
LINEAR SUBSPACES

1. Subspaces of Rn

We wish to generalize the notion of lines and planes. To that end, say a subset
W ⊂ Rn is a (linear) subspace if it has the following three properties:

(1) (Non-empty): ~0 ∈W ;
(2) (Closed under addition): ~v1, ~v2 ∈W ⇒ ~v1 + ~v2 ∈W ;
(3) (Closed under scaling): ~v ∈W and k ∈ R⇒ k~v ∈W .

EXAMPLE:
{
~0
}

and Rn are subspaces of Rn for any n ≥ 1.

EXAMPLE: Line

{
t

[
1
1

]
: t ∈ R

}
given by x1 = x2 is a subspace.

NON-EXAMPLE: W =

{[
x
y

]
: x ≥ 0, y ≥ 0

}
. As

[
1
1

]
∈W, but −

[
1
1

]
6∈W.

EXAMPLE: If T : Rm → Rn, then ker(T ) is a subspace and Rm and Im (T ) is
a subspace of Rn. For instance,

(1) T (~0) = ~0⇒ ~0 ∈ ker(T );

(2) ~v1, ~v2 ∈ ker(T )⇒ T (~v1 + ~v2) = T (~v1) + T (~v2) = ~0⇒ ~v1 + ~v2 ∈ ker(T );

(3) ~v ∈ ker(T ), k ∈ R→ T (k~v) = kT (~v) = k~0 = ~0⇒ k~v ∈ ker(T ).

2. Span of vectors

Given a set of vectors ~v1, . . . , ~vm ∈ Rn we define the span of these vectors to be

W = span(~v1, . . . , ~vk) = {c1~v1 + . . . + ck~vk : c1, . . . , cm ∈ R}
In other words, ~w ∈W means ~w is a linear combination of the ~vi. If

A =
[
~v1 | · · · | ~vm

]
is the n×m matrix with columns ~vi, then

span(~v1, . . . , ~vk) = Im (A)

and so span(~v1, . . . , ~vk) is a subspace of Rn. Thought of the other way around, the
image of A is the span of its columns.

Given a subspace W ⊂ Rn we say a set of vectors ~v1, . . . , ~vm ∈ Rn span W if

W = span(~v1, . . . , ~vm).

EXAMPLE: span(~0) =
{
~0
}

.

EXAMPLE: If ~e1, ~e2 are standard vectors in R2, then span(~e1, ~e2) = R2.

EXAMPLE:

2
3
1

 ∈ span

 1
0
−1

 ,

0
1
1

 and

2
1
0

 6∈ span

 1
0
−1

 ,

0
1
1

 .

rref

 1 0 | 2
0 1 | 3
−1 1 | 1

 =

1 0 | 2
0 1 | 3
0 0 | 0


1
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so 2
3
1

 = 2

 1
0
−1

+ 3

0
1
1

 .

Next compute

rref

 1 0 | 2
0 1 | 1
−1 1 | 0

 =

1 0 | 0
0 1 | 0
0 0 | 1


As this is inconsistent, and so there is no way to write:2

1
0

 = c1

 1
0
−1

+ c2

0
1
1


.

3. Linear independence

Many different sets of vectors may span the same subspace. For instance,

W = span(~v1, ~v2, ~v1 + ~v2) = span(~v1, ~v2).

Indeed, c1~v1+c2~v2+c3(~v1+~v2) = (c1+c3)~v1+(c1+c3)~v2. In other words, ~v1+~v2 is
redundant and is not needed to describe the subspace W . To formalize this, define
a linear relation among ~v1, . . . , ~vm to be an equation of the form

c1~v1 + · · ·+ cm~vm = 0.

There is always such a solution with c1 = · · · cm = 0. A non-trivial relation is one
in which at least one ci 6= 0

EXAMPLE:

2

[
1
1

]
− 3

[
1
0

]
−
[
−1
2

]
= ~0

is a non-trivial linear relation amongst three vectors and this can be rewritten[
1
0

]
=

2

3

[
1
1

]
− 1

3

[
−1
2

]
.

EXAMPLE: Suppose ~v1, . . . , ~vm admit a non-trivial relation

c1~v1 + · · ·+ cm~vm = 0

with cm 6= 0, then span(~v1, · · · , ~vm−1) = span(~v1, · · · , ~vm). That is the vector ~vm
is redundant and can be omitted.

