E,0) ® E.(F, 0)

1®<T7_) (37_)
—  yE.(E,0)® E* 2 E,(E,0) — E*

(11.34)

(Note that we cannot simply write (s, —) ® (r, —) here, which is undefined unless
(s, —) happens to be right E*linear.)

Remark. From a more sophisticated point of view, several of our formulae may
be explained by noting that ©s makes E.(F,0) a stable comodule, provided we use
the right E*module action. The comodule axioms are (11.9) and (11.10)(ii). Then
by comparing eq. (11.33) with eq. (11.17), we see that the action of r on E.(E,0)
is just r,, and diag. (11.32) becomes a special case of diag. (11.29), which in turn
comes from diag. (8.8).

Compatibility. It is clear that egs. (11.30) and (11.33) determine e€s and g
uniquely, and that eq. (11.23) determines nr. We now show that they agree with
the homomorphisms introduced by Adams [3, II1.12].
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Theorem 11.35. Assume that E.(E,0) is a free E*-module (which is true for E =

H(F,), BP, MU, KU, or K(n) by Lemma 9.21). Suppose that E,(E,0) is equipped

with Vs and es that satisfy egs. (11.30) and (11.33), and ng as in Defn. 11.2. Then:
(a) nr must be

75 (MAE,0)
E* = Wf(E,O) = Wf(T+ /\E7O) — Wf(E/\E,O) = E*(E,O);

(b) es must be

75 (¢,0)
es: E.(E,0) = 15 (E AE,0) — "y #5(E,0) = E*;

(¢) s must be

E.(nA\E)
bs: Eu(E,0) = E(T* AE,0) — 4 E,(ENE,0) = E,(E,0) ® E(E, o),

where we use the twisted Kinneth isomorphism with action scheme
E1,(E2 A E3,0) = E1,(E2,0) ®2 E2,(E3,0).
Proof. The definition nrv = v41 expands to
EAv
T L E~EATT - EAE.
We prove (a) by rearranging this as
AE
T S E~THAE—— S EANE.
Given r € E*(E,0) and ¢ € E,(E,0), we may construct (r,c) as the composite
c rAE [
(r,ey: Tt — EAE —— EANE — FE .

If we take r = ¢ and compare with (11.30), we obtain (b).
The commutative diagram

(MAE). ~
E.(E,o) E.(ENE,o) «—— E.(E,0)® E.(E,o0)
Ts (EAT). 1®74
(nNE). ~
E.(E,o) E.(ENE,o) «—— E.(E,0)® E.(E,o0)

\ d)*%

E.(E,o0)

shows, with the help of eq. (11.30), that 7. is the composite of 1 ® (r,—) with
Adams’s ¢, which appears as the top row. (Here, both Kiinneth isomorphisms are
twisted.) Since this holds for all r, comparison with eq. (11.33) gives (c). O
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12. What is a stable algebra?

In section 10, we gave four answers for the structure of a module over the ring A =
E*(E,0) of stable operations in E-cohomology, to encode the algebraic structure
present on the E*module E*(X) or E*(X,0) for a space or spectrum X. When
X is a space, E*(X) is an E*algebra. In this section, we enrich each answer and
theorem to include this multiplicative structure.

The organizing principle of this section is to make everything symmetric
monoidal. We have three symmetric monoidal categories in view: (Stab™, A, T™),
(Mod*,®, E*), and the filtered version (FMod*,&®, E*). We also have three sym-
metric monoidal functors: E-cohomology (9.14), completed E-cohomology (9.30),
and E-homology (9.18).

In this section, we generally assume that E.(E,0) is a free E*-module;
then Thm. 9.31 provides Kiinneth homeomorphisms E*(EAE,0) = A® A and
E*(EANEAE,0) = AR A® A.

First Answer. For a spectrum X, we have the action (10.1)
Ax:AQ E*(X,0) — E*(X,0).

Given an operation r, we would like to have an external Cartan formula

r(zxy) = Z trlzxrly in E*(X AY,0) (12.1)
64

for suitable choices of operations r!, and 7!, (and signs). For a space X, this leads
to the corresponding internal Cartan formula,

r(zy) = Z + (rlx)(rlly) in B*(X). (12.2)

For the universal example X =Y = E, with £ =y = ¢, eq. (12.1) reduces to

¢*r:Zr;xrg in E*(ENAE,o).
@

This requires ¢*r to lie in the image of the cross product (9.13)
x:E*(E,0) ® E*(E,0) — E*(E ANE,o0),

which rarely happens. However, the pairing becomes an isomorphism if we use the
completed tensor product and so allow infinite sums. This is another reason to
topologize E*(X).

From this point of view, a stable algebra should consist of a filtered E™algebra
M equipped with a continuous E*linear action Ap: A ® M — M that satisfies
eq. (12.2) for all r. We must not forget the unit 1, of the algebra M, for which
eq. (11.23) requires r1p = (r,1) 1.

In the classical case E = H(FF,), there is a good finite Cartan formula, and
this description is adequate for many applications. For MU and BP, however, this
approach is not very practical and must be reworked.
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Second Answer. We have the coaction px: E*(X) = E*(X)® E.(E,0) from
(10.7). We shall find that the rather opaque Cartan formula (12.1) translates (for
spaces) into the commutative diagram

E*(X)® B*(Y) 2, (B*(X)BE.(E,0)) ® (E*(Y)&E.(B,0))
x E*(X)®E*(Y)® (E«(E,0)®E,(E,0))  (12.3)
o
E* (X xY) il E*(XxY)® E.(E,o0)

By taking Y = X, we deduce that px is a homomorphism of E*algebras. This
includes the units, which come from 1 € E°(T), since pr is given by Prop. 11.22(b).

Explicitly, given z € E*(X) and y € E*(Y), assume that rz and ry are given as
in eq. (11.19) by

T = Z(T; Ca) Taj ry = Z(T, dg) yg; (for all r)
a B

for suitable elements z, € E*(X), yg € E*(Y), and ¢4, dg € E.(E, 0). Evaluation
of diag. (12.3) on z ® y using eq. (11.18) yields the external Cartan formula

rxy) =Y Y (—1)deslds)deelealp codg) zoxys in B*(X x V)" (12.4)
a B

for all r. This works too for z € E*(X,0), y € E*(Y,0), and z x y € E*(X AY,0),
where X and Y are based spaces or spectra. For a space X, we can take Y = X
and deduce the internal Cartan formula

r(zy) = Z Z(—l)deg(d")deg(“)(r, codp) Toyp in E*(X), for all r. (12.5)
« B

All this makes it clear what the definition of a stable comodule algebra should be.
The following lemma makes it reasonable. As in section 10, we defer most proofs
until we have our preferred definitions, at the end of the section.

Lemma 12.6. Assume that E.(E, o) is a free E*-module. Then the comultiplication
¥ = Ys:E.(E,0) - E.(E,0) ® E.(E,0) and counit ¢ = es: E.(E,0) — E* are
homomorphisms of E*-algebras.
As an immediate corollary of ¢1 = 1 ® 1, we have
Ys(vw) =vw in E,(E,0) ® E.(E,0)
for any v € E* and w € nrE*. If we combine this with eq. (11.33), we obtain
r«(vw) = vnr{r,w) in E.(E,0)
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for any stable operation r. What makes these formulae useful is that the elements
vw always span E.(E,0) ® Q as a Qmodule. Thus in the important case when E*
has no torsion, these innocuous equations are powerful enough to determine ¥g and
r. completely.

Definition 12.7. We call a stable comodule M in the sense of Defn. 11.11 a stable
(E-cohomology) comodule algebra if M is an object of FAlg and its coaction pys is
a morphism in FAIg.

In detail, M is a complete Hausdorff filtered E*algebra equipped with a coaction
pm: M — M QE,(E,o) that is a continuous homomorphism of E*algebras and
satisfies the coaction axioms (11.12), which are now diagrams in FAlg.

Theorem 12.8. Assume that E.(E,0) is a free E*~module (which is true for E =
H(F,), BP, MU, KU, or K(n) by Lemma 9.21). Then:

(a) For any space X, the coaction px in (11.15) makes E*(X)" a stable comodule
algebra;

(b) p is universal: given a discrete commutative E*-algebra B, any multiplicative
transformation X : E*(X,0) — E*(X,0)® B (or 8X:E*(X,0)" — E*(X,0)® B)
that is defined for all spectra X and natural on Stab® is induced from px by a
unique E*-algebra homomorphism f: E.(E,0) — B as

~ 10f ~
9X: E*(X,0) s E*(X,0) & E.(E,0) —— E*(X,0)®B .

