
Practice Final Exam Solutions, Linear Algebra (110.201), Spring, 2021, W. Stephen Wilson

Name :

TA Name and section:

Open book.

You can print out the exam and work it and then upload it, or you can work on your own paper
and upload it. Just be very clear about what you are doing if you go that way. You must show
your work.

1. (2 points) Let

C =


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 .

Solve CX = 0.

Not much computation is necessary to put this in reduced row echelon form. just subtract row one
from row 4 and row 2 from row 3.

rref(C) =


1 0 0 1
0 1 1 0
0 0 0 0
0 0 0 0

 .

So we can read off x1 = −x4 and x2 = −x3. So


x1
x2
x3
x4

 = s


1
0
0
−1

+ t


0
1
−1
0


But, as usual, it is wise to check it.
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
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1




1
0
0
−1

 =


0
0
0
0


and


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1




0
1
−1
0

 =


0
0
0
0



2. (2 points) Find an orthonormal basis for the kernel of C : R4 −→ R4.

We have, from problem 1, a basis for the kernel. The basis elements are perpendicular without any
need to compute. All we have to do is divide by the length, which is easily seen to be

√
2 in both

cases. So, the answer is:





1√
2

0

0

−1√
2


,



0

1√
2

−1√
2

0




The misfortune here is that there are an infinite number of different possible orthonormal bases for
the kernel. These are the most obvious ones. The most likely variations are to change a sign on a
vector or switch the two vectors. That makes for 8 possibilities right there.

3. (2 points) Let

B =


−1 0 0 1

0 −1 1 0
0 1 −1 0
1 0 0 −1

 .

Solve BX = 0.



3

We can just read off rref(B), all we have to do is add the first row to the last and the second to
the third and then multiply first and second by -1.

rref(B) =


1 0 0 −1
0 1 −1 0
0 0 0 0
0 0 0 0

 .

From this we can read off the solution


x1
x2
x3
x4

 = s


1
0
0
1

+ t


0
1
1
0


And, of course, we really do have to check this. If we don’t, that will be the time we make a mistake.


−1 0 0 1

0 −1 1 0
0 1 −1 0
1 0 0 −1




1
0
0
1

 =


0
0
0
0


and


−1 0 0 1

0 −1 1 0
0 1 −1 0
1 0 0 −1




0
1
1
0

 =


0
0
0
0



4. (2 points) Find an orthonormal basis for the kernel of B : R4 −→ R4.

We have, from problem 3, a basis for the kernel. The basis elements are perpendicular without any
need to compute. All we have to do is divide by the length, which is easily seen to be

√
2 in both

cases. So, the answer is:
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



1√
2

0

0

1√
2


,



0

1√
2

1√
2

0





5. (2 points) Find the characteristic polynomial for the matrix C of problem 1, i.e. the determinant
of C − λI.

We need the determinant of


1− λ 0 0 1

0 1− λ 1 0
0 1 1− λ 0
1 0 0 1− λ

 .

Without changing the determinant, we can take (1− λ) times the fourth row and subtract if from
the first. Likewise, we can do this with the 3rd and 2nd rows, to get:


0 0 0 1− (1− λ)2

0 0 1− (1− λ)2 0
0 1 1− λ 0
1 0 0 1− λ

 .

We can now switch rows 1 and 4 and also 2 and 3. Each changes the sign once, so there is no change
with the determinant to get


1 0 0 1− λ
0 1 1− λ 0
0 0 1− (1− λ)2 0
0 0 0 1− (1− λ)2

 .

This is an upper triangular matrix so the determinant is just the product of the diagonal terms

[1− (1− λ)2]2 = [1− (1− 2λ+ λ2)]2 = [2λ− λ2]2 = λ4 − 4λ3 + 4λ2 = λ2(λ− 2)2

6. (2 points) With multiplicity, find the 4 eigenvalues for C, and write them λ1 ≥ λ2 ≥ λ3 ≥ λ4.
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We can just read this off from problem 5.

