1. Subspaces of \mathbb{R}^n

We wish to generalize the notion of lines and planes. To that end, say a subset $W \subset \mathbb{R}^n$ is a *(linear) subspace* if it has the following three properties:

- (1) (Non-empty): $\vec{0} \in W$;
- (2) (Closed under addition): $\vec{v}_1, \vec{v}_2 \in W \Rightarrow \vec{v}_1 + \vec{v}_2 \in W$;
- (3) (Closed under scaling): $\vec{v} \in W$ and $k \in \mathbb{R} \Rightarrow k\vec{v} \in W$.

EXAMPLE: $\left\{ \vec{0} \right\}$ and \mathbb{R}^n are subspaces of \mathbb{R}^n for any $n \ge 1$.

EXAMPLE: Line $\left\{ t \begin{bmatrix} 1 \\ 1 \end{bmatrix} : t \in \mathbb{R} \right\}$ given by $x_1 = x_2$ is a subspace. NON-EXAMPLE: $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x \ge 0, y \ge 0 \right\}$. As $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \in W$, but $- \begin{bmatrix} 1 \\ 1 \end{bmatrix} \notin W$. EXAMPLE: If $T : \mathbb{R}^m \to \mathbb{R}^n$, then ker(T) is a subspace and \mathbb{R}^m and Im (T) is

EXAMPLE: If $I : \mathbb{R}^m \to \mathbb{R}^n$, then $\ker(I)$ is a subspace and \mathbb{R}^m and $\operatorname{Im}(I)$ is a subspace of \mathbb{R}^n . For instance,

- (1) $T(\vec{0}) = \vec{0} \Rightarrow \vec{0} \in \ker(T);$
- (2) $\vec{v}_1, \vec{v}_2 \in \ker(T) \Rightarrow T(\vec{v}_1 + \vec{v}_2) = T(\vec{v}_1) + T(\vec{v}_2) = \vec{0} \Rightarrow \vec{v}_1 + \vec{v}_2 \in \ker(T);$
- (3) $\vec{v} \in \ker(T), k \in \mathbb{R} \to T(k\vec{v}) = kT(\vec{v}) = k\vec{0} = \vec{0} \Rightarrow k\vec{v} \in \ker(T).$

2. Span of vectors

Given a set of vectors $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^n$ we define the *span* of these vectors to be

$$W = span(\vec{v}_1, \dots, \vec{v}_k) = \{c_1\vec{v}_1 + \dots + c_k\vec{v}_k : c_1, \dots, c_m \in \mathbb{R}\}$$

In other words, $\vec{w} \in W$ means \vec{w} is a linear combination of the \vec{v}_i . If

A

s

$$=\begin{bmatrix}ec{v}_1 & | & \cdots & | & ec{v}_m \end{bmatrix}$$

is the $n \times m$ matrix with columns \vec{v}_i , then

$$\operatorname{span}(\vec{v}_1,\ldots,\vec{v}_k) = \operatorname{Im}(A)$$

and so $\operatorname{span}(\vec{v}_1,\ldots,\vec{v}_k)$ is a subspace of \mathbb{R}^n . Thought of the other way around, the image of A is the span of its columns.

Given a subspace $W \subset \mathbb{R}^n$ we say a set of vectors $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^n$ span W if

$$W = \operatorname{span}(\vec{v}_1, \dots, \vec{v}_m)$$

EXAMPLE: span(
$$\vec{0}$$
) = $\{\vec{0}\}$.
EXAMPLE: If \vec{e}_1, \vec{e}_2 are standard vectors in \mathbb{R}^2 , then span(\vec{e}_1, \vec{e}_2) = \mathbb{R}^2 .
EXAMPLE: $\begin{bmatrix} 2\\3\\1 \end{bmatrix} \in \text{span}\left(\begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right) \text{ and } \begin{bmatrix} 2\\1\\0 \end{bmatrix} \notin \text{span}\left(\begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right)$.
 $\operatorname{rref}\begin{bmatrix} 1&0&|&2\\0&1&|&3\\-1&1&|&1 \end{bmatrix} = \begin{bmatrix} 1&0&|&2\\0&1&|&3\\0&0&|&0 \end{bmatrix}$