Third Answer. We restate our Second Answer in terms of the functor S'M =
M ® E.(E,o0) introduced in section 11. What we have really done is construct the
symmetric monoidal functor

(S',¢sr, 250): (FMod, ®, E*) — (FMod, &, E*) (12.9)

where (si: S'M & S'N — S'(M ® N) is given by

M & E.(E,0)& N & E.(E,0) = M & N &(E.(E,0) ® E.(E,0))

M@N®¢ PPN
M®N ® E(E, o)

and zg: E* — S'E* is just nr: E* — E.(E,0). We saw (g in diag. (12.3).

We can now reinterpret Lemma 12.6 as saying that the natural transformations
' S"— §'S"and €': S’ — I are monoidal, thus making S’ a comonad in FA/g. Then
diag. (12.3) simply states that p is monoidal. Since E* = E*(T) by definition, the
other needed axiom reduces to pr = zgr, which we have by Prop. 11.22(b).

Fourth Answer. We enrich the object SM = FMod*(A, M) in section 10 to
include the multiplicative structure.

Theorem 12.10. Assume that E.(E,0) is a free E*-module (which is true for £ =
H(F,), BP, MU, KU, or K(n) by Lemma 9.21). Then we can make S a symmetric
monoidal comonad in FMod and hence a comonad in FAlg.
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The definition of stable algebra is now clear.

Definition 12.11. A stable (E-cohomology) algebra is an S-coalgebra in FAlg, i.e.
a complete Hausdorff filtered E*algebra M equipped with a continuous homomor-
phism pa: M — SM of E*algebras that satisfies the coaction axioms (8.7).

If a closed ideal L C M is invariant (see Defn. 10.13), then M/L inherits a stable
algebra structure.

Theorem 12.12. Assume that E.(E,0) is a free E*-module (which is true for £ =
H(F,), BP, MU, KU, or K(n) by Lemma 9.21). Then given a complete Hausdorff
filtered E*-algebra M (i. e. object of FAlg), a stable comodule algebra structure on
M in the sense of Defn. 12.7 is equivalent to a stable algebra structure on M in the
sense of Defn. 12.11.

Theorem 12.13. Assume that E,(E,0) is a free E*-module (which is true for E =
H(F,), BP, MU, KU, or K(n) by Lemma 9.21). Then:

(a) The natural transformation p: E*(—)" — S(E*(—)") defined on spaces by
diag. (10.10) (or p: E*(—,0)" — S(E*(—,0)") for spectra) is monoidal and makes
E*(X)" a stable algebra for any space X ;

(b) p is universal: given a cocommutative comonoid object C in FMod, any
multiplicative transformation

9X: E*(X,0) - FMod*(C, E*(X,0))

(or é\X:E*(X, 0)" = FMod*(C,E*(X,0)")) that is defined for all spectra X and
natural on Stab is induced from px by a unique morphism f:C — A of comonoids
i FMod as

0X:E*(X,0) —— S(E*(X)") = FMod" (4, E*(X)")

Hom(f,1)
FMod*(C, E*(X)") .

Proof of Thms. 12.10 and 12.13. In proving Thm. 10.12, we made A =
E*(E,0) an E*module object. We add the necessary monoidal structure to S =
FMod™* (A, —) in five steps.

Step 1. We construct the symmetric monoidal functor

(S,Cs,25): (FMod*,®, E*) — (Mod*,®, E*) . (12.14)
We start from the ring spectrum E, with multiplication ¢: EAE — E, unit n: T+ —
E, and v-action {v: E — E, and note that it is automatically an E*algebra object
in the symmetric monoidal category (Stab*, A, T) in the sense of Defn. 7.12. We
apply the E-cohomology functor (9.14) to make A an E*algebra object in FMod*°®,
with the comultiplication

Vi A= E*(E,0) —— E*(EAE,0) = A& A
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and counit €4 = n*: A = E*(E,0) - E*(T*,0) = E*. Then Lemma 7.14 produces
the desired functor (12.14), with zg: E* — SE* given on v € E* by eq. (7.15) as

28U = n* o(f’u)* =v A= E*(E,O) — E*(T+,O) = FE*. (12.15)

This identifies zg with ng. Then S takes monoid objects in FMod™ (i.e. objects of
FAlg) to monoid objects in Mod™ (i.e. E*algebras).

Step 2. To prove that p: E*(—,0) = S(E*(—,0)") is monoidal, we need to check
commutativity of the diagram in Mod

PxQpy

E*(X,0)® E*(Y,0)

S(E™(X;0)") ® S(E*(Y,0))

Je

x S(E*(X,0)"® E*(Y,0)") (12.16)

|5~

S(E*(X AY,0))

PXAY

E*(X AY,0)

By naturality, it is enough to take X = Y = E and evaluate on the universal
element + ® 1. By construction, pgt = id4 € SA. By the definition (7.11) of (g,
the upper route gives ¥4 € S(A®.A), which by definition corresponds under Sx to
¢* € SE*(ENE,0) as required.

Because E* = E*(Tt,0), the other needed diagram reduces to zs = pr, which
we have by eq. (12.15).

Step 3. For later use, we combine diag. (12.16) (still in the case X =Y = E)
with the commutative square

PE

E*(E,o0) SE*(E, o)

P* JS"’*

E*(EAE,0) 2225 SE*(EAE, o)

and the definition of 1) 4 to obtain the following commutative diagram, which in-
volves only A,

A SA
a Sva (12.17)
~ EQPE N (s ~
ABA 5 SARSA —> S(AB A)

Step 4. The monoidality of v is a formal consequence of that of p. The two
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commutative diagrams to check are

SM SN 22N, ssir e SN
cs(smsyy B ——— SE*
Cs(M,N) S(SM &SN 2 Sz
’ (M ©SN) ° ° (12.18)

S¢s(M,N) E*

, 17 SE* s SSE*
MQN ~ ..
saran) 22, s Ny (if)

where we again leave some tensor products uncompleted.
As (i) is natural in M and N, we may work with the universal example M =
N = A and evaluate on id 4 ® id 4. The upper route gives the element

P ~ EQPE ~ < ~
A A A SABSA —1s S(AB A)
of SS(A® A). The lower route gives

P Sy

A 842 5(ABA),
which we just saw in diag. (12.17) is the same.
Since zg = pr, (ii) reduces to axiom (8.7)(i) for the S-coalgebra E* = E*(T).
Step 5. We next check that € is monoidal; this too is formal. As ever, there are
two diagrams:

SM ® SN E*
Qe —
(i) ¢s(M.N) i) | \C (12.19)
S(M®N) ——~ MEN SE* —— E*

Again we take M = N = A in (i) and evaluate on id 4 ® id 4. The lower route gives
YL =t ® 1, by the definition of 1 4. This agrees with e® ¢, since eid 4 = ¢. For (ii),
it is clear from eq. (12.15) that ezgv = v.

In Thm. 12.13(b), we are given a comonoid object C, equipped with morphisms
Yo:C — CRC and ec:C — E* in FMod*. Let us write (V,Cv, zy) for the sym-
metric monoidal functor with V' = FMod*(C,—) that results from Lemma 7.9.
Theorem 10.16(b) provides the unique morphism f: C' = A in FMod™ that induces
V from S as in eq. (10.17).

We compare diag. (12.16) and a similar diagram with V" in place of S. Evaluation
of the universal case X =Y = E on ¢ ® ¢ shows that (f ® f)otpg = a0 f:C —
A® A. Since T+ takes 1 € E* = E*(T) to the unit element zy € VE*, eq. (10.17)
shows that ec = €40 f. O
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Comodule algebras. We can now fill in the missing proofs on comodule algebras.
By construction, the isomorphism S'M = SM in (11.4) transforms the symmetric
monoidal structure (12.9) on S’ into the symmetric monoidal structure (12.14) on
S. Also, p' is monoidal and we have diag. (12.3).

Proof of Lemma 12.6. If we replace S by S’ in the four diagrams (12.18)
and (12.19) for M = N = E*, we obtain exactly the diagrams we need. O

Proof of Thm. 12.12. The isomorphism S'M = SM is now an isomorphism of
algebras, and the two definitions agree. O

Proof of Thm. 12.8. For (a), we combine Thm. 12.13(a) with Thm. 12.12.

