LINEAR SUBSPACES

1. SUbSPACES OF \mathbb{R}^{n}

We wish to generalize the notion of lines and planes. To that end, say a subset $W \subset \mathbb{R}^{n}$ is a (linear) subspace if it has the following three properties:
(1) (Non-empty): $\overrightarrow{0} \in W$;
(2) (Closed under addition): $\vec{v}_{1}, \vec{v}_{2} \in W \Rightarrow \vec{v}_{1}+\vec{v}_{2} \in W$;
(3) (Closed under scaling): $\vec{v} \in W$ and $k \in \mathbb{R} \Rightarrow k \vec{v} \in W$.

EXAMPLE: $\{\overrightarrow{0}\}$ and \mathbb{R}^{n} are subspaces of \mathbb{R}^{n} for any $n \geq 1$.
EXAMPLE: Line $\left\{t\left[\begin{array}{l}1 \\ 1\end{array}\right]: t \in \mathbb{R}\right\}$ given by $x_{1}=x_{2}$ is a subspace.
NON-EXAMPLE: $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x \geq 0, y \geq 0\right\}$. As $\left[\begin{array}{l}1 \\ 1\end{array}\right] \in W$, but $-\left[\begin{array}{l}1 \\ 1\end{array}\right] \notin W$.
EXAMPLE: If $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, then $\operatorname{ker}(T)$ is a subspace and \mathbb{R}^{m} and $\operatorname{Im}(T)$ is a subspace of \mathbb{R}^{n}. For instance,
(1) $T(\overrightarrow{0})=\overrightarrow{0} \Rightarrow \overrightarrow{0} \in \operatorname{ker}(T)$;
(2) $\vec{v}_{1}, \vec{v}_{2} \in \operatorname{ker}(T) \Rightarrow T\left(\vec{v}_{1}+\vec{v}_{2}\right)=T\left(\vec{v}_{1}\right)+T\left(\vec{v}_{2}\right)=\overrightarrow{0} \Rightarrow \vec{v}_{1}+\vec{v}_{2} \in \operatorname{ker}(T)$;
(3) $\vec{v} \in \operatorname{ker}(T), k \in \mathbb{R} \rightarrow T(k \vec{v})=k T(\vec{v})=k \overrightarrow{0}=\overrightarrow{0} \Rightarrow k \vec{v} \in \operatorname{ker}(T)$.

2. Span of vectors

Given a set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$ we define the span of these vectors to be

$$
W=\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)=\left\{c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}: c_{1}, \ldots, c_{m} \in \mathbb{R}\right\}
$$

In other words, $\vec{w} \in W$ means \vec{w} is a linear combination of the \vec{v}_{i}. If

$$
A=\left[\begin{array}{lllll}
\vec{v}_{1} & \mid & \cdots & \vec{v}_{m}
\end{array}\right]
$$

is the $n \times m$ matrix with columns \vec{v}_{i}, then

$$
\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)=\operatorname{Im}(A)
$$

and so $\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)$ is a subspace of \mathbb{R}^{n}. Thought of the other way around, the image of A is the span of its columns.

Given a subspace $W \subset \mathbb{R}^{n}$ we say a set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$ span W if

$$
W=\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right) .
$$

EXAMPLE: $\operatorname{span}(\overrightarrow{0})=\{\overrightarrow{0}\}$.
EXAMPLE: If \vec{e}_{1}, \vec{e}_{2} are standard vectors in \mathbb{R}^{2}, then $\operatorname{span}\left(\vec{e}_{1}, \vec{e}_{2}\right)=\mathbb{R}^{2}$.
EXAMPLE: $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right] \in \operatorname{span}\left(\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right)$ and $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right] \notin \operatorname{span}\left(\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right)$.

$$
\operatorname{rref}\left[\begin{array}{cc:c}
1 & 0 & 2 \\
0 & 1 & 3 \\
-1 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

so

$$
\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]=2\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+3\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Next compute

$$
\operatorname{rref}\left[\begin{array}{cc|c}
1 & 0 & 2 \\
0 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right]=\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