2 ≥ 2 ≥ 0 ≥ 0

7. (2 points) For each λi in the previous problem, find an eigenvector. Write them in the same
order as the λi in such a way that the eigenvectors you find form an orthonormal basis for R4.

The matrix B of problem 3 is the matrix for computing the eigenvectors for the eigenvalue 2.
Problem 4 gives an orthonormal basis for the eigenspace for 2. Similarly, the matrix C of problems
1 and 2 gives the orthonormal basis for the eigenvalue 0. We can just write down the answer here
from these results.

for 2 we have





1√
2

0

0

1√
2


,



0

1√
2

1√
2

0




for 0 we have





1√
2

0

0

−1√
2


,



0

1√
2

−1√
2

0





8. (4 points) Find an orthogonal matrix S such that STCS is


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 .

All we have to do here is combine the vectors in the previous problem to make the columns of S, so
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S =



1√
2

0 1√
2

0

0 1√
2

0 1√
2

0 1√
2

0 −1√
2

1√
2

0 −1√
2

0


It is only fair that we check this result since we can.

STCS =



1√
2

0 0 1√
2

0 1√
2

1√
2

0

1√
2

0 0 −1√
2

0 1√
2
−1√
2

0





1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1





1√
2

0 1√
2

0

0 1√
2

0 1√
2

0 1√
2

0 −1√
2

1√
2

0 −1√
2

0


=



1√
2

0 0 1√
2

0 1√
2

1√
2

0

1√
2

0 0 −1√
2

0 1√
2
−1√
2

0





2√
2

0 0 0

0 2√
2

0 0

0 2√
2

0 0

2√
2

0 0 0


=



2 0 0 0

0 2 0 0

0 0 0 0

0 0 0 0



9. (2 points) Let

A =

(
1 0 0 1
0 1 1 0

)
.

Find the singular values for A : R4 −→ R2, and write them σ1 ≥ σ2 ≥ σ3 ≥ σ4 ≥ 0

To compute the singular values, we find the eigenvalues of ATA, which is


1 0
0 1
0 1
1 0

( 1 0 0 1
0 1 1 0

)
=


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 .
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This is our matrix C and we already know the eigenvalues: 2,2,0,0. So, our singular values are the
square roots:

√
2 ≥
√

2 ≥ 0 ≥ 0 ≥ 0

10. (6 points) Find an orthonormal basis for R4, {u1, u2, u3, u4} and an orthonormal basis for R2,
{w1, w2}, such that Au1 = σ1w1, Au2 = σ2w2, and u3 and u4 are in the kernel, i.e. Au3 = 0 = Au4.

In problem 7 we already found the ui, they are the eigenvectors for C.

{u1, u2, u3, u4} =





1√
2

0

0

1√
2


,



0

1√
2

1√
2

0


,



1√
2

0

0

−1√
2


,



0

1√
2

−1√
2

0




We compute

Au1 =

(
1 0 0 1
0 1 1 0

)


1√
2

0

0

1√
2


=

 2√
2

0

 =
√

2

 1

0

 =
√

2w1 = σ1w1

We compute

Au2 =

(
1 0 0 1
0 1 1 0

)


0

1√
2

1√
2

0


=

 0

2√
2

 =
√

2

 0

1

 =
√

2w2 = σ2w2

So we see that
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{w1, w2} =

{(
1
0

)
,

(
0
1

)}

11. (6 points) Find orthogonal matrices U and V and a matrix Σ so that A = UΣV T as in the
singular value decomposition theorem. Write your answer out as the product, UΣV T .

The matrix V is just the matrix S we computed in problem 8, so we need to take its transpose. U
is just the identity made from the wi just found in the previous problem. Thus:

 1 0 0 1

0 1 1 0

 =

 1 0

0 1

 √2 0 0 0

0
√

2 0 0




1√
2

0 0 1√
2

0 1√
2

1√
2

0

1√
2

0 0 −1√
2

0 1√
2
−1√
2

0


Which is easily checked.