 \mathbf{SO}

$$\begin{bmatrix} 2\\3\\1 \end{bmatrix} = 2 \begin{bmatrix} 1\\0\\-1 \end{bmatrix} + 3 \begin{bmatrix} 0\\1\\1 \end{bmatrix}.$$
Next compute

$$\operatorname{rref} \begin{bmatrix} 1 & 0 & | & 2\\0 & 1 & | & 1\\-1 & 1 & | & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | & 0\\0 & 1 & | & 0\\0 & 0 & | & 1 \end{bmatrix}$$
As this is inconsistent, and so there is no way to write:

$$\begin{bmatrix} 2\\1\\0 \end{bmatrix} = c_1 \begin{bmatrix} 1\\0\\-1 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$

3. Linear independence

Many different sets of vectors may span the same subspace. For instance,

$$W = \operatorname{span}(\vec{v}_1, \vec{v}_2, \vec{v}_1 + \vec{v}_2) = \operatorname{span}(\vec{v}_1, \vec{v}_2).$$

Indeed, $c_1\vec{v}_1 + c_2\vec{v}_2 + c_3(\vec{v}_1 + \vec{v}_2) = (c_1 + c_3)\vec{v}_1 + (c_1 + c_3)\vec{v}_2$. In other words, $\vec{v}_1 + \vec{v}_2$ is redundant and is not needed to describe the subspace W. To formalize this, define a linear relation among $\vec{v}_1, \ldots, \vec{v}_m$ to be an equation of the form

$$c_1\vec{v}_1 + \dots + c_m\vec{v}_m = 0.$$

There is always such a solution with $c_1 = \cdots = c_m = 0$. A non-trivial relation is one in which at least one $c_i \neq 0$

EXAMPLE:

$$2\begin{bmatrix}1\\1\end{bmatrix} - 3\begin{bmatrix}1\\0\end{bmatrix} - \begin{bmatrix}-1\\2\end{bmatrix} = \vec{0}$$

is a non-trivial linear relation amongst three vectors and this can be rewritten

$$\begin{bmatrix} 1\\0 \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1\\1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} -1\\2 \end{bmatrix}$$

EXAMPLE: Suppose $\vec{v}_1, \ldots, \vec{v}_m$ admit a non-trivial relation

$$c_1\vec{v}_1 + \dots + c_m\vec{v}_m = 0$$

with $c_m \neq 0$, then $\operatorname{span}(\vec{v}_1, \cdots, \vec{v}_{m-1}) = \operatorname{span}(\vec{v}_1, \cdots, \vec{v}_m)$. That is the vector \vec{v}_m is redundant and can be omitted.

If

$$A = \begin{bmatrix} \vec{v}_1 & | & \cdots & | & \vec{v}_m \end{bmatrix}$$

is the matrix with columns the vectors \vec{v}_i , then a linear relation can be identified with a unique element of ker(A). Indeed,

$$c_1 \vec{v}_1 + \ldots + c_m \vec{v}_m = \vec{0} \iff \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix} \in \ker(A).$$

Furthermore, a non-trivial relation corresponds to a non-zero entry of ker(A).

We say $\vec{v}_1, \ldots, \vec{v}_m$ are *linearly independent* if they have no non-trivial relation, that is, if $ker(A) = \{\vec{0}\}$. Put another way, $ker(A) = \{\vec{0}\}$ if and only if the columns of A are linearly independent.

EXAMPLE: If $\vec{v}_1, \ldots, \vec{v}_m \ (m \ge 2)$ are linearly independent, then

$$\operatorname{span}(\vec{v}_1,\ldots,\vec{v}_{m-1}) \subsetneq \operatorname{span}(\vec{v}_1,\ldots,\vec{v}_m).$$

That is, there is no redundancy for linearly independent sets of vectors. More generally none of the vectors can be omitted without making the span smaller.

EXAMPLE: $(m = 1) \vec{v_1}$ is linear independent if and only if $\vec{v_1} \neq 0$.