As this is inconsistent, and so there is no way to write:

$$
\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=c_{1}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

3. Linear independence

Many different sets of vectors may span the same subspace. For instance,

$$
W=\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{1}+\vec{v}_{2}\right)=\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right)
$$

Indeed, $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3}\left(\vec{v}_{1}+\vec{v}_{2}\right)=\left(c_{1}+c_{3}\right) \vec{v}_{1}+\left(c_{1}+c_{3}\right) \vec{v}_{2}$. In other words, $\vec{v}_{1}+\vec{v}_{2}$ is redundant and is not needed to describe the subspace W. To formalize this, define a linear relation among $\vec{v}_{1}, \ldots, \vec{v}_{m}$ to be an equation of the form

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=0
$$

There is always such a solution with $c_{1}=\cdots c_{m}=0$. A non-trivial relation is one in which at least one $c_{i} \neq 0$

EXAMPLE:

$$
2\left[\begin{array}{l}
1 \\
1
\end{array}\right]-3\left[\begin{array}{l}
1 \\
0
\end{array}\right]-\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\overrightarrow{0}
$$

is a non-trivial linear relation amongst three vectors and this can be rewritten

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{2}{3}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\frac{1}{3}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

EXAMPLE: Suppose $\vec{v}_{1}, \ldots, \vec{v}_{m}$ admit a non-trivial relation

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=0
$$

with $c_{m} \neq 0$, then $\operatorname{span}\left(\vec{v}_{1}, \cdots, \vec{v}_{m-1}\right)=\operatorname{span}\left(\vec{v}_{1}, \cdots, \vec{v}_{m}\right)$. That is the vector \vec{v}_{m} is redundant and can be omitted.

If

$$
A=\left[\begin{array}{lllll}
\vec{v}_{1} & \mid & \cdots & \vec{v}_{m}
\end{array}\right]
$$

is the matrix with columns the vectors \vec{v}_{i}, then a linear relation can be identified with a unique element of $\operatorname{ker}(A)$. Indeed,

$$
c_{1} \vec{v}_{1}+\ldots+c_{m} \vec{v}_{m}=\overrightarrow{0} \Longleftrightarrow\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{m}
\end{array}\right] \in \operatorname{ker}(A)
$$

Furthermore, a non-trivial relation corresponds to a non-zero entry of $\operatorname{ker}(A)$.
We say $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly independent if they have no non-trivial relation, that is, if $\operatorname{ker}(A)=\{\overrightarrow{0}\}$. Put another way, $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ if and only if the columns of A are linearly independent.

EXAMPLE: If $\vec{v}_{1}, \ldots, \vec{v}_{m}(m \geq 2)$ are linearly independent, then

$$
\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{m-1}\right) \subsetneq \operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)
$$

That is, there is no redundancy for linearly independent sets of vectors. More generally none of the vectors can be omitted without making the span smaller.

EXAMPLE: $(m=1) \vec{v}_{1}$ is linear independent if and only if $\vec{v}_{1} \neq 0$.
EXAMPLE: $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{1}+\vec{v}_{2}$ are never linearly independent $\left(c_{1}=c_{2}=1, c_{3}=-1\right.$ gives a non-trivial relation).

EXAMPLE: \vec{e}_{1}, \vec{e}_{2} are linearly independent in \mathbb{R}^{2}. Indeed, if

$$
c_{1} \vec{e}_{1}+c_{2} \vec{e}_{2}=\overrightarrow{0} \Longleftrightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

so $c_{1}=c_{2}=0$. That is, the only linear relation is the trivial one.
EXAMPLE: Suppose $\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)=\operatorname{span}\left(\vec{v}_{1}+\vec{v}_{2}, \vec{v}_{1}-\vec{v}_{2}\right)$, then $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are not linearly independent. Indeed, $\vec{v}_{3}=c_{1}\left(\vec{v}_{1}+\vec{v}_{2}\right)+c_{2}\left(\vec{v}_{1}-\vec{v}_{2}\right)$ which gives the non-trivial linear relation

$$
-\left(c_{1}+c_{2}\right) \vec{v}_{1}-\left(c_{1}-c_{2}\right) \vec{v}_{2}+\vec{v}_{3}=\overrightarrow{0}
$$

