ORTHOGONAL MATRICES AND THE TRANSPOSE

1. Pythagorean Theorem and Cauchy Inequality

We wish to generalize certain geometric facts from \mathbb{R}^{2} to \mathbb{R}^{n}.
Theorem 1.1. (Pythagorean Theorem) Given two vectors $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ we have

$$
\|\vec{x}+\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2} \Longleftrightarrow \vec{x} \cdot \vec{y}=0 .
$$

Proof. One computes

$$
\|\vec{x}+\vec{y}\|^{2}=(\vec{x}+\vec{y}) \cdot(\vec{x}+\vec{y})=\|\vec{x}\|^{2}+2 \vec{x} \cdot \vec{y}+\|\vec{y}\|^{2} .
$$

Hence, $\|\vec{x}+\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2} \Longleftrightarrow \vec{x} \cdot \vec{y}=0$.
A consequence, of this is that for any subspace, $V \subset \mathbb{R}^{n},\left\|\operatorname{proj}_{V}(\vec{x})\right\| \leq\|\vec{x}\|$. To see this, note that $\vec{x}=\operatorname{proj}_{V}(\vec{x})+\vec{x}^{\perp}$ and two terms are orthogonal. Hence, by the Pythagorean theorem

$$
\|\vec{x}\|^{2}=\left\|\operatorname{proj}_{V}(\vec{x})\right\|^{2}+\left\|\vec{x}^{\perp}\right\|^{2} \geq\left\|\operatorname{proj}_{V}(\vec{x})\right\|^{2}
$$

Theorem 1.2. (Cauchy-Schwarz Inequality) If $\vec{x}, \vec{y} \in \mathbb{R}^{n}$, then $|\vec{x} \cdot \vec{y}| \leq\|\vec{x}|\|| | \vec{y}\|$.
Proof. Suppose $\vec{y} \neq 0$ (its trivial otherwise). Let $\vec{u}=\frac{1}{\|\vec{y}\|} \vec{y}$. If $V=\operatorname{span}(\vec{y})=$ $\operatorname{span}(\vec{u})$, then

$$
\operatorname{proj}_{V}(\vec{x})=\|(\vec{x} \cdot \vec{u}) \vec{u}\|=|\vec{x} \cdot \vec{u}|=\frac{|\vec{x} \cdot \vec{y}|}{\|\vec{y}\|} .
$$

Hence,

$$
\|\vec{x}\| \geq\left\|\operatorname{proj}_{V}(\vec{x})\right\|=\frac{|\vec{x} \cdot \vec{y}|}{\|\vec{y}\|}
$$

multiplying through completes proof.
Recall, for non-zero $\vec{x}, \vec{y} \in \mathbb{R}^{2}$ we observed that

$$
\vec{x} \cdot \vec{y}=\|\vec{x}\|\|\vec{y}\| \cos \theta
$$

where θ was the angle between \vec{x} and \vec{y}. The Cauchy-Schwarz inequality implies we can define the angle, θ, between non-zero $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ in general to be

$$
\theta=\arccos \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|\|\vec{y}\|} .
$$

2. Orthogonal Transformations and Matrices

Linear transformations that preserve length are of particular interest. A linear transform $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orthogonal if for all $\vec{x} \in \mathbb{R}^{n}$

$$
\|T(\vec{x})\|=\|\vec{x}\| .
$$

Likewise, a matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if $U=[T]$ for T an orthogonal transformation. That is, for all \vec{x},

$$
\|U \vec{x}\|=\|\vec{x}\|
$$

EXAMPLE: $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, rotation counter-clockwise by θ, is orthogonal.

NON-EXAMPLE: If $V \neq \mathbb{R}^{n}$, then $\operatorname{proj}_{V}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is not orthogonal. Indeed, $\vec{w} \notin V$ satisfies $\left\|\operatorname{proj}_{V}(\vec{w})\right\|<\|\vec{w}\|$.

3. Properties of Orthogonal transformations

Orthogonal transformations are so called as they preserve orthogonality:
Theorem 3.1. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orthogonal and $\vec{v} \cdot \vec{w}=0$, then $T(\vec{v}) \cdot T(\vec{w})=0$.
The matrices $k I_{n}$ preserve orthogonality, but are only orthogonal when $|k|=1$.
Proof. We have
$\|T(\vec{v})+T(\vec{w})\|^{2}=\|T(\vec{v}+\vec{w})\|^{2}=\|\vec{v}+\vec{w}\|^{2}=\|\vec{v}\|^{2}+\|\vec{w}\|^{2}=\|T(\vec{v})\|^{2}+\|T(\vec{w})\|^{2}$
Hence, the claim follows from the Pythagorean theorem.
We have
(1) Alinear tranform $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orthogonal if and only if $T\left(\vec{e}_{1}\right), \ldots, T\left(\vec{e}_{n}\right)$ is an orthonormal basis of \mathbb{R}^{n}
(2) Similar, $U \in \mathbb{R}^{n \times n}$ is orthogonal if and only if the columns of U form an orthonormal basis of \mathbb{R}^{n}.
To see the first claim, note that if T is orthogonal, then by definition $T\left(\vec{e}_{i}\right)$ is unit and the previous result implies $T\left(\vec{e}_{i}\right) \cdot T\left(\vec{e}_{j}\right)=0$ for $i \neq j$ (as $\vec{e}_{i} \cdot \vec{e}_{j}=0$). Hence, $T\left(\vec{e}_{1}\right), \ldots, T\left(\vec{e}_{n}\right)$ is an orthonormal basis. Conversely, suppose $T\left(\vec{e}_{1}\right), \ldots, T\left(\vec{e}_{n}\right)$ forms an orthonormal basis. Consider $\vec{x}=x_{1} \vec{e}_{1}+\ldots+x_{n} \vec{e}_{n}$ We compute

$$
\|T(\vec{x})\|^{2}=\left\|x_{1} T\left(\vec{e}_{1}\right)+\ldots+x_{n} T\left(\vec{e}_{n}\right)\right\|^{2}=\left\|x_{1} T\left(\vec{e}_{1}\right)\right\|^{2}+\ldots+\left\|x_{n} T\left(\vec{e}_{n}\right)\right\|^{2}=\|\vec{x}\|^{2} .
$$