EXAMPLE: $\vec{v}_1, \vec{v}_2, \vec{v}_1 + \vec{v}_2$ are never linearly independent ($c_1 = c_2 = 1, c_3 = -1$ gives a non-trivial relation).

EXAMPLE: \vec{e}_1, \vec{e}_2 are linearly independent in \mathbb{R}^2 . Indeed, if

$$c_1 \vec{e}_1 + c_2 \vec{e}_2 = \vec{0} \iff \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

so $c_1 = c_2 = 0$. That is, the only linear relation is the trivial one.

EXAMPLE: Suppose $\operatorname{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \operatorname{span}(\vec{v}_1 + \vec{v}_2, \vec{v}_1 - \vec{v}_2)$, then $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are not linearly independent. Indeed, $\vec{v}_3 = c_1(\vec{v}_1 + \vec{v}_2) + c_2(\vec{v}_1 - \vec{v}_2)$ which gives the non-trivial linear relation

$$-(c_1+c_2)\vec{v}_1 - (c_1-c_2)\vec{v}_2 + \vec{v}_3 = 0$$

EXAMPLE: Are $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} -2\\-1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\2 \end{bmatrix}$ linearly independent? First compute $\operatorname{rref} \begin{bmatrix} 1 & -2 & -1\\1 & -1 & 1\\0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3\\0 & 1 & 2\\0 & 0 & 0 \end{bmatrix}.$

This means that the kernel of this matrix is

$$\operatorname{span}\left(\begin{bmatrix} -3\\ -2\\ 1 \end{bmatrix} \right)$$

That is, there is have non-trivial linear relation

$$-3\begin{bmatrix}1\\1\\0\end{bmatrix} - 2\begin{bmatrix}-2\\-1\\1\end{bmatrix} + \begin{bmatrix}-1\\1\\2\end{bmatrix} = \vec{0}$$

and so the vectors are not linearly independent.

EXAMPLE: Are $\begin{bmatrix} 1\\0\\2 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ linearly independent? Compute ker $\begin{bmatrix} 1 & -1 & 1\\0 & 1 & 0\\2 & 0 & 1 \end{bmatrix} = \{\vec{0}\}$

by showing that

$$\operatorname{rref} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} = I_3.$$

4. Basis of a subspace

A set of vectors which span a subspace W and which does not have any redundancies is clearly of particular interest. With this in mind for a subspace $W \subset \mathbb{R}^n$, we say a set $\{\vec{v}_1, \ldots, \vec{v}_m\}$ is a *basis of* W if

(1) $\vec{v}_1, \ldots, \vec{v}_m$ are linearly independent

(2) $W = \operatorname{span}(\vec{v}_1, \dots, \vec{v}_m).$

This ensures that not only do the vectors span the subspace but none of them can be omitted.

EXAMPLE: \vec{e}_1, \vec{e}_2 is a basis of \mathbb{R}^2 . Indeed, any vector

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \vec{e}_1 + \vec{e}_2$$

so the vectors span. They are linearly indepdent by inspection.

NON-EXAMPLE: $\vec{e_1} + \vec{e_2}$ is not a basis of \mathbb{R}^2 as it does not span (but is linearly independent).

NON-EXAMPLE: $\vec{e_1}, \vec{e_2}, \vec{e_1} + \vec{e_2}$ is not a basis of \mathbb{R}^2 as the set is not linearly independent (but does span).

