201 Linear Algebra, Practice Midterm Solutions

- 1. Row reduce the augmented matrix $\begin{pmatrix} 1 & 2 & 3 & 1 \\ 3 & 4 & 7 & 1 \\ 5 & 6 & 11 & 1 \end{pmatrix}$ to $\begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Therefore the solution set can be described as vectors in \mathbb{R}^3 of the form $\begin{pmatrix} -1-t \\ 1-t \\ t \end{pmatrix}$ where $t \in \mathbb{R}$. The rank of the coefficient matrix = the number of leading 1's in the row-reduced echelon form = 2.
- 2. The coefficient matrix A in question 1. has $\operatorname{Ker} = \operatorname{span}\left\{\begin{pmatrix}1\\1\\-1\end{pmatrix}\right\}$, since $\operatorname{rref} A = \begin{pmatrix}1 & 0 & 1\\0 & 1 & 1\\0 & 0 & 0\end{pmatrix}$. This means that the columns vectors of A are not linearly independent. The elements of $\operatorname{Ker} A$ correspond to linear dependency relations among the column vectors. Therefore $t \begin{pmatrix}1\\3\\5\end{pmatrix} + t \begin{pmatrix}2\\4\\6\end{pmatrix} - \frac{1}{6}$

 $t\begin{pmatrix} 3\\7\\11 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix} (t \in \mathbb{R}) \text{ are all the ways in which the column vectors of } A \text{ are linearly dependent.}$

3. $T\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}$. The matrix row reduces to I_3 , therefore is invertible. Therefore the linear transformation is invertible.

Row reduce the augmented matrix $\begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ to $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}$; just swap rows 1 and 3. Therefore the matrix for T^{-1} , which is the inverse of $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, is $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. Notice that $T^{-1} = T$.

4.

$$\operatorname{proj}_{L}\vec{e}_{1} = \frac{\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\0\\0 \end{pmatrix}}{\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1/3\\1/3\\1/3 \end{pmatrix}$$
$$\operatorname{proj}_{L}\vec{e}_{2} = \frac{\begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} 0\\1\\0\\1\\1 \end{pmatrix}}{\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1/3\\1/3\\1/3 \end{pmatrix}$$

$$\operatorname{proj}_{L}\vec{e_{3}} = \frac{\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}}{\begin{pmatrix} 1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}} \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1/3\\1/3\\1/3 \end{pmatrix}$$

Therefore the matrix of the this transformation is $\begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$.

The image of this transformation is the span of the column vectors of this matrix, which is the line L.

The matrix row reduces to $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Therefore the kernel consist of vectors in \mathbb{R}^3 which are of the form $\left\{ \begin{pmatrix} -s-t \\ s \\ t \end{pmatrix} | s,t \in \mathbb{R} \right\}$. This is the plane inside \mathbb{R}^3 consisting of all vectors perpendicular

the line L.

(a) False. If a 4×4 matrix has rank 3, then it's row reduced echelon form looks like $\begin{pmatrix} 1 & 0 & 0 & n \\ 0 & 1 & 0 & l \\ 0 & 0 & 1 & m \\ 0 & 0 & 0 & 0 \end{pmatrix}$, 5.

for some scalars k, l and m. This matrix clearly has a nonzero kernel.

- (b) False. The first 3 equations (in 3 variables) can be consistent. The fourth equation can a linear combination of the first three equations. Think of an example.
- (c) False. $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$
- (d) False. $T(\vec{e_1}) = 5\vec{e_2}$ and T is linear $\Rightarrow T(5\vec{e_1}) = 5T(\vec{e_1}) = 5.5.\vec{e_2} \neq \vec{e_2}.$