201 Linear Algebra, Practice Midterm2

Duration: 50 mins

1.

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 1 \end{array} \right)$$

Find the matrix of the transformation $T(\vec{x}) = A\vec{x}$ with respect to the basis $\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$.

- 2. $T(M) = M \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ defines a linear transformation on the space of 2×2 matrices; $T : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$.
 - (a) Write down the matrix for this transformation in terms of the standard basis for $\mathbb{R}^{2\times 2}$
 - (b) Find the Kernel and Image of T.
 - (c) Find the matrix of T with respect to the basis $\mathcal{B} = \left(\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \right).$
 - (d) How is the matrix in part (c) related to the matrix in part (a)?
- 3. Find an orthonormal basis for the subspace of \mathbb{R}^4 consisting of all those vectors that are perpendicular to $\begin{pmatrix} 1\\ 2\\ 0\\ 1 \end{pmatrix}$.

4. Find the least-squares solution \vec{x}_* of the system $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \vec{x} = \left(\begin{array}{c} 1 \\ 2 \end{array}\right).$$

(5)

- 5. TRUE or FALSE. Justify your answer.
 - (a) All linear transformations from P_3 to $\mathbb{R}^{2\times 2}$ are isomorphisms
 - (b) If the matrix of a linear transformation $T: V \to V$ with respect to some basis is invertible, then T is invertible.
 - (c) If the 2 \times 2 matrix R represents the reflection about a line in \mathbb{R}^2 , then there is an invertible 2×2 matrix S such that $R = S^{-1} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} S$.
 - (d) If a matrix A is similar to B, and A is orthogonal, then so is B.
 - (e) If the matrix A is orthogonal then A^3 is orthogonal.