EXAMPLE: The subspace $\{\vec{0}\}\$ has no basis. Say its basis is the empty set, \emptyset . EXAMPLE: Find basis of ker $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & 0 \end{bmatrix}$. Observe this matrix is already in

EXAMPLE: Find basis of ker $\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$. Observe this matrix is already in RREF so it is easy to determine elements in the kernel. Indeed, there are two free variables $f_1 = x_3$ and $f_2 = x_4$. Plugging in specific values for these variables (i.e., solving for the pivot variables) gives the following two elements in the kernel:

$$\vec{v}_1 = \begin{bmatrix} 1\\ -1\\ 1\\ 0 \end{bmatrix} (f_1 = x_3 = 1, f_2 = x_4 = 0) \text{ and } \vec{v}_2 = \begin{bmatrix} -2\\ 0\\ 0\\ 1 \end{bmatrix} (f_1 = x_3 = 0, f_2 = x_4 = 1)$$

Clearly, if $f_1 = s$ and $f_2 = t$, then a general element of the kernel is of the form $\vec{z} = s\vec{v}_1 + t\vec{v}_2$. In other words, the kernel is spanned by \vec{v}_1 and \vec{v}_2 . Hence, we just need to check that \vec{v}_1, \vec{v}_2 are linearly independent to see they are a basis. However,

$$\vec{0} = c_1 \vec{v}_1 + c_2 \vec{v}_2 = \begin{bmatrix} c_1 - 2c_2 \\ -c_1 \\ c_1 \\ c_2 \end{bmatrix}$$

Hence, we must have $c_1 = 0$ (from the third entry) and $c_2 = 0$ (from the fourth entry). That is the only linear relation is the trivial one and so the vectors are linearly independent and so form a basis of the kernel.

This example can be generalized to give a procedure for finding the basis of $\ker(A)$ for any matrix A. A basic observation is that $\ker(A) = \ker(\operatorname{rref}(A))$. This is becaus the linear system with augmented matrix $[A|\vec{0}]$ has the same solutions as that of $\operatorname{rref}[A|\vec{0}] = [\operatorname{rref}(A)|\vec{0}]$. With that in mind:

- (1) Compute $\operatorname{rref}(A)$ and use $\operatorname{rref}(A)$ to determine free variables.
- (2) Label the free variables as f_1, \ldots, f_p .
- (3) Let \vec{v}_i be solutions corresponding to $f_i = 1$ and $f_j = 0$ for $j \neq i$. That is, use rref(A) to solve for the pivot variables in terms of the specified values of the free variables.

(4) Basis of ker(A) is $\vec{v}_1, \ldots, \vec{v}_p$.

In order to justify this first observe that $\ker(A) = \operatorname{span}(\vec{v}_1, \ldots, \vec{v}_p)$. As the element of ker(A) corresponding to $f_1 = t_1, \ldots, f_p = t_p$ is $t_1 \vec{v}_1 + \ldots + t_p \vec{v}_p \in \text{ker}(A)$. Similarly, only \vec{v}_j has a non-zero entry at row corresponding to f_j , so easy to see $\vec{v}_1, \ldots, \vec{v}_p$ are linearly independent and hence form a basis.

EXAMPLE: Find a basis of Im(A) for

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 0 & -2 & 1 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \vec{w}_1 & | & \vec{w}_2 & | & \vec{w}_3 \end{bmatrix}.$$

We compute

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Hence,

$$\ker(A) = \operatorname{span}\left(\begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 1 \end{bmatrix} \right) = \operatorname{span}\left(\begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} \right)$$

This means that there is a linear relation amongst the columns of A:

$$-\frac{1}{2}\vec{w}_1 + \frac{1}{2}\vec{w}_2 + \vec{w}_3 = -\begin{bmatrix}1\\0\\2\end{bmatrix} + \begin{bmatrix}3\\-2\\0\end{bmatrix} + 2\begin{bmatrix}-1\\1\\1\end{bmatrix} = \vec{0} \iff \vec{w}_3 = \frac{1}{2}\vec{w}_1 - \frac{1}{2}\vec{w}_2.$$

-

This shows that $\vec{w}_3 \in \text{span}(\vec{w}_1, \vec{w}_2)$. Furthermore, any linear relation

$$\vec{0} = c_1 \vec{w_1} + c_2 \vec{w_2} = \begin{bmatrix} c_1 + 3c_2 \\ -2c_2 \\ 2c_1 \end{bmatrix}$$

which implies $0 = 2c_1 = -2c_2$ and so \vec{w}_1, \vec{w}_2 are linearly independent and hence \vec{w}_1, \vec{w}_2 form a basis of Im (A).

