
SPECTRAL THEOREM

Orthogonal Diagonalizable A diagonal matrix D has eigenbasis E = (~e1, . . . , ~en)
which is an orthonormal basis. It’s a natural question to ask when a matrix A can
have an orthonormal basis. As such we say, A ∈ Rn×n is orthogonally diagonalizable
if A has an eigenbasis B that is also an orthonormal basis. This is equivalent to the
statement that there is an orthogonal matrix Q so that Q−1AQ = Q>AQ = D is
diagonal.

Theorem 0.1. If A is orthogonally diagonalizable, then A is symmetric.

Proof. By definition, there is an orthogonal matrix Q so that

Q−1AQ = Q>AQ = D ⇒ A = QDQ−1

where D is diagonal. As D> = D, we have

D = D> = (Q>AQ)> = Q>A>(Q>)> = Q−1A>Q.

Here we used that orthogonal matrices satisfy Q> = Q−1. Hence,

A> = QDQ−1 = A

�

EXAMPLE: A =

[
1 3
−1 2

]
is not orthogonally diagonalizable as A> 6= A.

Remarkably, the converse to this theorem is also true.

Theorem 0.2. (Spectral theorem) A ∈ Rn×n is orthogonally diagonalizable if and
only if it is symmetric.

An important consequence of this is that a symmetric n×n matrix has (counting
multiplicities) exactly n (real) eigenvalues

EXAMPLE: Orthogonally diagonalize

A =

1 1 1
1 1 1
1 1 1


This is symmetric so can be orthogonally diagonalized by the spectral theorem. By
inspection, rank(A) = 1 so null(A) = 2. This means that 0 is an eigenvalue of A

with geometric multiplicity 2. Similarly, by inspection,

1
1
1

 is an eigenvector with

eigenvalue 3. As 3 ≥ gemu(0) + gemu(3) ≥ 2 + 1 = 3 we can conclude that we have
found all possible eigenvalues. An elementary computation implies,

E0 = ker(A) = span

−1
1
0

 ,
−1

0
1


1
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and

E3 = span

1
1
1

 .

Notice, E3 = E⊥0 (recall this holds in general–see below). Hence, to find a orthonor-
mal eigenbasis, enough to find an orthonormal eigenbasis of E0 and of E3 and then
concatenate the two. Applying Gram-Schmidt to the basis of E0 we found, we
obtain

E0 = span


−
√
2
2√
2
2
0

 ,
−
√
6
6

−
√
6
6√
6
3




and

E3 = span



√
3
3√
3
3√
3
3


 .

Hence, if we set

Q =

−
√
2
2 −

√
6
6

√
3
3√

2
2 −

√
6
6

√
3
3

0
√
6
3

√
3
3

 .
then Q is orthogonal and

Q−1AQ =

0 0 0
0 0 0
0 0 3

 .
1. Sketch of Proof of Spectral Theorem

In order to prove the spectral theorem, we will need the following weaker state-
ment:

Theorem 1.1. If A ∈ Rn×n is symmetric, then it has exactly n eigenvalues count-
ing multiplicities.

Proof. This theorem is most easily proved using complex numbers (see textbook
for details). It can also be proved using ideas from calculus. We will prove it for
2× 2. In this case, A being symmetric means

A =

[
a b
b d

]
,

we have
fA(λ) = λ2 − (a+ d)λ+ (ad− b2)

The discriminant of fA is D = (a+ d)2 − 4(ad− b2) = a2 + 2ad+ d2 − 4ad+ 4b2 =
(a− d)2 + 4b2 ≥ 0 Hence, fA always has real roots. It has distinct real roots unless
a = d and b = 0, i.e., unless A is diagonal. �

This says that we have enough eigenvalues to diagonalize, we just need to find
an eigenbasis of A that is an orthonormal basis. If all eigenvalues are distinct, this
is not hard, as eigenvectors with different eigenvalues are orthogonal so we just take
eigenbasis consisting of unit vectors. To see this claim observe that

λi~vi · ~vj = A~vi · ~vj = ~vi ·A>~vj = ~vi ·A~vj = λj~vi · ~vj .
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Thus, if λi 6= λj , then ~vi · ~vj = 0.
The situation is more complicated if there is repeated eigenvalues. For instance,

one might worry the matrix is “defective,” that is the sum of the geometric multi-
plicities might be less than n. When n = 2 we already saw the matrix is diagonal so
trivial in this case and can show this doesn’t happen for larger n. Arguing as in the
example above, one finds the orthonormal eigenbasis by applying Gram-Schmidt to
each eigenspace and then concatenating.