In (b), Thm. 11.14(b) provides the unique homomorphism f: E.(E,0) — B of
E*modules that induces 6 from p as in eq. (11.16); it corresponds to the element
(6E) under the isomorphism E*(E,0) ® B = Mod* (E,(E, o), B) of Lemma 6.16(a).
If we evaluate §(T) on 1, we see that f1 = 1. The multiplicativity of @ is expressed
as a diagram resembling (12.3) with B in place of E,(E,0). We evaluate it in the
universal case X =Y = F on ¢®: and again use Lemma 6.16(a) to convert elements
of E*(EAE,0) ® B to module homomorphisms E, (E, 0) ® E.(E,0) — B, with the
help of E*(EAE,0) = D(E.(E,0)®E.(FE,0)) from Thms. 9.20 and 9.25. The upper
route yields ¢ o(f R f): Ex(E,0) ® E«(E,0) — B. Since 1 x . = ¢ € E*(E AN E,0),
the lower route yields

b !
E.(E,0) ® E,(E,0) — E,(EAE,0) — E,(E,0) — B .

Thus f is multiplicative and so is an E*algebra homomorphism. 0

13. Operations and complex orientation

In this section, we show how a complex orientation on E determines the elements
b; € E.(E,0) from our point of view. We assume that E.(FE,0) is free, so that
sections 11 and 12 apply. We pay particular attention to the p-local case, and the
main relations that apply there.

Complex projective space. We recall from Defn. 5.1 that a complex orientation
for E yields a first Chern class z(f) € E?(X) for each complex line bundle 6 over
any space X. As the Hopf line bundle £ over CP* is universal, we need only study
x = x(§) € E*(CP*>). Thus CP*™ is our third test space. Since E*(CP®) =
E*[[z]] by Lemma 5.4, the coaction p on E*(CP*) is completely determined by
px, multiplicativity, E*linearity, and continuity.

Definition 13.1. Given a complex orientation for E, we define the elements b; €
Es(;-1)(E,0) for all i > 0 by the identity

pr = b(zx) = iw’ ®b; in E*(CP>®)® E.(E,o0) 2 E.(E,o)[[z]], (13.2)
i=0

where b(z) is a convenient formal abbreviation that will rapidly become essential.
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Equivalently, according to eq. (11.19), the action of any operation r € A4 =
E*(E,o0) on z is given as
o0
re =Y (r,bi)z'  in E*(CP®) = E*[[z]] . (13.3)
i=0
Remark. Our indexing convention is taken from [32]. We warn that b; is often
written b;—1 (e.g. in [3]), as its degree suggests; the latter convention is appropriate
in the current stable context, where by = 0 (see below), but less so in the unstable
context of [9], where (our) by does become non-zero.

Since the Hopf bundle is universal, egs. (13.2) and (13.3) carry over by naturality
to the Chern class x(8) of any complex line bundle € over any space X (except that
when X is infinite-dimensional and E*(X) is not Hausdorff, the infinite series force
us to work in the completion E*(X)").

Proposition 13.4. The elements b; € E;_1)(E,0) have the following properties:
(a) bo=0 and by =1, so that b(z) = 21 + 22 Rbs + 2°Rbz + ... ;
(b) The Chern class x € E?(CP>,0), regarded as a map of spectra x: CP>® —

E, induces z.8; = b; € E.(E,0), where B; € E2(CP*) is dual to z* (as in
Lemma 5.4(c));

(¢) wsby is given by

k
Ysbe =Y B(i,k)®b;  in E.(E,0) ® E.(E,o),
i=1
where B(i,k) denotes the coefficient of z*F in b(x)?, or, in condensed notation,
Psb(z) = 32, b(x)" @ bi;
(d) esb; =0 for alli > 1, so that esb(z) = .
Proof. We prove (a) by restricting to CP! = S? and comparing with eq. (11.24).

Part (b) is an application of Prop. 11.26, using eq. (13.3). For (¢) and (d), we take
M = E*(CP*) in diags. (11.12) and evaluate on z. O

The formal group law. Now CP>* = K(Z,2)is an H-space, whose multiplication
map pu:CP® x CP*® — CP* may be defined by p*¢ = pié ® p5¢ for the Hopf
bundle &. We therefore have from eq. (5.13)
,u*arzF(:cxl,lx;c):mx1+1xx+2ai7j:cix:cj, (13.5)
%,
where F'(z,y) denotes the formal group law (5.14). When we apply p and write x
for z x 1 and y for 1 x z, we obtain from eq. (13.2) and naturality

b(F(z,y)) = Fr(b(z),b(y)) = b(x) + b(y) + Z b(@)' b(y)’ nrai,;  (13.6)

in E.(E,o)[[x,y]], which is difficult to express without using the formal notations
b(xz) and F(z,y). On the right, Fr(X,Y) is another convenient abbreviation. (In
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the language of formal groups, the series b(x) is an isomorphism between the formal
group laws F' and Fg.)

The p-local case. The above rather formidable machinery does simplify in com-
mon situations. When the ring E* is p-local, most of the b; are redundant.

Lemma 13.7. Assume that E* is p-local. Then if k is not a power of p, the element
br € E«(E,0) can be expressed in terms of E*, nrE*, and elements of the form by:.

Proof. Consider the coefficient of z'y? in eq. (13.6), where i + j = k. On the left,
there is a term (¥)by, from by(z+y)*, and all other terms involve only the lower
b’s. On the right, no b beyond b; or b; occurs. If (’;) is not divisible by p and so is
a unit in E*, we deduce an inductive reduction formula for b;. This can be done
whenever k is not a power of p, by choosing i = p™ and j = k — p™, where m
satisfies p™ < k < p™tl. O

We therefore reindex the b’s.
Definition 13.8. When E* is p-local, we define b(;) = b,: for each ¢ > 0.

We still need to use the internal details of Lemma 13.7 to express each b,
inductively in terms of the b(;), a; ;, and ngra; ;.

The main relations. In the p-local case, it is appropriate to study instead
of p the much simpler p-th power map (:CP*® — CP* constructed from g. In
cohomology, it must induce

Cz=[pll@) =pz+ Y gzt in B*(CP®) = E*[[x]] (13.9)

i>0
for suitable coefficients g; € E~%' (which are usually written a;; but we need to
avoid conflict with certain other elements also known as a; that appear in section

14). The formal power series [p](z) is known as the p-series of the formal group
law. The bundle interpretation is (*¢ = £®P, so that

2(0%P) =pa(0) + Y _ gix(0)T  in E*(Z) (13.10)
>0
for any line bundle § over any space Z. (Again, completion is not necessary for

finite-dimensional Z, or if the series [p](z) happens to be finite.)
When we apply p, we obtain

b([p)(z)) = [plr(b(@)) = pb(z) + D b(2)* nrg; in E(E,0)[lz]], (13.11)

i>0

where [p|r(X) denotes the formal power series pX + Y, (nrg;) X't'. We extract
the relations we need.

Definition 13.12. For each £ > 0, we define the kth main stable relation in
E.(E,o) as

(Ri):  L(k)=R(k) in E.(E,o), (13.13)
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where L(k) and R(k) denote the coefficient of z¥" in b([p](z)) and [p|r(b(z)) re-
spectively.

The results of section 14 will show that, despite appearances, the relations (Ry)
contain all the information of eq. (13.6), with the understanding that the latter is
used only to express (inductively) each redundant b; in terms of the bg;), E*, and
nrE*, in accordance with Lemma 13.7.

14. Examples of ring spectra for stable operations

In section 10, we developed a comonad S that, for favorable E, expresses all the
structure of stable E-cohomology operations. In section 11, we described an equiv-
alent comonad S’ in terms of structure on the algebra E.(E,o). In this section,
we give the complete description of E, (E,0) for each of our five examples, namely
E =H(F,), MU, BP, KU, and K(n). (The first splits into two, and we break out
the degenerate special case H(Q) = K (0) merely for purposes of illustration.)

All the results here are well known, but serve as a guide for [9]. Our purpose
is to exhibit the structure of the results, not to derive them. As Milnor discovered
[22] in the case E = H(F,), the most elegant and convenient formulation of stable
cohomology operations is the Second Answer of sections 10 and 12, consisting of
the multiplicative (i.e. monoidal) coaction (10.7)

px:E*(X) — E*(X)® E.(E,0)

for each space X (or on E*(X,0), for a spectrum X).