If
A =

[
~v1 | · · · | ~vm

]
is the matrix with columns the vectors ~vi, then a linear relation can be identified
with a unique element of ker(A). Indeed,

c1~v1 + . . . + cm~vm = ~0 ⇐⇒

 c1...
cm

 ∈ ker(A).

Furthermore, a non-trivial relation corresponds to a non-zero entry of ker(A).
We say ~v1, . . . , ~vm are linearly independent if they have no non-trivial relation,

that is, if ker(A) =
{
~0
}

. Put another way, ker(A) =
{
~0
}

if and only if the columns

of A are linearly independent.



LINEAR SUBSPACES 3

EXAMPLE: If ~v1, . . . , ~vm (m ≥ 2) are linearly independent, then

span(~v1, . . . , ~vm−1) ( span(~v1, . . . , ~vm).

That is, there is no redundancy for linearly independent sets of vectors. More
generally none of the vectors can be omitted without making the span smaller.

EXAMPLE: (m = 1) ~v1 is linear independent if and only if ~v1 6= 0.
EXAMPLE: ~v1, ~v2, ~v1 + ~v2 are never linearly independent (c1 = c2 = 1, c3 = −1

gives a non-trivial relation).
EXAMPLE: ~e1, ~e2 are linearly independent in R2. Indeed, if

c1~e1 + c2~e2 = ~0 ⇐⇒
[
c1
c2

]
=

[
0
0

]
so c1 = c2 = 0. That is, the only linear relation is the trivial one.

EXAMPLE: Suppose span(~v1, ~v2, ~v3) = span(~v1 +~v2, ~v1−~v2), then ~v1, ~v2, ~v3 are
not linearly independent. Indeed, ~v3 = c1(~v1 + ~v2) + c2(~v1 − ~v2) which gives the
non-trivial linear relation

−(c1 + c2)~v1 − (c1 − c2)~v2 + ~v3 = ~0.

EXAMPLE: Are

1
1
0

 ,

−2
−1
1

 ,

−1
1
2

 linearly independent? First compute

rref

1 −2 −1
1 −1 1
0 1 2

 =

1 0 3
0 1 2
0 0 0

 .

This means that the kernel of this matrix is

span

−3
−2
1


That is, there is have non-trivial linear relation

−3

1
1
0

− 2

−2
−1
1

+

−1
1
2

 = ~0

and so the vectors are not linearly independent.

EXAMPLE: Are

1
0
2

 ,

−1
1
0

 ,

1
0
1

 linearly independent? Compute

ker

1 −1 1
0 1 0
2 0 1

 =
{
~0
}

by showing that

rref

1 −1 1
0 1 0
2 0 1

 = I3.
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4. Basis of a subspace

A set of vectors which span a subspace W and which does not have any redun-
dancies is clearly of particular interest. With this in mind for a subspace W ⊂ Rn,
we say a set {~v1, . . . , ~vm} is a basis of W if

(1) ~v1, . . . , ~vm are linearly independent
(2) W = span(~v1, . . . , ~vm).

This ensures that not only do the vectors span the subspace but none of them can
be omitted.

EXAMPLE: ~e1, ~e2 is a basis of R2. Indeed, any vector

~x =

[
x1

x2

]
= x1~e1 + ~e2

so the vectors span. They are linearly indepdent by inspection.
NON-EXAMPLE: ~e1 +~e2 is not a basis of R2 as it does not span (but is linearly

independent).
NON-EXAMPLE: ~e1, ~e2, ~e1 + ~e2 is not a basis of R2 as the set is not linearly

independent (but does span).

EXAMPLE: The subspace
{
~0
}

has no basis. Say its basis is the empty set, ∅.

EXAMPLE: Find basis of ker

[
1 0 −1 2
0 1 1 0

]
. Observe this matrix is already in

RREF so it is easy to determine elements in the kernel. Indeed, there are two free
variables f1 = x3 and f2 = x4. Plugging in specific values for these variables (i.e.,
solving for the pivot variables) gives the following two elements in the kernel:

~v1 =


1
−1
1
0

 (f1 = x3 = 1, f2 = x4 = 0) and ~v2 =


−2
0
0
1

 (f1 = x3 = 0, f2 = x4 = 1)

Clearly, if f1 = s and f2 = t, then a general element of the kernel is of the form
~z = s~v1 + t~v2. In other words, the kernel is spanned by ~v1 and ~v2. Hence, we just
need to check that ~v1, ~v2 are linearly independent to see they are a basis. However,

~0 = c1~v1 + c2~v2 =


c1 − 2c2
−c1
c1
c2

 .