EXAMPLE: Are $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$ linearly independent? First compute

$$
\operatorname{rref}\left[\begin{array}{ccc}
1 & -2 & -1 \\
1 & -1 & 1 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] .
$$

This means that the kernel of this matrix is

$$
\operatorname{span}\left(\left[\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right]\right)
$$

That is, there is have non-trivial linear relation

$$
-3\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-2\left[\begin{array}{c}
-2 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]=\overrightarrow{0}
$$

and so the vectors are not linearly independent.

$$
\begin{gathered}
\text { EXAMPLE: Are }\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text { linearly independent? Compute } \\
\operatorname{ker}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]=\{\overrightarrow{0}\}
\end{gathered}
$$

by showing that

$$
\operatorname{rref}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]=I_{3}
$$

4. Basis of a subspace

A set of vectors which span a subspace W and which does not have any redundancies is clearly of particular interest. With this in mind for a subspace $W \subset \mathbb{R}^{n}$, we say a set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$ is a basis of W if
(1) $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly independent
(2) $W=\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)$.

This ensures that not only do the vectors span the subspace but none of them can be omitted.

EXAMPLE: \vec{e}_{1}, \vec{e}_{2} is a basis of \mathbb{R}^{2}. Indeed, any vector

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1} \vec{e}_{1}+\vec{e}_{2}
$$

so the vectors span. They are linearly indepdent by inspection.
NON-EXAMPLE: $\vec{e}_{1}+\vec{e}_{2}$ is not a basis of \mathbb{R}^{2} as it does not span (but is linearly independent).

NON-EXAMPLE: $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{1}+\vec{e}_{2}$ is not a basis of \mathbb{R}^{2} as the set is not linearly independent (but does span).

EXAMPLE: The subspace $\{\overrightarrow{0}\}$ has no basis. Say its basis is the empty set, \emptyset.
EXAMPLE: Find basis of ker $\left[\begin{array}{cccc}1 & 0 & -1 & 2 \\ 0 & 1 & 1 & 0\end{array}\right]$. Observe this matrix is already in RREF so it is easy to determine elements in the kernel. Indeed, there are two free variables $f_{1}=x_{3}$ and $f_{2}=x_{4}$. Plugging in specific values for these variables (i.e., solving for the pivot variables) gives the following two elements in the kernel:

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right]\left(f_{1}=x_{3}=1, f_{2}=x_{4}=0\right) \text { and } \vec{v}_{2}=\left[\begin{array}{c}
-2 \\
0 \\
0 \\
1
\end{array}\right]\left(f_{1}=x_{3}=0, f_{2}=x_{4}=1\right)
$$

Clearly, if $f_{1}=s$ and $f_{2}=t$, then a general element of the kernel is of the form $\vec{z}=s \vec{v}_{1}+t \vec{v}_{2}$. In other words, the kernel is spanned by \vec{v}_{1} and \vec{v}_{2}. Hence, we just need to check that \vec{v}_{1}, \vec{v}_{2} are linearly independent to see they are a basis. However,

$$
\overrightarrow{0}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\left[\begin{array}{c}
c_{1}-2 c_{2} \\
-c_{1} \\
c_{1} \\
c_{2}
\end{array}\right]
$$

Hence, we must have $c_{1}=0$ (from the third entry) and $c_{2}=0$ (from the fourth entry). That is the only linear relation is the trivial one and so the vectors are linearly independent and so form a basis of the kernel.

This example can be generalized to give a procedure for finding the basis of $\operatorname{ker}(A)$ for any matrix A. A basic observation is that $\operatorname{ker}(A)=\operatorname{ker}(\operatorname{rref}(A))$. This is becaus the linear system with augmented matrix $[A \mid \overrightarrow{0}]$ has the same solutions as that of $\operatorname{rref}[A \mid \overrightarrow{0}]=[\operatorname{rref}(A) \mid \overrightarrow{0}]$. With that in mind:
(1) Compute $\operatorname{rref}(A)$ and use $\operatorname{rref}(A)$ to determine free variables.
(2) Label the free variables as f_{1}, \ldots, f_{p}.
(3) Let \vec{v}_{i} be solutions corresponding to $f_{i}=1$ and $f_{j}=0$ for $j \neq i$. That is, use $\operatorname{rref}(A)$ to solve for the pivot variables in terms of the specified values of the free variables.
(4) Basis of $\operatorname{ker}(A)$ is $\vec{v}_{1}, \ldots, \vec{v}_{p}$.

