1. $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$.

$$
\begin{gathered}
A\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)=1\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+0\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+2\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) . \\
A\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
3
\end{array}\right)=1 / 2\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+1 / 2\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+5 / 2\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) . \\
A\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)=3 / 2\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+1 / 2\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+1 / 2\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) .
\end{gathered}
$$

The \mathcal{B}-matrix for the transformation defined by $T(\vec{x})=A \vec{x}$ is

$$
B=\left(\begin{array}{lll}
1 & 1 / 2 & 3 / 2 \\
0 & 1 / 2 & 1 / 2 \\
2 & 5 / 2 & 1 / 2
\end{array}\right)
$$

so that $B[\vec{x}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}$ for all $\vec{x} \in \mathbb{R}^{3}$.
Alternatively, $B=S^{-1} A S$ where $S=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$ is the change of basis matrix $S_{\mathcal{B} \rightarrow \mathcal{S}}$.
2. (a) $\mathcal{S}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ is the standard basis for $\mathbb{R}^{2 \times 2}$.

$$
\begin{aligned}
& T\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right] \\
& T\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right] \\
& T\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right] \\
& T\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
2 & 1
\end{array}\right]
\end{aligned}
$$

Therefore the \mathcal{S}-matrix for T is

$$
A=\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 2 & 1
\end{array}\right)
$$

i.e. for any $N \in \mathbb{R}^{2 \times 2}, A[M]_{\mathcal{S}}=\left[M\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\right]_{\mathcal{S}}$.
(b) The \mathcal{S}-matrix for T, A row reduces to I_{4}. Therefore A is invertible. This means T is an invertible linear transformation. $T^{-1}(M)=M\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]^{-1}$.
Therefore $\operatorname{Ker} T=\{\overrightarrow{0}\}=\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right\}$. Also $\operatorname{Im} T=\mathbb{R}^{2 \times 2}$ by rank nullity theorem.
(c) Let B be the \mathcal{B}-matrix for T, i.e $B[M]_{\mathcal{B}}=[T(M)]_{\mathcal{B}}$. The column vectors of B are as follows $\left[T\left(\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right)\right]_{\mathcal{B}},\left[T\left(\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]\right)\right]_{\mathcal{B}},\left[T\left(\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]\right)_{\mathcal{B}}\right.$ and $\left[T\left(\left[\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right]\right)\right]_{\mathcal{B}}$.
Alternatively, $B=S^{-1} A S$ where S is the change of basis matrix $S_{\mathcal{B} \rightarrow \mathcal{S}}=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1\end{array}\right)$. Compute S^{-1} and then B.
(d) See (c)
3. This subspace $V=\left\{\vec{x} \in \mathbb{R}^{4} \left\lvert\,\left(\begin{array}{c}1 \\ 2 \\ 0 \\ 1\end{array}\right) \bullet \vec{x}=0\right.\right\}=\operatorname{Ker}\left(\begin{array}{llll}1 & 2 & 0 & 1\end{array}\right)=\left\{\left.\left(\begin{array}{c}-2 s-u \\ s \\ t \\ u\end{array}\right) \right\rvert\, s, t, u \in \mathbb{R}\right\}=$ $\operatorname{Span}\left\{\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$. This is a basis for V.
Apply Gram-Schmidt to this basis.
4. The least-squares solution to this solves the equation

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \\
\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right) \vec{x}_{*}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
5 \\
1 \\
2
\end{array}\right) \\
\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \vec{x}_{*}=\binom{7}{6}
\end{gathered}
$$

5. (a) FALSE. The zero transformation that takes every polynomial to the zero 2×2 matrix is not invertible.
(b) TRUE. Suppose $T: V \rightarrow V$ is a linear transformation. \mathcal{B} a basis for the n-dimensional vector space V. The \mathcal{B}-matrix B for T defines the linear transformation $B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that fits into the following commutative diagram

Therefore T is a composition of invertible linear transformations $T=L_{\mathcal{B}} \circ B \circ L_{\mathcal{B}}^{-1}$, hence T is invertible.
(c) TRUE. Let the line be $L=\operatorname{Span}\{\vec{u}\}$. Let $\mathcal{B}=\left\{\operatorname{Rot}_{45^{\circ}} \vec{u}\right.$, $\left.\operatorname{Rot}_{-45^{\circ}} \vec{u}\right\}$. Then the \mathcal{B}-matrix for the reflection map is $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
(d) FALSE. $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is orthogonal. A is the standard basis matrix for the reflection about the line $y=x$. If $\mathcal{B}=\left\{\binom{1}{0},\binom{1}{1}\right\}$, the \mathcal{B}-matrix for the same transformation is $\left(\begin{array}{cc}-1 & 0 \\ 1 & 1\end{array}\right)$, which is not orthogonal.
(e) TRUE. A preserves lengths. Therefore $\|\vec{x}\|=\|A \vec{x}\|=\|A A \vec{x}\|=\|A A A \vec{x}\|$.