The point is that the knowledge of px on a few simple test spaces and test maps
is sufficient to suggest the complete structure of E.(E,0). The test spaces studied
so far include the point 7' in Prop. 11.22, the sphere S* in eq. (11.24), and complex
projective space CP* in eq. (13.2).

In each case, we specify (when not obvious):

(i) The coefficient ring E*;
(ii) The E*algebra E,(E,o0);
(iii) nr: E* — E.(FE,0), the right unit ring homomorphism;
(iv) ¥: E.(E,0) — E.(E,0) ® E,(E,0), the comultiplication;
(v) e E.(E,0) = E*, the counit.
(See Prop. 11.3 for E.(E,0) and ng. By construction and Lemma 12.6, 1 and ¢

are homomorphisms of E*algebras and of E*bimodules.) In most cases, the results
allow us to express the universal property of E,(FE,0) very simply.

Example: H(F;). We take E = H = H(F,), the Eilenberg-MacLane spectrum
representing ordinary cohomology with coefficients Fo. The main reference is Mil-
nor [22], and many of our formulae, diagrams and results can be found there.
The appropriate test space is RP* = K(F,,1), an H-space with multiplication
p:RP*® x RP* — RP*, and we use a mod 2 analogue of complex orientation.
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We have H*(RP*) = Fy[t], with a polynomial generator ¢ € H!(RP*), and
p*t =tx1+ 1xt is forced. By analogy with Prop. 13.4(a), we must have

pt=t®1+ Y t'®c;  in H*(RP®)& H.(H,o) = H.(H,o)[[t]]
i>1

for certain coefficients ¢; € H,(H,0). The analogue of eq. (13.6) is simply

(t+uw)®1+ ) (t+u)iee =tal+ Y tidc+udl+ ) uiec;
i>1 i>1 i>1
in H,(H,o0)[[t,u]]- Because the left side contains the terms (!)t" 7/ ® ¢;, we must

have ¢; = 0 unless ¢ is a power of 2. Imitating Defn. 13.8, we write & = ¢y €
Hyi_1(H,o) for i > 0, so that now

pt = t®1+ it?’ ®& in H*(RP®)& H,(H,o0) = H.(H,o)[[f] . (14.1)

i=1

Because H ; = RP, this formula is valid for every t € H'(X), for all spaces X. It
is reasonable to define also £, = ¢; = 1. Milnor proved that this is all there is.

Theorem 14.2 (Milnor). For the Eilenberg-MacLane ring spectrum H = H(F5):
(a) H.(H,o0) =F;[&1,82,&,. . ], a polynomial algebra over Fy on the generators
& € Hyi_1(H,o0) fori>0;
(b) In the complex orientation for H(Fz), by = & for alli >0, by =1, and
b; =0 if j is not a power of 2;
(¢) W is given by
k=1
P& =& @1+ G, ®6+10¢&  in H(H,o0)® H.(H,o0);
i=1
(d) €& =0 for all k > 0.

Proof. Milnor proved (a) in [22, App. 1]. The complexified Hopf line bundle over
RP> has Chern class t2. We compare pt? with eq. (13.2) and read off (b). (For i
not a power of 2, this is a stronger statement than Lemma 13.7 provides.) For (c)
and (d), we substitute M = H*(RP*) into diags. (11.12) and evaluate on t. a

Corollary 14.3. Let B be a discrete commutative graded Fs -algebra. Assume that
the operation 0: H*(X,0) — H*(X,0)® B is multiplicative (i.e. monoidal) and
natural on Stab*. Then ont € H(RP>,0) = H'(RP*>), 0 has the form

bt =tol+Y t*of i H'(RP®)®B = B[],
i=1

where the elements £ € B~@'=Y determine 6 uniquely for all X and may be chosen
arbitrarily.
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Proof. We combine the universal property Thm. 12.8(b) of H.(H,o0) with the
universal property of the polynomial algebra F;[{1, &2, . . .]. O

Example: H(F,) (for p odd). We take E = H = H(IF,), the Eilenberg-MacLane
spectrum that represents ordinary cohomology with coefficients F,. The main ref-
erence is still Milnor [22].

We have a complex orientation, therefore by Defn. 13.8 the elements b; €
Hy(,i—1)(H,0); b(;) is normally written & for i > 0, where § = by = 1. As in
the previous example, eq. (13.6) simplifies to show that b; = 0 whenever j is not
a power of p, so that for the Chern class z = z(f) € H?*(X) of any complex line
bundle 6 over X, eq. (13.2) reduces to

o
pxz =21+ ¥ ®&  in H*(X)® H.(H,o0) . (14.4)

i=1

We need one more test space, the infinite-dimensional lens space L = K (F,, 1),
which contains S' and is another H-space. The cohomology H*(L) = F,[z] ® A(u)
has an exterior generator v € H!(L) which restricts to u; € H'(S!). As the poly-
nomial generator z € H?(L) is the Chern class of a certain complex line bundle,
pLx is given by eq. (14.4). This leaves only pru, which must take the form

pLu = Zx’@ai + Zumi®ci
i i

for certain well-defined coefficients a;,c; € H.(H,o0). By restricting to S* C L and
comparing with eq. (11.24), we see that ¢ = 1 and ag = 0.

The multiplication g on L induces p*u = ux1+ 1xu and p*z = zx1+ 1xz.
Expansion of p*pru = prxrp*u = (pru) x1 4+ 1x (pru) yields

Z(mxl—}—lxw)i@ai—i-z:(uxl—i— Ixu)(zx1+1xz) ® ¢

K2

i
= Z(wi x1)®a; + Z(uwi x1)®c; + Z(l xr')®a; + Z(lxuwi)@)ci .
i i i i

For i > 0, there is no term with u x z* on the right, but there is on the left,
which forces ¢; = 0 for ¢ > 0. When we take coefficients of 2! x 27, we find as
in Lemma 13.7 that a; = 0 unless i is a power of p. Again we reindex, defining
T; = api € Hypi i (H, o) for all i > 0, so that now

oo
pru=u®l+>» 2’ @7  in H*(L)® H.(H,o0) . (14.5)
=0

Again, the elements &, and 7, give everything.

Theorem 14.6 (Milnor). For the Filenberg-MacLane ring spectrum H = H(F,)
with p odd:
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(a) As a commutative algebra over I,
H*(H7 O) = ]FP[§15€25€35 .. ] ® A(T037_17T27 .- ')7
with polynomial generators & = by € Hayi_1)(H,0) for i > 1 and exterior gener-
ators T; € Hypi 1 (H,0) fori > 0;
(b) ¢¥:H.(H,o0) - H.(H,0) ® H.(H,o0) is given by

k-1
P& = R+ Y &, @& + 104
=1
k=1
Y =T ®1+ Y & @7 + 197;
1=0

(c) € =0 for all k>0 and e, =0 for all k > 0.

Proof. Part (a) is Thm. 2 of Milnor [22]. Parts (b) and (c) comprise Thm. 3 [ibid.],
but also follow by substituting pr, into diags. (11.12) and evaluating on z and wu.
(Proposition 13.4 also gives ¥&, and €.) O

We have the analogue of Cor. 14.3.

Corollary 14.7. Let B be a discrete commutative graded Fy,-algebra. Assume that
the operation 6: H*(X,0) — H*(X,0) ® B is multiplicative and natural on Stab*.
Then on H*(L) = Fp[z] ® A(u), 6 has the form

oo o0 .
fr =z@l+) " ®&; Obu=uxl+) 27 o1 ;
=1 =0

where the elements £, € B~2(P'-1) gpd T] € B~CP'-1) determine 0 uniquely for all
X and may be chosen arbitrarily. 0

Example: H(Q). We take E = H = H(Q), the Eilenberg-MacLane spectrum
that represents ordinary cohomology with rational coefficients Q. There are no
interesting stable operations.

Theorem 14.8. For the FEilenberg-MacLane ring spectrum H = H(Q), we have
H*(H,O):H*(H(Q),O) =Q |

Example: MU. Our main reference is Adams [3, I1.§11]. The coefficient ring is
MU* = Z[z1,22,23,...], with polynomial generators z, in degree —2n that are
not canonical. We have complex orientation, almost by definition, and therefore
the elements b,, € MUs,, (MU, o).

