1. Row reduce the augmented matrix $\left(\begin{array}{cccc}1 & 2 & 3 & 1 \\ 3 & 4 & 7 & 1 \\ 5 & 6 & 11 & 1\end{array}\right)$ to $\left(\begin{array}{cccc}1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$. Therefore the solution set can be described as vectors in \mathbb{R}^{3} of the form $\left(\begin{array}{c}-1-t \\ 1-t \\ t\end{array}\right)$ where $t \in \mathbb{R}$.
The rank of the coefficient matrix $=$ the number of leading 1's in the row-reduced echelon form $=2$.
2. The coefficient matrix A in question 1. has $\operatorname{Ker}=\operatorname{span}\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right\}$, since $\operatorname{rref} A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$. This means that the columns vectors of A are not linearly independent. The elements of Ker A correspond to linear dependency relations among the column vectors. Therefore $t\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)+t\left(\begin{array}{l}2 \\ 4 \\ 6\end{array}\right)-$ $t\left(\begin{array}{c}3 \\ 7 \\ 11\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)(t \in \mathbb{R})$ are all the ways in which the column vectors of A are linearly dependent.
3. $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$. The matrix row reduces to I_{3}, therefore is invertible. Thorefore the linear transformation is invertible.
Row reduce the augmnented matrix $\left(\begin{array}{cccccc}0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1\end{array}\right)$ to $\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0\end{array}\right)$; just swap rows 1 and 3. Therefore the matrix for T^{-1}, which is the inverse of $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$, is $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$. Notice that $T^{-1}=T$.
4.

$$
\begin{aligned}
& \operatorname{proj}_{L} \vec{e}_{1}=\frac{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)}{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right) \\
& \operatorname{proj}_{L} \vec{e}_{2}= \\
& \left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& \binom{1}{1} \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

$$
\operatorname{proj}_{L} \vec{e}_{3}=\frac{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)}{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right)
$$

Therefore the matrix of the this transformation is $\left(\begin{array}{lll}1 / 3 & 1 / 3 & 1 / 3 \\ 1 / 3 & 1 / 3 & 1 / 3 \\ 1 / 3 & 1 / 3 & 1 / 3\end{array}\right)$.
The image of this transformation is the span of the column vectors of this matrix, which is the line L.
The matrix row reduces to $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Therefore the kernel consist of vectors in \mathbb{R}^{3} which are of the form $\left\{\left.\left(\begin{array}{c}-s-t \\ s \\ t\end{array}\right) \right\rvert\, s, t \in \mathbb{R}\right\}$. This is the plane inside \mathbb{R}^{3} consisting of all vectors perpendicular the line L.
5. (a) False. If a 4×4 matrix has rank 3 , then it's row reduced echelon form looks like $\left(\begin{array}{cccc}1 & 0 & 0 & k \\ 0 & 1 & 0 & l \\ 0 & 0 & 1 & m \\ 0 & 0 & 0 & 0\end{array}\right)$, for some scalars k, l and m. This matrix clearly has a nonzero kernel.
(b) False. The first 3 equations (in 3 variables) can be consistent. The fourth equation can a linear combinatin of the first three equations. Think of an example.
(c) False. $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
(d) False. $T\left(\vec{e}_{1}\right)=5 \vec{e}_{2}$ and T is linear $\Rightarrow T\left(5 \vec{e}_{1}\right)=5 T\left(\vec{e}_{1}\right)=5.5 \cdot \vec{e}_{2} \neq \vec{e}_{2}$.