12. (6 points) Consider the quadratic form

q(x1, x2, x3, x4) = x21 + x22 + 2x1x4 + 2x2x3 + x23 + x24

Change the basis so that you have it written in the form

q(y1, y2, y3, y4) = λ1y
2
1 + λ2y

2
2 + λ3y

2
3 + λ4y

2
4

where we want λ1 ≥ λ2 ≥ λ3 ≥ λ4.

Explain your work, but all we want for an answer is the new formula above (and the work, or, if
you don’t have to work, an explanation).

The symmetric matrix for this quadratic form is just our matrix C from problem 1, so we have
q(X) = XTCX. We have already found the eigenvalues and eigenvectors for this in problem 7. So
see problem 7 for the answers. So, we have

q(y1, y2, y3, y4) = 2y21 + 2y22 + 0y23 + 0y24 = 2y21 + 2y22
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13. (6 points) Set q(y1, y2, y3, y4) = 2. Find the set of points in R4 closest to the origin. Give your
answer in terms of your new coordinates. (4 points) How far is the closest point from the origin?
(2 points)

In terms of our new coordinates, this is just 2y21 +2y22 = 2, or y21 + y22 = 1 . To get the points closest

to the origin, we use y3 = y4 = 0 . They are arbitrary, but the points closest will be these. What

is left is just a unit circle. So, all the points are the circle are closest and they are all distance 1

from the origin.

14. (4 points) Set q(y1, y2, y3, y4) = 2. Now, consider only those points with y4 = 0. There are
now just 3 coordinates, so we can think of ourselves in R3. Describe the geometric object these
equations give.

With y4 = 0, in 3-space, we have the equation y21 + y22 = 1. That is a circle, but the coordi-
nate y3 is arbitrary, so for every y3 ∈ R, we get a circle of radius 1. In other words, we have

an infinite circular tube.

15. (3 points) Let

F =


1 0
0 1
0 1
1 0

 .

Calculate the singular values for F as σ1 ≥ σ2 ≥ 0.

To make the computations, we need F TF , i.e.

(
1 0 0 1
0 1 1 0

)
.


1 0
0 1
0 1
1 0

 =

(
2 0
0 2

)
.

We immediately see that the eigenvalues for this are 2 and 2 and the corresponding

singular values are both
√

2 .
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16. (6 points) Find an orthonormal basis {u1, u2} of R2 and an orthonormal basis {w1, w2, w3, w4}
for R4 such that Fu1 = σ1w1 and Fu2 = σ2w2.

Orthonormal eigenvectors for

(
2 0
0 2

)
are

u1 =

(
1
0

)
and u2 =

(
0
1

)
To find w1 and w2 we compute Fu1 =

√
2w1 and Fu2 =

√
2w2.

Fu1 =



1 0

0 1

0 1

1 0


 1

0

 =



1

0

0

1


=
√

2



1√
2

0

0

1√
2


= σ1w1

Fu2 =



1 0

0 1

0 1

1 0


 0

1

 =



0

1

1

0


=
√

2



0

1√
2

1√
2

0


= σ2w2

Our w1 and w2 are just as in problem 7 so we can use

the other two basis vectors from problem 7 for w3 and w4.

17. (4 points) Write F as the product of 3 matrices in the form of the singular value decomposition.

We need to write F = UΣV T where U and V are orthogonal and Σ is made from the singular
values. The vectors wi give U , which just happens to be the matrix S from problem 11. The matrix
V is just I2 = IT2 . We get:
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

1 0

0 1

0 1

1 0


=



1√
2

0 1√
2

0

0 1√
2

0 1√
2

0 1√
2

0 −1√
2

1√
2

0 −1√
2

0





√
2 0

0
√

2

0 0

0 0


 1 0

0 1



Note that the easy way to do this is to just take the transpose of the solution to problem 11.