The good description of M U* was given by Quillen [30, Thm. 6.5], as the universal
formal group: it is generated as a ring by the coefficients a; ; € MU* that appear
in the formal group law (5.14), subject to the relations (5.15). Hence the elements
NRra;,; determine ng.
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Theorem 14.9. For the unitary cobordism ring spectrum MU :
(a) As a commutative MU*algebra, MU, (MU,0) = MU*[ba, b3, by, ...], with
polynomial generators b; € MUy(;_1)(MU,0) fori>1;
(b) nras; € MUL(MU,o) is determined by eq. (13.6);
(¢) @ is given by
k
Ybe =be®1+ > B(i,k)®b;  in MU,(MU,0) @ MU.(MU,o),
i=2
where B(i, k) denotes the coefficient of z* in b(x)?;
(d) ebr, =0 for all k > 2.

Proof. Part (a) is standard. In (b), the coefficient of ziyJ in eq. (13.6) provides
an inductive formula for ngra; ;. Proposition 13.4 provides (c) and (d). O

As MU,.(MU,o) is a polynomial algebra, Cor. 14.3 carries over to this case.

Corollary 14.10. Let B be a discrete commutative M U*-algebra. Assume that the
operation 0: MU*(X,0) - MU*(X,0) ® B is multiplicative and natural on Stab*.
Then on x € MU?(CP>), 0 has the form

0m=m®1+2mi®b; in MU*(CP>)® B = BJ[z]],

=2

where the elements b} € B~2(=1) determine 0 uniquely for all X and may be chosen
arbitrarily. 0

In other words, there are no relations over MU* between the b;. The dual
MU*(MU,o) is known as the Landweber-Novikov algebra. The results for ¢ are no
longer amenable to explicit expression as in Thms. 14.2 and 14.6.

Example: BP. The main reference is still Adams [3, I1.§16]. The coefficient ring
is now BP* = Z(p>[v1, V2,03, ...], a polynomial algebra on Hazewinkel’s generators
v; of degree —2(p*—1) for ¢ > 0. (One could instead use Araki’s generators [5] or
any other system of polynomial generators, with only slight modifications.)

We still have complex orientation, but because BP* is p-local, we need only the
generators b(; from Defn. 13.8, where by = 1. Moreover, it is sufficient to work
with the p-series (13.9), because its coefficients g; generate BP* as a Zj)-algebra
(as we shall see in more detail in section 15). We write w; = ngv; € BP,(BP, o).

Theorem 14.11. For the Brown-Peterson ring spectrum BP:

(a) As a commutative BP*-algebra, BP.(BP,0) = BP*[b(),b),b(s), - - -], with
polynomial generators by = by € BPypi_1)(BP,0) for each i > 0;

(b) The nth main relation (R,) in eq. (13.13) provides an inductive formula for
wy, = NrYy, € BP.(BP,0);
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(¢) @ is given by

pk

Yby = buy®1+ Y_ B(i,p*)@b;  in BP.(BP,0) ® BP.(BP,o0),
=2
where B(i,p*) denotes the coefficient of ?" in b(z)! (and Lemma 13.7 is used to
express b(z) and b; in terms of the b(;) and BP*);
(d) eby =0 for all k > 0. a
We shall find that the generators b(;) are better suited to [9] than Quillen’s original

generators t;, or their conjugates h;, which were used in [8]. We have the analogue
of Cor. 14.10.

Corollary 14.12. Let B be a discrete commutative BP*-algebra. Assume the oper-
ation §: BP*(X,0) — BP*(X,0) ® B is multiplicative and natural on Stab*. Then
on x € BP2(CP*>), 0 has the form

oo
0z =z®1+ Y 2'®b,  in BP*(CP™)®B = B[[x]]
i=2
for certain elements b} € B~2(=1) " The elements b’(i) = b;,- for i > 1 determine 6

uniquely for all X and may be chosen arbitrarily. 0

Example: KU. We take F = KU = K, the complex Bott spectrum, which we
constructed in sections 3 and 9. Its coefficient ring is the ring Z[u,u™"] of Laurent
polynomials in u € KU 2, and one writes v = ngu. The complex orientation (5.2)
furnishes elements b; € KU,(KU,o0), of which by = 1. We computed its formal
group law F(z,y) = z + y + uzy in eq. (5.16); thus eq. (13.6) reduces to

b(z +y + uzy) = b(x) + b(y) + b(x)b(y)v . (14.13)
This is small enough for explicit calculation. The coefficient of zy® yields the rela-
tion

(7;+1)bi+1 + dub; = b;v (1414)
since on the left,

bj(z +y+uzy) = by’ + by’ 'x(l+uy)  mod 2? .
(Compare [3, Lemma I1.13.5].) This includes the special case 2by +u = v for i = 1.
Generally, for i > 1 and j > 1, the coefficient of ziy’ yields the relation

min(id) N [
i+j— i _
bibj = Z ( JZ ) (k) uka_j,kv 1, (14.15)
k=0

which serves to reduce any product of b’s to a linear expression. Thus the general
expression c¢ in our generators may be assumed linear in the b’s. Further, for large
enough m, cv™ will have no negative powers of v; if we use eq. (14.14) to remove
all the positive powers of v, ¢ takes the form

c=uI(Mu™t + dou"2by + Asu"3bs + ...+ AuT by v (14.16)
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for some integers A;, n, and g. This suggests part (a) of the following.

Lemma 14.17. In KU,.(KU,o0):
(a) Every element can be written in the form (14.16);
(b) The element c in eq. (14.16) is zero if and only if A; = 0 for all 4.

This, with eq. (14.14), is a complete description of KU, (KU, o). We shall give a
proof in [9].
Theorem 14.18. For the complex Bott spectrum KU :
(a) As a commutative algebra over KU* = Zlu,u '], KU.(KU,o0) has the
generators:
v =ngru € KUs(KU,o0);
v =nru~! € KU_»(KU,o);
b; € KUQZ;Q(KU,O) fO’f"i >1;
subject to the relations (14.14) and (14.15);
(b) As a KU*module, KU,(KU,o) is spanned by the monomials v™ and b;v™,
for alli > 1 and n € Z, subject to the relations (14.14) (multiplied by any v™);
(¢) 9 is given by

k
b = ol + S B, k@b in KUL(KU,0) ® KU.(KU,o),
i—2
where B(i, k) denotes the coefficient of z* in b(x)?;
(d) € is given by eb; =0 for all i > 1.

Proof. Parts (a) and (b) follow from Lemma 14.17. Parts (c) and (d) are included
in Prop. 13.4. O

Although we no longer have a polynomial algebra, we still have part of Cor. 14.10.

Corollary 14.19. Let B be a discrete commutative KU*-algebra. Then any opera-
tion §: KU*(X,0) — KU*(X,0) ® B that is multiplicative and natural on Stab* is
uniquely determined by its values on KU*(CP*). O

The module KU, (KU,o0). What makes the description (14.16) unsatisfactory is
that m is not unique; we can always increase m and use eq. (14.14) to remove the
extra v’s to obtain another expression of the same form that looks quite different.
For example, (b3 + ub2)/2 = (2bs + 3ubs + u?by)v—! € KU,(KU,o), in spite of
the denominator 2. It is notoriously difficult to write down stable operations in
KU*(-) (equivalently, linear functionals KU,(KU,0) — KU*) other than ¥! = id
and U1[¢] = [£] (the complex conjugate bundle). Following Adams [3], we develop
an alternate description from which the freeness of KU, (KU, o0) will follow easily.

First, we note that Lemma 14.17 implies that KU,(KU, o) has no torsion, which
allows us to work rationally and consider

KU*[v,v™"] C KU.(KU,0) C KU*[v,07"]2 Q.
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The key idea is that if we localize at a prime p, we have available (algebraically)
the Adams operation ¥* for any invertible k € Z ;). Rationally, we have ¥* for all
nonzero k € Q. It is characterized by the properties that it is additive, multiplica-
tive, and satisfies U*[¢] = [§®*] = [4]* for any line bundle .

To compute ¥y, we rewrite eq. (3.32) as uus = [(]—1 and apply ¥*. As stability
requires ¥*uy = uy, and u3 = 0, we find

(T*u)uy = [€]F — 1 = (1 + wug)® — 1 = kuus,
Hence ¥*u = ku. Then eq. (11.23) becomes
(T* v) = TFy = ku . (14.20)

The linear functional (¥* —): KU.(KU,0) - KU* ® Q is multiplicative because
Tk is, as can be seen by expanding ¥¥(1xt) by eq. (12.4). (These are precisely the
multiplicative linear functionals.)