Hence, we must have c1 = 0 (from the third entry) and c2 = 0 (from the fourth
entry). That is the only linear relation is the trivial one and so the vectors are
linearly independent and so form a basis of the kernel.

This example can be generalized to give a procedure for finding the basis of
ker(A) for any matrix A. A basic observation is that ker(A) = ker(rref(A)). This

is becaus the linear system with augmented matrix [A|~0] has the same solutions as

that of rref[A|~0] = [rref(A)|~0]. With that in mind:

(1) Compute rref(A) and use rref(A) to determine free variables.
(2) Label the free variables as f1, . . . , fp.
(3) Let ~vi be solutions corresponding to fi = 1 and fj = 0 for j 6= i. That is,

use rref(A) to solve for the pivot variables in terms of the specified values
of the free variables.
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(4) Basis of ker(A) is ~v1, . . . , ~vp.

In order to justify this first observe that ker(A) = span(~v1, . . . , ~vp). As the element
of ker(A) corresponding to f1 = t1, . . . , fp = tp is t1~v1 + . . . + tp~vp ∈ ker(A).
Similarly, only ~vj has a non-zero entry at row corresponding to fj , so easy to see
~v1, . . . , ~vp are linearly independent and hence form a basis.

EXAMPLE: Find a basis of Im (A) for

A =

1 3 −1
0 −2 1
2 0 1

 =
[
~w1 | ~w2 | ~w3

]
.

We compute

rref(A) =

1 0 1
2

0 1 − 1
2

0 0 0


Hence,

ker(A) = span

− 1
2

1
2
1

 = span

−1
1
2


This means that there is a linear relation amongst the columns of A:

−1

2
~w1 +

1

2
~w2 + ~w3 = −

1
0
2

+

 3
−2
0

+ 2

−1
1
1

 = ~0 ⇐⇒ ~w3 =
1

2
~w1 −

1

2
~w2.

This shows that ~w3 ∈ span(~w1, ~w2). Furthermore, any linear relation

~0 = c1 ~w1 + c2 ~w2 =

c1 + 3c2
−2c2
2c1


which implies 0 = 2c1 = −2c2 and so ~w1, ~w2 are linearly independent and hence
~w1, ~w2 form a basis of Im (A).

This example can also be generalized to give a basis of Im (A) when

A =
[
~w1 | · · · | ~wn

]
.

It is worth noting that, in general, Im (A) 6= Im (rref(A)). Nevertheless, rref(A)
can be used to find the basis. The procedure is as follows:

(1) Compute rref(A) and use this to find the pivot variables.
(2) Let ~y1 = ~wi1 , . . . , ~yq = ~wiq be the columns of A that correspond to the pivot

variables. Call these the pivot columns of A. That is, a pivot column of A
is a one which corresponds to a column of rref(A) that contains a pivot.

(3) A basis of Im (A) is ~y1, . . . , ~vq. That is, the pivot columns of A are a basis
of Im (A).

To understand why this is the case, we will use the vectors ~vi from before. Indeed,

A~vi = ~0

corresponds to a non-trivial linear relation between the non-pivot column corre-
sponding to the ith free variable and all of the pivot columns. In other words, this
non-pivot column lies in span(~y1, . . . , ~yq). As this holds for each non-pivot column,

Im (A) = span(~y1, . . . , ~yq).
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To see why the ~y1, . . . , ~yq are linearly independent, we observe that any non-zero
element of ker(A) must have a non-zero entry in one of the rows corresponding to
free variable. This is because otherwise each free variable is 0 and so the corre-
sponding element of ker(A) is ~0. As any linear relation among ~y1, . . . , ~yq can be
thought of as an element of ker(A) whose entries in the rows corresponding to the
free variables are 0, we see that there are no non-trivial relation among the pivot
columns. That is, the pivot columns are linearly independent and so form a basis.

5. Dimension of subspaces

Fix a subspace W ⊂ Rn. We pose two natural questions:

(1) How many vectors are needed to span W?
(2) How many vectors in W can be linearly independent?