In order to justify this first observe that $\operatorname{ker}(A)=\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{p}\right)$. As the element of $\operatorname{ker}(A)$ corresponding to $f_{1}=t_{1}, \ldots, f_{p}=t_{p}$ is $t_{1} \vec{v}_{1}+\ldots+t_{p} \vec{v}_{p} \in \operatorname{ker}(A)$. Similarly, only \vec{v}_{j} has a non-zero entry at row corresponding to f_{j}, so easy to see $\vec{v}_{1}, \ldots, \vec{v}_{p}$ are linearly independent and hence form a basis.

EXAMPLE: Find a basis of $\operatorname{Im}(A)$ for

$$
A=\left[\begin{array}{ccc}
1 & 3 & -1 \\
0 & -2 & 1 \\
2 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllll}
\vec{w}_{1} & \mid & \vec{w}_{2} & \mid & \vec{w}_{3}
\end{array}\right]
$$

We compute

$$
\operatorname{rref}(A)=\left[\begin{array}{ccc}
1 & 0 & \frac{1}{2} \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 0
\end{array}\right]
$$

Hence,

$$
\operatorname{ker}(A)=\operatorname{span}\left(\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]\right)
$$

This means that there is a linear relation amongst the columns of A :

$$
-\frac{1}{2} \vec{w}_{1}+\frac{1}{2} \vec{w}_{2}+\vec{w}_{3}=-\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]+\left[\begin{array}{c}
3 \\
-2 \\
0
\end{array}\right]+2\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]=\overrightarrow{0} \Longleftrightarrow \vec{w}_{3}=\frac{1}{2} \vec{w}_{1}-\frac{1}{2} \vec{w}_{2} .
$$

This shows that $\vec{w}_{3} \in \operatorname{span}\left(\vec{w}_{1}, \vec{w}_{2}\right)$. Furthermore, any linear relation

$$
\overrightarrow{0}=c_{1} \vec{w}_{1}+c_{2} \vec{w}_{2}=\left[\begin{array}{c}
c_{1}+3 c_{2} \\
-2 c_{2} \\
2 c_{1}
\end{array}\right]
$$

which implies $0=2 c_{1}=-2 c_{2}$ and so \vec{w}_{1}, \vec{w}_{2} are linearly independent and hence \vec{w}_{1}, \vec{w}_{2} form a basis of $\operatorname{Im}(A)$.

This example can also be generalized to give a basis of $\operatorname{Im}(A)$ when

$$
A=\left[\begin{array}{l|l|l}
\vec{w}_{1} & \mid & \cdots \\
\vec{w}_{n}
\end{array}\right]
$$

It is worth noting that, in general, $\operatorname{Im}(A) \neq \operatorname{Im}(\operatorname{rref}(A))$. Nevertheless, $\operatorname{rref}(A)$ can be used to find the basis. The procedure is as follows:
(1) Compute $\operatorname{rref}(A)$ and use this to find the pivot variables.
(2) Let $\vec{y}_{1}=\vec{w}_{i_{1}}, \ldots, \vec{y}_{q}=\vec{w}_{i_{q}}$ be the columns of A that correspond to the pivot variables. Call these the pivot columns of A. That is, a pivot column of A is a one which corresponds to a column of $\operatorname{rref}(A)$ that contains a pivot.
(3) A basis of $\operatorname{Im}(A)$ is $\vec{y}_{1}, \ldots, \vec{v}_{q}$. That is, the pivot columns of A are a basis of $\operatorname{Im}(A)$.
To understand why this is the case, we will use the vectors \vec{v}_{i} from before. Indeed,

$$
A \vec{v}_{i}=\overrightarrow{0}
$$

corresponds to a non-trivial linear relation between the non-pivot column corresponding to the i th free variable and all of the pivot columns. In other words, this non-pivot column lies in $\operatorname{span}\left(\vec{y}_{1}, \ldots, \vec{y}_{q}\right)$. As this holds for each non-pivot column,

$$
\operatorname{Im}(A)=\operatorname{span}\left(\vec{y}_{1}, \ldots, \vec{y}_{q}\right)
$$