We apply (¥*, —) to eq. (14.14) to obtain, by induction starting from b; = 1,

(T* b,) = k1 (S) u™ (14.21)

Alternatively, for any n > 1 we can write formally

(v—u)(v—2u)...(v—(n—1)u)
n!

b, = € KU*v,v™'|®Q (14.22)

and replace v by ku everywhere.

Lemma 14.23. An element ¢ € KU*[v,v™'] ® Q lies in KU,(KU, o) if and only
if (UF c) € KU* ® Z(py for all primes p and integers k > 0 such that p does not
divide k.

From this we deduce the freeness of KU,(KU, o).

Proof of Lemma 9.21 for E = KU. Denote by Fy,, the free KU*module
with basis {v™,v™+1, ... v"}. It is enough to show that for any m, KU.(KU,o0)N
(F_m,m ® Q) is a free KU*-module; then any basis extends to a basis of
KU(KU,0)N(F_m-1,m+1 ®Q), and thence by induction to a basis of KU.(KU, o).
We may multiply by v™ and work with Fp 2y, instead.

We therefore work in degree zero and take any element

c= X +Mw+ )\2'11)2 +...+ )\n,1'w"71 (1424)

in KUo(KU,0)N(Fyn—1®Q), where each \; € Q and we write w = u~'v. We have
only to find a common denominator A that guarantees A\; € Z for all 4.

Given any prime p, we choose n distinct positive integers ki, ks, ...k,, not
divisible by p; then by eq. (14.20),

n—1

<lI’kj,C) = Z)\,k; S Z(p) .

=0
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We solve these n linear equations for the \; in terms of the (¥*i, ¢), which requires
division by the Vandermonde determinant

A(p) =det(k;™) = ][ (ki—kj).

1<j<ign

Then A(p)A; € Z(y) for all i. If p > n, the obvious choices k; = j yield A; € Z (),
because then p does not divide A(p). We take A =[], A(p). O

Before we establish Lemma 14.23, we need a result [3, Lemma II.13.8] which
explains the role of the b’s.

Lemma 14.25. Let ¢ be an element of KU*[v,v™!] ® Q. Then c is a KU*-linear
combination of the elements 1, v = byv, byv, bsv,... if and only if (¥* c) € KU*
for all integers k > 0 .

Proof. Necessity is clear from eq. (14.21). We may reduce sufficiency to the case
when ¢ has degree 0 and write ¢ as a Laurent series in w = u~!v. By taking k very
large, it is clear that ¢ has no negative powers of w; this allows us to write (see
eq. (14.22))

=0

=1

for some n and suitable coefficients \; € Q. By eq. (14.21), (¥*,c) = 37 (X (4).

By induction on k from 1 to n + 1, (¥* ¢) € Z yields A\, = (—1)¥\¢ mod Z. But
An+1 = 0. Therefore A\g € Z, and A; € Z for all 4. O

Proof of Lemma 14.23. Again, necessity is clear. For sufficiency, we assume
given c¢ in the form eq. (14.24). Let m be the maximum exponent of any prime in
the denominators of the A;, so that p™\; € Z;) for all ¢ and all primes p. Then
p™(¥*, ¢) € Z(y, for all integers k > 0 and all primes p.

If p does not divide k, we have (¥F,cw™) = k™(¥*, ¢) € Z, by hypothesis.
If k = pg, we have instead k™ (¥, ¢) = ¢™p™(¥*,c) € Z(,), by our choice of m.
Thus for each k > 0, (¥%,cw™) € (), Z,) = Z. Then Lemma 14.25 shows that
cw™ € KU(KU,o). O

Example K(n). The coefficient ring is now the p-local ring K (n)* = F,[v,, v '],
still with deg(v,) = —2(p"—1), where p is odd. We write w,, = ngv,, as we did for
BP. We have a complex orientation, and therefore elements b(; for i > 0, where
by = 1. Although the formal group law remains complicated, it is well known [32,
Thm. 3.11(b)] that over F,, the p-series (13.9) reduces to exactly

C*x = vpa? in K (n)*[[z]], (14.26)

so that eq. (13.11) simplifies drastically to b(vn:cpn) = b(x)P" w,,. The coefficient of
zP" yields wy, = vy, and the coefficient of 2" then yields

oy = vh b in K (n),(K(n),o). (14.27)
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Lemma 14.28. Assume that k is not a power of p. Then:
(a) bg € K(n)ar—2(K(n),0) can be expressed in terms of v, and the b;);
(b) by =01if k<p".

Proof. Part (a) comes from Lemma 13.7. For (b), we trivially have a;; = 0
whenever ¢ + j < p"; in this range, eq. (13.6) behaves exactly as in Thm. 14.6 for
H(F,). a

We need one more test space. The infinite lens space L is not appropriate, as
K(n)*(L) = K(n)*[z : 2" = 0], where z is inherited from CP*. (Because (
is trivial on L, we must have zP" = 0, which makes the structure of the Atiyah-
Hirzebruch spectral sequence clear.) Instead, we use the finite skeleton Y = L?" 1,
the orbit space of the unit sphere in C*" under the action of the group Z/p C
S C C. The spectral sequence for K (n)*(Y,0) collapses because it can support no
differential, to give K (n)*(Y) = A(u) ® K(n)*[z : 2*" = 0], where u € K (n)*(Y)
restricts to u; € K(n)!(S'). (This fails to define u uniquely, because we can replace
u by u' = u + hv,ua?” ! for any h € F,.)

We know pyz is given by eq. (13.2). We write

p"—1 p"—1

PYU = Z r'®a; + Z ur'®c;, (14.29)
i=0 =0

which defines elements a;, ¢; € K(n)«(K(n),0). (They are independent of the choice
of u.) By restriction to S* C Y, we see that ag = 0 and ¢y = 1.

Unfortunately, Y is no longer an H-space. The multiplication on L restricts (after
a non-canonical deformation) to a partial multiplication on skeletons p: L2*+1 x
L*m - [2ktm)+l — Y whenever k +m = p" — 1. Clearly, K (n)*(L?*t!) =
A(u) ® K(n)*[z : ¥+ = 0], with the coaction p obtained from py by truncation;
and similarly for K(n)*(L?™), except that uz™ = 0 also.

As z is inherited from L, we have p*x = xx 1+ 1xz, for lack of any other possible
terms in degree 2. For u, we must have

k

wru=ux1l+1xu+ dvuz”xz™

for some A € F,. (The third term disappears if we replace u by u+ (=1)FAvuz?” 1,

but in any case is harmless.) We apply p to u, bearing in mind that w,, = v,, and
carry out exactly the same algebra as for E = H(F,); the coefficients of u x z and
z' x 27 show that ¢; = 0 for all j > 0 and that ap = 0 for h not a power of p. We
therefore reindex, as usual.

Definition 14.30. We define a(;y = api € K(n)gpi 1 (K(n),0), for 0 < i < n.
There is no a(,) because u does not lift to the next skeleton L?P"+1 In the new
notation, eq. (14.29) becomes

n—1

pyu =u®l+ Z z?' Ras in K(n)*(Y) ® K(n)«(K(n),0). (14.31)
=0

Having odd degree, the a(;) satisfy a%z.) =0.
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Theorem 14.32 (Yagita). For the Morava K-theory ring spectrum K(n):
(a) The commutative K (n)*algebra K(n)«(K(n),o0) has the generators:
agy € K(n)api —1(K(n),0), for 0 <i <n;
by € K(n)a(pi—1)(K(n),0), fori>0;
subject to the relations (14.27);
(b) ngr is given by nrv, = w, = v, € K(n).(K(n),o0);
(c) ) is given by:

k—1

Yapgy = ap) @1+ Z b’(’;_i)®a(z~) + 1®a) for 0 < k < m;
=0
p*-1

Py = by ®1 + Z B(i,p")®b; + 1®by) for k > 0;
=2

where B(i,p*) denotes the coefficient of z?" in b(z)! (and we use Lemma 14.28 to
express b(z) and b; in terms of the b(;) and v,);

(d) eay =0 for 0 <k <n and ebyy =0 for k > 0.