EXAMPLE: When W = Rn, then need at least n vectors to span. Indeed,

Rn = span(~v1, . . . , ~vp) ⇐⇒ Im
[
~v1 | · · · | ~vp

]
= Rn

⇐⇒ rank
[
~v1 | · · · | ~vp

]
= n⇒ p ≥ n.

EXAMPLE: When W = Rn. If ~w1, . . . , ~wq ∈ Rn are linearly independent, then
q ≤ n. Indeed, vectors linearly independent means

ker
[
~w1 | · · · | ~wq

]
=
{
~0
}
⇐⇒ rank

[
~w1 | · · · | ~wq

]
= q ⇒ q ≤ n.

Theorem 5.1. Fix a subspace W ⊂ Rn. If W = span(~v1, . . . , ~vp) and ~w1, . . . , ~wq ∈
W are linearly independent, then p ≥ q.

Proof. Let

A =
[
~v1 | · · · | ~vp

]
and B =

[
~w1 | · · · | ~wq

]
.

A is n× p and B is n× q Our hypotheses ensure Im (A) = W and ker(B) =
{
~0
}

.

Clearly, ~wi ∈W = Im (A) so there are yi ∈ Rp so that ~wi = A~yi. Let

C =
[
~y1 | · · · | ~yq

]
be p × q. We have B = AC. As ker(B) =

{
~0
}

and ker(B) = ker(AC) ⊃ ker(C),

and so ker(C) =
{
~0
}

. This means rank(C) = q and so p ≥ q as claimed. �

Corollary. If ~v1, . . . , ~vp and ~w1, . . . , ~wq are both a basis of W , then p = q.

Proof. ~v1, . . . , ~vp is linearly independent (spans) and ~w1, . . . , ~wq spans (is linearly
independent), so p ≤ q (q ≤ p). Both inequalities are true so p = q. �

This means there is a well-defined notion of dimension of a subspace. Specifically,
iff W ⊂ Rn is a subspace, then the dimension, dim(W ), of W is the number of
elements in a basis of W . The corollary ensures this number is does not depend
on the choice of basis. Strictly speaking, for this definition to make sense for every
subspace need to know it has a basis. You did this in your homework.

Using the Theorem we just proved we make the following observations for W ⊂
Rn a subspace with dim(W ) = m:

(1) One can find at most m linearly independent vectors in W .
(2) Spanning W requires at least m vectors.
(3) If m vectors in W are linearly independent, then they are a basis of W .



LINEAR SUBSPACES 7

(4) If m vectors span W , then they are a basis of W .

EXAMPLE: dim(
{
~0
}

) = 0 because
{
~0
}

has basis the empty set.

EXAMPLE: For ~v 6= 0, dim(span(~v)) = 1, i.e., a line has dimension 1.
EXAMPLE: dim(Rn) = n because Rn has the standard basis, ~e1, . . . , ~en.
EXAMPLE: dim(Im(A)) = rank(A), as pivot columns of A are a basis of Im(A).
EXAMPLE: If W ⊂ V ⊂ Rn, then dim(W ) ≤ dim(V ).
EXAMPLE: W ⊂ Rn a subspace, then dim(W ) ≤ n.

6. Rank-Nullity Theorem

We can relate the dimension of ker(A) and Im (A) to the number of columns of
A. This theorem is sometimes called the fundamental theorem of linear algebra due
to its importance. With this in mind, call dim(ker(A) the nullity of A and write
null(A) := dim(ker(A)).

Theorem 6.1. Let A be a n×m matrix, then,

dim(ker(A)) + dim(Im (A)) = null(A) + rank(A) = m.

Proof. As mentioned, rank(A) is the number of pivot columns. Likewise, null(A)
is the number of non-pivot columns. This is because, each non-pivot column cor-
responds to a unique element of the basis of ker(A) constructed earlier. As each
column of A is either a pivot column or a non-pivot column, the result follows. �

EXAMPLE: Can a 3 × 3 matrix, A, have ker(A) = Im (A)? The answer is no,
as that would mean rank(A) = null(A), but 3 = rank(A) + null(A) is not even.

EXAMPLE: Let A be a n× p matrix and B be a p×m matrix we have

null(AB) ≥ null(B).

This is because ker(B) ⊂ ker(AB).