To see why the $\vec{y}_{1}, \ldots, \vec{y}_{q}$ are linearly independent, we observe that any non-zero element of $\operatorname{ker}(A)$ must have a non-zero entry in one of the rows corresponding to free variable. This is because otherwise each free variable is 0 and so the corresponding element of $\operatorname{ker}(A)$ is $\overrightarrow{0}$. As any linear relation among $\vec{y}_{1}, \ldots, \vec{y}_{q}$ can be thought of as an element of $\operatorname{ker}(A)$ whose entries in the rows corresponding to the free variables are 0 , we see that there are no non-trivial relation among the pivot columns. That is, the pivot columns are linearly independent and so form a basis.

5. Dimension of subspaces

Fix a subspace $W \subset \mathbb{R}^{n}$. We pose two natural questions:
(1) How many vectors are needed to span W ?
(2) How many vectors in W can be linearly independent?

EXAMPLE: When $W=\mathbb{R}^{n}$, then need at least n vectors to span. Indeed,

$$
\begin{aligned}
& \mathbb{R}^{n}=\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{p}\right) \Longleftrightarrow \operatorname{Im}\left[\begin{array}{l|l|l}
\vec{v}_{1} & \mid \cdots & \vec{v}_{p}
\end{array}\right]=\mathbb{R}^{n} \\
& \Longleftrightarrow \operatorname{rank}\left[\begin{array}{lll|l}
\vec{v}_{1} & \mid & \cdots & \vec{v}_{p}
\end{array}\right]=n \Rightarrow p \geq n .
\end{aligned}
$$

EXAMPLE: When $W=\mathbb{R}^{n}$. If $\vec{w}_{1}, \ldots, \vec{w}_{q} \in \mathbb{R}^{n}$ are linearly independent, then $q \leq n$. Indeed, vectors linearly independent means

$$
\operatorname{ker}\left[\begin{array}{llll}
\vec{w}_{1} & \mid & \cdots & \vec{w}_{q}
\end{array}\right]=\left\{\begin{array}{l}
\overrightarrow{0}
\end{array}\right\} \Longleftrightarrow \operatorname{rank}\left[\begin{array}{lllll}
\vec{w}_{1} & \mid & \cdots & \mid & \vec{w}_{q}
\end{array}\right]=q \Rightarrow q \leq n .
$$

Theorem 5.1. Fix a subspace $W \subset \mathbb{R}^{n}$. If $W=\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{p}\right)$ and $\vec{w}_{1}, \ldots, \vec{w}_{q} \in$ W are linearly independent, then $p \geq q$.

Proof. Let

$$
A=\left[\begin{array}{llll|}
\vec{v}_{1} & \mid & \cdots & \vec{v}_{p}
\end{array}\right] \text { and } B=\left[\begin{array}{l|l|l}
\vec{w}_{1} & \mid & \cdots \\
\vec{w}_{q}
\end{array}\right] .
$$

A is $n \times p$ and B is $n \times q$ Our hypotheses ensure $\operatorname{Im}(A)=W$ and $\operatorname{ker}(B)=\{\overrightarrow{0}\}$. Clearly, $\vec{w}_{i} \in W=\operatorname{Im}(A)$ so there are $y_{i} \in \mathbb{R}^{p}$ so that $\vec{w}_{i}=A \vec{y}_{i}$. Let

$$
C=\left[\left.\begin{array}{l|l|l}
\vec{y}_{1} & \mid & \cdots
\end{array} \right\rvert\, \vec{y}_{q}\right]
$$

be $p \times q$. We have $B=A C$. As $\operatorname{ker}(B)=\{\overrightarrow{0}\}$ and $\operatorname{ker}(B)=\operatorname{ker}(A C) \supset \operatorname{ker}(C)$, and so $\operatorname{ker}(C)=\{\overrightarrow{0}\}$. This means $\operatorname{rank}(C)=q$ and so $p \geq q$ as claimed.

