201 Linear Algebra, Practice Midterm

Duration: 50 mins

1. Solve the system

$$x + 2y + 3z = 1$$
$$3x + 4y + 7z = 1$$
$$5x + 6y + 11z = 1$$

Determine the rank of the coefficient matrix.

- 2. Determine if the columns of the coefficient matrix in question 1. are linearly independent. If not, find all possible linear dependency relations among them.
- 3. Show that the transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$

$$T\left(\begin{array}{c}x\\y\\z\end{array}\right) = \left(\begin{array}{c}z\\y\\x\end{array}\right)$$

is an invertible linear transformation. Find the matrix associated to T^{-1} .

- 4. Let $L = \{t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} | t \in \mathbb{R}\}$ be a line in \mathbb{R}^3 . Determine the matrix of orthogonal projection onto this line. Describe the image and kernel of this matrix.
- 5. True or False. Justify your answer.
 - (a) There is a 4×4 matrix of A of rank 3 such that the system $A\vec{x} = \vec{0}$ has a unique solution.
 - (b) A system with 4 equations and 3 unknowns is always inconsistent.
 - (c) If the matrices A and B are both invertible, then A + B must be invertible as well.
 - (d) There exists a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(\vec{e_1}) = 5\vec{e_2}$ and $T(5\vec{e_1}) = \vec{e_2}$.