This example can also be generalized to give a basis of Im(A) when

$$A = \begin{bmatrix} \vec{w}_1 & | & \cdots & | & \vec{w}_n \end{bmatrix}.$$

It is worth noting that, in general, $\operatorname{Im}(A) \neq \operatorname{Im}(\operatorname{rref}(A))$. Nevertheless, $\operatorname{rref}(A)$ can be used to find the basis. The procedure is as follows:

- (1) Compute $\operatorname{rref}(A)$ and use this to find the pivot variables.
- (2) Let $\vec{y}_1 = \vec{w}_{i_1}, \ldots, \vec{y}_q = \vec{w}_{i_q}$ be the columns of A that correspond to the pivot variables. Call these the *pivot columns of* A. That is, a pivot column of Ais a one which corresponds to a column of $\operatorname{rref}(A)$ that contains a pivot.
- (3) A basis of Im (A) is $\vec{y}_1, \ldots, \vec{v}_q$. That is, the pivot columns of A are a basis of $\operatorname{Im}(A)$.

To understand why this is the case, we will use the vectors \vec{v}_i from before. Indeed,

 $A\vec{v}_i = \vec{0}$

corresponds to a non-trivial linear relation between the non-pivot column corresponding to the *i*th free variable and all of the pivot columns. In other words, this non-pivot column lies in span $(\vec{y}_1, \ldots, \vec{y}_q)$. As this holds for each non-pivot column,

$$\operatorname{Im}(A) = \operatorname{span}(\vec{y}_1, \dots, \vec{y}_q).$$

To see why the $\vec{y}_1, \ldots, \vec{y}_q$ are linearly independent, we observe that any non-zero element of ker(A) must have a non-zero entry in one of the rows corresponding to free variable. This is because otherwise each free variable is 0 and so the corresponding element of ker(A) is $\vec{0}$. As any linear relation among $\vec{y}_1, \ldots, \vec{y}_q$ can be thought of as an element of ker(A) whose entries in the rows corresponding to the free variables are 0, we see that there are no non-trivial relation among the pivot columns. That is, the pivot columns are linearly independent and so form a basis.

5. DIMENSION OF SUBSPACES

Fix a subspace $W \subset \mathbb{R}^n$. We pose two natural questions:

- (1) How many vectors are needed to span W?
- (2) How many vectors in W can be linearly independent?

EXAMPLE: When $W = \mathbb{R}^n$, then need at least *n* vectors to span. Indeed,

 $\mathbb{R}^n = \operatorname{span}(\vec{v}_1, \dots, \vec{v}_p) \iff \operatorname{Im} \begin{bmatrix} \vec{v}_1 & | & \cdots & | & \vec{v}_p \end{bmatrix} = \mathbb{R}^n$

$$\iff \operatorname{rank}\begin{bmatrix} \vec{v}_1 & | & \cdots & | & \vec{v}_p \end{bmatrix} = n \Rightarrow p \ge n.$$

EXAMPLE: When $W = \mathbb{R}^n$. If $\vec{w}_1, \ldots, \vec{w}_q \in \mathbb{R}^n$ are linearly independent, then $q \leq n$. Indeed, vectors linearly independent means

$$\ker \begin{bmatrix} \vec{w_1} & | & \cdots & | & \vec{w_q} \end{bmatrix} = \left\{ \vec{0} \right\} \iff \operatorname{rank} \begin{bmatrix} \vec{w_1} & | & \cdots & | & \vec{w_q} \end{bmatrix} = q \Rightarrow q \le n.$$

Theorem 5.1. Fix a subspace $W \subset \mathbb{R}^n$. If $W = span(\vec{v}_1, \ldots, \vec{v}_p)$ and $\vec{w}_1, \ldots, \vec{w}_q \in W$ are linearly independent, then $p \ge q$.