Corollary. If $\vec{v}_{1}, \ldots, \vec{v}_{p}$ and $\vec{w}_{1}, \ldots, \vec{w}_{q}$ are both a basis of W, then $p=q$.
Proof. $\vec{v}_{1}, \ldots, \vec{v}_{p}$ is linearly independent (spans) and $\vec{w}_{1}, \ldots, \vec{w}_{q}$ spans (is linearly independent), so $p \leq q(q \leq p)$. Both inequalities are true so $p=q$.

This means there is a well-defined notion of dimension of a subspace. Specifically, iff $W \subset \mathbb{R}^{n}$ is a subspace, then the dimension, $\operatorname{dim}(W)$, of W is the number of elements in a basis of W. The corollary ensures this number is does not depend on the choice of basis. Strictly speaking, for this definition to make sense for every subspace need to know it has a basis. You did this in your homework.

Using the Theorem we just proved we make the following observations for $W \subset$ \mathbb{R}^{n} a subspace with $\operatorname{dim}(W)=m$:
(1) One can find at most m linearly independent vectors in W.
(2) Spanning W requires at least m vectors.
(3) If m vectors in W are linearly independent, then they are a basis of W.
(4) If m vectors span W, then they are a basis of W.

EXAMPLE: $\operatorname{dim}(\{\overrightarrow{0}\})=0$ because $\{\overrightarrow{0}\}$ has basis the empty set.
EXAMPLE: For $\vec{v} \neq 0, \operatorname{dim}(\operatorname{span}(\vec{v}))=1$, i.e., a line has dimension 1 .
EXAMPLE: $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$ because \mathbb{R}^{n} has the standard basis, $\vec{e}_{1}, \ldots, \vec{e}_{n}$.
EXAMPLE: $\operatorname{dim}(\operatorname{Im}(A))=\operatorname{rank}(A)$, as pivot columns of A are a basis of $\operatorname{Im}(A)$.
EXAMPLE: If $W \subset V \subset \mathbb{R}^{n}$, then $\operatorname{dim}(W) \leq \operatorname{dim}(V)$.
EXAMPLE: $W \subset \mathbb{R}^{n}$ a subspace, then $\operatorname{dim}(W) \leq n$.

6. Rank-Nullity Theorem

We can relate the dimension of $\operatorname{ker}(A)$ and $\operatorname{Im}(A)$ to the number of columns of A. This theorem is sometimes called the fundamental theorem of linear algebra due to its importance. With this in mind, call $\operatorname{dim}(\operatorname{ker}(A)$ the nullity of A and write $\operatorname{null}(A):=\operatorname{dim}(\operatorname{ker}(A))$.
Theorem 6.1. Let A be a $n \times m$ matrix, then,

$$
\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{Im}(A))=\operatorname{null}(A)+\operatorname{rank}(A)=m
$$

Proof. As mentioned, $\operatorname{rank}(A)$ is the number of pivot columns. Likewise, $\operatorname{null}(A)$ is the number of non-pivot columns. This is because, each non-pivot column corresponds to a unique element of the basis of $\operatorname{ker}(A)$ constructed earlier. As each column of A is either a pivot column or a non-pivot column, the result follows.

EXAMPLE: Can a 3×3 matrix, A, have $\operatorname{ker}(A)=\operatorname{Im}(A)$? The answer is no, as that would mean $\operatorname{rank}(A)=\operatorname{null}(A)$, but $3=\operatorname{rank}(A)+\operatorname{null}(A)$ is not even.

EXAMPLE: Let A be a $n \times p$ matrix and B be a $p \times m$ matrix we have

$$
\operatorname{null}(A B) \geq \operatorname{null}(B)
$$

This is because $\operatorname{ker}(B) \subset \operatorname{ker}(A B)$.