Proof. The whole theorem is essentially due to Yagita [39], who used different
generators. We proved (b) above. For (c) and (d), we substitute py in diags. (11.12)
as usual and evaluate on u and z. O

Corollary 14.33. Let B be a discrete commutative K (n)*-algebra. Then any oper-
ation 6: K(n)*(X,0) = K(n)*(X,0) ® B that is multiplicative and natural on Stab™
is uniquely determined by its values on K(n)*(CP*®) and K (n)*(Y). 0

Remark. For low k, the formula for ¢b(; simplifies by Lemma 14.28(b) to

k-1
Yby = by ® 1+ Y Wy, @by +1@byy  for 0<k<n.

i=1

15. Stable BP-cohomology comodules

In this section we study stable modules in the case E = BP in more detail. We find it
more practical to work with stable comodules, which by Thm. 11.13 are equivalent.
This is the context in which Landweber showed [17, 18] that the presence of a stable
comodule structure on M imposes severe constraints on its BP*module structure.
We recall that BP* = Z,)[v1,v2,v3,...], a polynomial ring on the Hazewinkel
generators v, of degree —2(p™—1) (see [14]). It contains the well-known ideals

I, = (p,v1,va,...,v,_1) C BP* (15.1)

for 0 < n < oo (with the convention that I, = (p,vi,v2,...), I1 = (p), and
Iy = 0.). We show in Lemma 15.8 that they are invariant under the action of



Section 15 Stable cohomology operations 89

the stable operations on BP*(T) = BP*. Indeed, Landweber [17] and Morava [27]
showed that the I, for 0 < n < oo are the only finitely generated invariant prime
ideals in BP*.

Nakayama’s Lemma. The fact that BP* is a local ring with maximal ideal I,
is extremely useful. The advantage is that once we know certain modules are free,
many questions can be answered by working over the more convenient quotient field
BP* /Iy, = TF,. We say a BP*module M is of finite type if it is bounded above and
each M* is a finitely generated Z,)-module. (Remember that deg(v;) is negative.)

Lemma 15.2. Assume that f: M — N is a homomorphism of BP*-modules of
finite type, with N free. Then:

(a) f is an isomorphism if and only if f @Fp: M @F, — N QTF, is an isomor-
phism;

(b) f is a split monomorphism of BP*modules if and only if f ® F, is monic;
(¢) If the conditions in (b) hold, both M and Coker f are BP* free;
(d) f is epic if and only if f @ F, is epic (even if N is not free).

Proof. The “only if” statements are obvious. For the “if” statements, we first
consider f/p: M/pM — N/pN. We filter M /pM and N/pN by powers of the ideal
(v1,v2,v3,...), so that for the associated graded groups, Gr(f/p): Gr(M/pM) —
Gr(N/pN) is a module homomorphism over the bigraded ring Gr(BP*/(p)) =
Fp[v1,v2,vs,...], with Gr(N/pN) free. As M and N are bounded above, these
filtrations are finite in each degree. It follows that if f ® F, is epic (or monic), so is
f/p.

Then the standard Nakayama’s Lemma, applied to Z,)-modules in each degree,
gives (d). If f/p is monic and N is free, we must have Ker f C p"M for all n; as M
is of finite type, f must be monic, which gives (a) and some of (b). To see that in
(¢), M must be free, we lift a basis of M ® F, to M and use the liftings to define
a homomorphism of BP*modules g: L — M, with L free, that makes g ® F, an
isomorphism. Then fo g is monic by what we have proved so far, and g is epic by
(d); therefore g must be an isomorphism.

To finish (b) and (c), we choose an F,-basis of Coker(f ® F,), lift it to N, and
use it to define a homomorphism h: K — N of BP*modules with K free. We use f
and h to define M @ K — N, which by (a) is an isomorphism and identifies Coker f
with K. 0

The main relations. We need to make the structure of BP,(BP,0) more explicit
than in Thm. 14.11. The first few terms of the formal group law for BP in terms
of the Hazewinkel generators are easily found:

F(z,y) =z +y—vizPly mod (27, y?). (15.3)
Also, the p-series for BP begins with
[p](z) = pr + (1—pP 2P + ... . (15.4)
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All we need to know about [p](z) beyond this is the standard fact (e.g. [32,
Thm. 3.11(b)]) that

[p](z) = px + Zviw’]i mod I2 . (15.5)
i>0

For lack of alternative, b; = 0 whenever i—1 is not a multiple of p—1, so that

b(x) = x+b)2? +. .. . The first main relation is well known and readily computed
from Defn. 13.12, with the help of eq. (15.4), as
(Ra) : v1 = pb(1) + w1 , (15.6)

or more easily, as the coefficient of P~y in eq. (13.6), expanded using eq. (15.3).
Subsequent relations (Rj) are far more complicated and answers in closed form
are not to be expected. To handle the right side R(k), we introduce the ideal
W = (p,w1,ws,...) C BP,(BP,o), the analogue of I, for the right BP*action.
The right side of eq. (13.11) simplifies by eq. (15.5) to

pb(z) + Z b(m)pi w; mod 25°.

When we expand b(m)”i, all cross terms may be ignored, because they contain a
factor p € 20, and we find

k-1
R(k) = pbgy + Zl b pwi+w,  mod 27, (15.7)

With slightly more attention to detail, we obtain a sharper, more useful result.
It also implies that 20 = I, BP,(BP,0), so that 20 is redundant.

Lemma 15.8. For any n > 0, we have w,, = v, mod I,, BP,(BP,0).

Proof. We show by induction on n that the relation (R,) simplifies as stated,
starting from eq. (15.6) for n = 1. If the result holds for all i < n, we have w; =
v; = 0 mod I, for i < n. Then R(n) = wy, from eq. (15.7), as 20? contains nothing
of interest in this degree. Meanwhile, the left side L(n) = v, by eq. (15.5). O

Recall from Defn. 10.13 and Thm. 11.13 that an ideal J C BP* is invariant if it
is a stable subcomodule of BP* = BP*(T'); in view of Prop. 11.22(b), the necessary
and sufficient condition for this is ngJ C JBP,(BP,0). In this case, we have the
quotient stable comodule BP*/J. For example, Lemma 15.8 shows that the ideals
I, are invariant, and we have the stable comodules BP*/I,, 22 F,[vp, Unt1, Unt2, - - -]
(for n > 0) and BP*/I, = BP*.

Primitive elements. The key idea is to explore a general stable comodule M by
looking for comodule morphisms BP* — M from the (relatively) well understood
stable comodule BP*(T) = BP*. A BP*module homomorphism f: BP* — M is
obviously uniquely determined by the element z = f1 € M, since fv = f(vl) =
vfl = vz, and we can choose x arbitrarily. In BP*, we clearly have pl = 1® 1,
which suggests the following definition.
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Definition 15.9. Given a stable comodule M, we call an element x € M stably
primitive if pyxr =2 ® 1.

This is the necessary and sufficient condition for the above homomorphism
f: BP* = M to be a stable morphism. It then induces an isomorphism of stable co-
modules BP*/ Ker f = (BP*)z. In particular, Ker f = Ann(z), the annihilator ideal
of z, must be an invariant ideal. We are therefore interested in finding primitives.

The primitive elements of M* clearly form a subgroup. Moreover, there is a good
supply of primitives; if M is bounded above, axiom (11.12)(ii) forces every element
x € M of top degree to be primitive. (This may be viewed as an algebraic analogue
of Hopf’s theorem, that for a finite-dimensional space X, 7%(X) = H*(X;7Z) in the
top degree.) If z is primitive, the BP*linearity of pps gives par(vz) = z @ ngv for
any v € BP*. It follows that the comodule structure on BP*/J is unique if the ideal
J is invariant (and none exists otherwise). Landweber [17] located all the primitive
elements in the stable comodule BP*/I,,.

Theorem 15.10 (Landweber). For 0 < n < oo, the only nonzero primitive ele-
ments in the stable comodule BP*/I, are those of the form:
(i) Mvi, wherei >0 and X € F, (if n > 0); or
(ii) A, where X € Z(y,) (if n =0).
It follows easily as in [17, Thm. 2.7] that the I,, are the only finitely generated
invariant prime ideals in BP*. This suggests that the BP*/I,, should be the basic

building blocks for a general stable comodule. This is the content of Landweber’s
filtration theorem (cf. [17, Lemma 3.3] and [18, Thm. 3.3]).

Theorem 15.11. (Landweber) Let M be a stable BP-cohomology (co)module that
is finitely presented as a BP*-module (e. g. BP*(X) for any finite complex X ). Then
M admits a finite filtration by invariant submodules

O0=MycCcM,CM,...CM,, =M,

in which each quotient M;/M; 1 is generated, as a BP*-module, by a single element
x; such that Ann(z;) = I, for some n; > 0.

