201 Linear Algebra, Practice Midterm2

Duration: 50 mins

1.

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 0 & 1 \\
0 & 2 & 1
\end{array}\right)
$$

Find the matrix of the transformation $T(\vec{x})=A \vec{x}$ with respect to the basis $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$.
2. $T(M)=M\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ defines a linear transformation on the space of 2×2 matrices; $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$.
(a) Write down the matrix for this transformation in terms of the standard basis for $\mathbb{R}^{2 \times 2}$
(b) Find the Kernel and Image of T.
(c) Find the matrix of T with respect to the basis $\mathcal{B}=\left(\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right]\right)$.
(d) How is the matrix in part (c) related to the matrix in part (a)?
3. Find an orthonormal basis for the subspace of \mathbb{R}^{4} consisting of all those vectors that are perpendicular to $\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 1\end{array}\right)$.
4. Find the least-squares solution \vec{x}_{*} of the system $\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right) \vec{x}=\left(\begin{array}{l}5 \\ 1 \\ 2\end{array}\right)$.
5. TRUE or FALSE. Justify your answer.
(a) All linear transformations from P_{3} to $\mathbb{R}^{2 \times 2}$ are isomorphisms
(b) If the matrix of a linear transformation $T: V \rightarrow V$ with respect to some basis is invertible, then T is invertible.
(c) If the 2×2 matrix R represents the reflection about a line in \mathbb{R}^{2}, then there is an invertible 2×2 matrix S such that $R=S^{-1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) S$.
(d) If a matrix A is similar to B, and A is orthogonal, then so is B.
(e) If the matrix A is orthogonal then A^{3} is orthogonal.