Proof. Let

$$A = \begin{bmatrix} \vec{v}_1 & | & \cdots & | & \vec{v}_p \end{bmatrix} \text{ and } B = \begin{bmatrix} \vec{w}_1 & | & \cdots & | & \vec{w}_q \end{bmatrix}.$$

A is $n \times p$ and B is $n \times q$ Our hypotheses ensure Im (A) = W and ker $(B) = \{\vec{0}\}$. Clearly, $\vec{w_i} \in W = \text{Im}(A)$ so there are $y_i \in \mathbb{R}^p$ so that $\vec{w_i} = A\vec{y_i}$. Let

$$C = \begin{bmatrix} \vec{y}_1 & | & \cdots & | & \vec{y}_q \end{bmatrix}$$

be $p \times q$. We have B = AC. As $\ker(B) = \{\vec{0}\}$ and $\ker(B) = \ker(AC) \supset \ker(C)$, and so $\ker(C) = \{\vec{0}\}$. This means $\operatorname{rank}(C) = q$ and so $p \ge q$ as claimed. \Box

Corollary. If $\vec{v}_1, \ldots, \vec{v}_p$ and $\vec{w}_1, \ldots, \vec{w}_q$ are both a basis of W, then p = q.

Proof. $\vec{v}_1, \ldots, \vec{v}_p$ is linearly independent (spans) and $\vec{w}_1, \ldots, \vec{w}_q$ spans (is linearly independent), so $p \leq q$ $(q \leq p)$. Both inequalities are true so p = q.

This means there is a well-defined notion of dimension of a subspace. Specifically, iff $W \subset \mathbb{R}^n$ is a subspace, then the *dimension*, $\dim(W)$, of W is the number of elements in a basis of W. The corollary ensures this number is does not depend on the choice of basis. Strictly speaking, for this definition to make sense for *every* subspace need to know it has a basis. You did this in your homework.

Using the Theorem we just proved we make the following observations for $W \subset \mathbb{R}^n$ a subspace with dim(W) = m:

- (1) One can find at most m linearly independent vectors in W.
- (2) Spanning W requires at least m vectors.
- (3) If m vectors in W are linearly independent, then they are a basis of W.

 $\mathbf{6}$

(4) If *m* vectors span *W*, then they are a basis of *W*. EXAMPLE: dim $(\{\vec{0}\}) = 0$ because $\{\vec{0}\}$ has basis the empty set. EXAMPLE: For $\vec{v} \neq 0$, dim $(\text{span}(\vec{v})) = 1$, i.e., a line has dimension 1. EXAMPLE: dim $(\mathbb{R}^n) = n$ because \mathbb{R}^n has the *standard basis*, $\vec{e}_1, \ldots, \vec{e}_n$. EXAMPLE: dim(Im(A)) = rank(A), as pivot columns of *A* are a basis of Im(A). EXAMPLE: If $W \subset V \subset \mathbb{R}^n$, then dim $(W) \leq \dim(V)$. EXAMPLE: $W \subset \mathbb{R}^n$ a subspace, then dim $(W) \leq n$.

6. RANK-NULLITY THEOREM

We can relate the dimension of ker(A) and Im (A) to the number of columns of A. This theorem is sometimes called the *fundamental theorem of linear algebra* due to its importance. With this in mind, call dim(ker(A) the *nullity* of A and write null(A) := dim(ker(A)).

Theorem 6.1. Let A be a $n \times m$ matrix, then,

 $\dim(\ker(A)) + \dim(\operatorname{Im}(A)) = \operatorname{null}(A) + \operatorname{rank}(A) = m.$

Proof. As mentioned, rank(A) is the number of pivot columns. Likewise, null(A) is the number of non-pivot columns. This is because, each non-pivot column corresponds to a unique element of the basis of ker(A) constructed earlier. As each column of A is either a pivot column or a non-pivot column, the result follows. \Box

EXAMPLE: Can a 3×3 matrix, A, have ker(A) = Im(A)? The answer is no, as that would mean rank(A) = null(A), but 3 = rank(A) + null(A) is not even. EXAMPLE: Let A be a $n \times p$ matrix and B be a $p \times m$ matrix we have

 $\operatorname{null}(AB) \ge \operatorname{null}(B).$

This is because $\ker(B) \subset \ker(AB)$.