We outline Landweber’s proof [18] for reference. For nonzero M, Ass(M), which
here may be taken as the set of all prime annihilator ideals of elements of M, is a
finite non-empty set of invariant finitely generated prime ideals of BP*. The recipe
for constructing a filtration of M is:

(a) Let I,, be the maximal element of Ass(M);

(b) Construct the BP*submodule N = 0:1,, of M, which is defined as {y €
M : I,y = 0}, and prove it invariant;

(¢) Take a nonzero primitive z; € N (e.g. any element of top degree), so that
the maximality of I, forces Ann(zy) = I,;

(d) Put M; = (BP*)x1, so that M; is invariant and isomorphic to BP*/I,;

(e) Replace M by M /M; and repeat, as long as M is nonzero, making sure
that the process terminates (which requires some care).
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Remarks. 1. The filtration of M is never a composition series. The module BP*/I,,
is not irreducible, because we have the short exact sequence

0 — BP*/I,, —— BP*/I, — BP*[I,4;1 — 0

of stable comodules. Thus we have no uniqueness statement.
2. We cannot expect to arrange nq > ng > ..., since in (e), Ass(M/M;) need not

be contained in Ass(M).

Index of symbols

This index lists most symbols in roughly alphabetical order (English, then Greek),
with brief descriptions and references. Several symbols have multiple roles.

A augmentation ideal in algebra A.

A etc. generic category.

A°P  dual category of A, §6.

A = E*(E, o), Steenrod algebra for
E, §10.

Ab, Ab* category of (graded) abelian
groups, §6.

Alg category of E*algebras, §6.

ag;) stable element for K (n), (14.31).

a;; coeflicient in formal group law,
(5.14).

BG  classifying space of group G.

B(i,k) coefficient in b(z)¢, Prop. 13.4.

BP Brown-Peterson spectrum, §2.

b  Bott map, Cor. 5.12.

b; stable element, Prop. 13.4.

b accelerated b;, Defn. 13.8.

b(z) formal power series, (13.2).

C cofree functor, Thm. 8.10.

C the field of complex numbers.

CP™, CP* complex projective space.

Coalg category of E*coalgebras, §6.

¢;(€) Chern class of vector bundle &,
Thm. 5.7.

DM  dual of E*module M, Defn. 4.8.

d  duality homomorphism, (4.5),
(9.24).

E  generic ring spectrum.

E*  coefficient ring of E-(co)homology,
§§3, 4.

E*(—=) E-cohomology, Thm. 3.17.

E*(—)" completed E-cohomology,
Defn. 4.11.

E.(-) E-homology, (9.17).

E, nth space of Q-spectrum FE,
Thm. 3.17.

e evaluation on DL ® L, §6.

e; basis element of C".

F free functor, Thms. 2.6, 8.5.

F(z,y) formal group law, (5.14).

F*M generic filtration submodule,

Defn. 3.36.

category of filtered E*algebras,

§6.

FLDM filtration submodule of DM,
Defn. 4.8.

Fyr ete.  corepresented functor, §8.

FMod, FMod* (graded) category of
filtered E*modules, §6.

F, field with p elements.

Fr(X,Y) right formal group law,
(13.6).

F*E*(X) skeleton filtration, (3.33).

f etc. generic map or homomorphism.

f*, f+ homomorphism induced by
map f, (6.3).

fn structure map of spectrum E,
Defn. 3.19.

G etc. generic group (object), §7.

G  E-module spectrum, Thm. 9.26.

Gp(C) category of group objects in C,
87.

FAlg
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gi coefficient in p-series, (13.9).

H generic comonad, (8.6).

H, H(R) Eilenberg-MacLane
spectrum, §§2, 14.

Ho, Ho' homotopy category of (based)
spaces, §6.

h(=) generic ungraded cohomology
theory, §3.

h  Yokota clutching function, (5.9).

I  identity functor.

I, I ideal in BP*, (15.1).

i1, t2 injection in coproduct, §2.

id identity morphism.

K¢ unit object in (symmetric)
monoidal category C, §7.

K(n) Morava K-theory, §2.

KU complex K-theory Bott
spectrum, §2, Defn. 3.30.

L infinite lens space, §14.

M etc. generic (filtered) module or
algebra.

M~ M completion of filtered M,
Defn. 3.37.

Mod, Mod* (graded) category of
E*modules, §6.

MU unitary Thom spectrum, §2.

o  generic basepoint, point spectrum.

—°P  categorical dual, §6.

PA the primitives in coalgebra A,
(6.13).

p fixed prime number.

p1, p2  projection from product, §2.
[p](z) p-series, (13.9).
[plr(z) right p-series, (13.11).

QA the indecomposables of algebra A,
(6.10).

Q the field of rational numbers.

q¢ map to one-point space T, §2.

R generic ring.

R-Mod category of R-modules, §8.

RP° real projective space.
r etc. generic cohomology operation.
(r,—) FE*linear functional defined by

operation r, (11.1).
S stable comonad, Thm. 10.12.
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S'  stable comonad, (11.4).

—s (subscript) stable context.

S unit circle, as space or group.

S™ unit n-sphere.

Stab, Stab* (graded) stable homotopy
category, $6.

Set category of sets, §6.

Set?  category of graded sets, §7.

T monad, (8.4).

T the one-point space.

T+ 0-sphere, T with basepoint added.

T(n) torus group.

t € H'(RP*>), generator of
H*(RP>), (14.1).

U,U(n) unitary group.

—u (subscript) unstable context.

u € KU™2, after Defn. 3.30.

u € E'(L), exterior generator of
E*(L), section 14.

u € E'(Y), exterior generator of
E*(Y), section 14.

uw  universal element of DL ® L,
Lemma 6.16.

u; canonical generator of E*(S!),
Defn. 3.23.

un, canonical generator of E*(S™), §3.

V' generic (often forgetful) functor.

v generic element of E*.

v =ngru € KUs(KU,o0), Thm. 14.18.

vy, Hazewinkel generator of BP*,
K(n)*, §14.

W forgetful functor, §8.
2 ideal in BP,(BP,o0), §15.
w =u"tve KUy(KU,o),
Lemma 14.23.
Wy, = 1RYn, §14.
X etc. generic space or spectrum.
XT space X with basepoint adjoined.

x  generic cohomology class or
module element.
z € E*(CP*), Chern class of Hopf
line bundle, Lemma 5.4.
Chern class of line bundle 6,
Defn. 5.1.
Y skeleton of lens space L, §14.

z(0)
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Z  the ring of integers.

Z/p the group of integers mod p.

Z(py Zlocalized at p.

zr morphism for a (symmetric)
monoidal functor F, §7.

a etc. generic index.

a  generic algebraic operation, §7.

B; € E5;(CP™), Lemma 5.3.

vi € E2i+1 (U(n)), Lemma 5.11.

A: X - X x X diagonal map.

€  generic counit morphism.

e: F'V — I natural transformation, §2.

¢ pth power map on CP*, (13.9).

(r pairing for (symmetric) monoidal
functor F, §7.

n  generic monoid unit morphism.

n:I — VF natural transformation, §2.

n  generic vector bundle.

nr right unit, Defn. 11.2.

6  generic anything.

6  complex line bundle, §5.

0  cohomology operation (usually

idempotent), §3.

€ h(H), universal class, Thm. 3.6.

v € E°(E,o0), universal class, §9.

tn, € E™(E,), universal class,
Thm. 3.17.

A(—) exterior algebra.

A generic action.

A numerical coefficient.

~
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p addition or multiplication in
generic group object, §7.

v  inversion morphism in generic
group object, §7.

¢ Hopf line bundle over CP™.

¢  generic line or vector bundle.

& stable element for H(Fy), (14.1).

&  stable element for H(F,), (14.4).

&v action of v on E*module, (7.4).

m+(X) homotopy groups of space X.
72(X,0) stable homotopy groups of
X.

p  generic coaction.

pym  coaction on module M.

px coaction on E*(X) or E*(X)".

¥, ¥ suspension isomorphism, (3.13),
Defn. 6.6.

Y X, ¥*X suspension of space X.

YM, X*M suspension of module M,
Defn. 6.6.

orp:E, — E stabilization, Defn. 9.3.

7; stable element for H(F,), (14.5).

¢  generic monoid multiplication.

X canonical antiautomorphism of
Hopf algebra.

Uk Adams operation, (14.20).

1 generic comultiplication.

QX loop space on based space X.

w  zero morphism of generic group
object, §7.
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