This completes the proof of Claim (1). The second claim is immediate.
Theorem 3.2. If $A, B \in \mathbb{R}^{n \times n}$ are orthogonal, then so is $A B$. Moreover, A is invertible and A^{-1} is also orthogonal.

Proof. As A and B are orthogonal, we have for any $\vec{x} \in \mathbb{R}^{n}$

$$
\|A B \vec{x}\|=\|A(B \vec{x})\|=\|B \vec{x}\|=\|\vec{x}\|
$$

This proves the first claim. For the second claim, note that if $A \vec{z}=\overrightarrow{0}$, then

$$
\|\vec{z}\|=\|A \vec{z}\|=\|\overrightarrow{0}\|=0
$$

hence, $\vec{x}=\overrightarrow{0}$. In particular, $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ so A is invertible. Furthermore,

$$
\left\|A^{-1} \vec{x}\right\|=\left\|A\left(A^{-1} \vec{x}\right)\right\|=\|\vec{x}\|
$$

so A^{-1} is orthonormal.

4. Transpose

Consider an $m \times n$ matrix A. The transpose, A^{\top}, of A is the $n \times m$ matrix whose entry in the i th row and j th column is the entry of A in the j th row and i th column. Geometrically, A^{\top} is obtained from A by reflecting across the diagonal of A.We say A is symmetric if $A^{\top}=A$ and A is skew-symmetric if $A^{\top}=-A$.

EXAMPLE:

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right]^{\top}=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

We compute for $\vec{v}, \vec{w} \in \mathbb{R}^{n}$ that

$$
\vec{v} \cdot \vec{w}=\vec{v}^{\top} \vec{w}
$$

EXAMPLE:

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]^{\top}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=1(-1)+2(1)=1
$$

Theorem 4.1. $A \in \mathbb{R}^{n \times n}$ is orthogonal if and only if $A^{\top} A=I_{n}$, i.e., $A^{-1}=A^{\top}$.
Proof. Let

$$
A=\left[\begin{array}{lllll}
\vec{v}_{1} & \mid & \cdots & \vec{v}_{n}
\end{array}\right] .
$$

Hence,

$$
A^{\top}=\left[\begin{array}{c}
\vec{v}_{1}^{\top} \\
\vdots \\
\vec{v}_{n}^{\top}
\end{array}\right]
$$

and so

$$
A^{\top} A=\left[\begin{array}{ccc}
\vec{v}_{1} \cdot \vec{v}_{2} & \cdots & \vec{v}_{1} \cdot \vec{v}_{n} \\
\vdots & \ddots & \vdots \\
\vec{v}_{n} \cdot \vec{v}_{i} & \cdots & \vec{v}_{n} \cdot \vec{v}_{n}
\end{array}\right]
$$

Clearly, $A^{\top} A=I_{n}$ if and only if the columns of A are orthonormal.

5. Properties of Transpose

The transpose has has several natural algebraic properties
(1) $(A+B)^{\top}=A^{\top}+B^{\top}$ for $A, B \in \mathbb{R}^{n \times m}$.
(2) $(k A)^{\top}=k A^{\top}$ for $A \in \mathbb{R}^{n \times m}, k \in \mathbb{R}$.
(3) $(A B)^{\top}=B^{\top} A^{\top}$ for $A \in \mathbb{R}^{n \times p}, B \in \mathbb{R}^{p \times m}$.
(4) $(A \vec{x}) \cdot \vec{y}=\vec{x} \cdot A^{\top} \vec{y}$ for $A \in \mathbb{R}^{n \times m}, \vec{x} \in \mathbb{R}^{m}, \vec{y} \in \mathbb{R}^{n}$.
(5) $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$ for $A \in \mathbb{R}^{n \times n}$ invertible.

Properties (1) and (2) are straightforward to check. To see property (3), write A and B in terms of of their rows and columns

$$
A=\left[\begin{array}{c}
\vec{w}_{1}^{\top} \\
\vdots \\
\vec{w}_{n}^{\top}
\end{array}\right] \text { and } B=\left[\begin{array}{lllll}
\vec{v}_{1} & \mid & \cdots & \mid & \vec{v}_{m}
\end{array}\right]
$$

Where $\vec{v}_{i}, \vec{w}_{j} \in \mathbb{R}^{p}$. Likewise,

$$
\begin{gathered}
A^{\top}=\left[\begin{array}{llll}
\vec{w}_{1} & \mid & \cdots & \mid \\
\vec{w}_{n}
\end{array}\right] \text { and } B^{\top}=\left[\begin{array}{c}
\vec{v}_{1}^{\top} \\
\vdots \\
\vec{v}_{m}^{\top}
\end{array}\right] \\
A B=\left[\begin{array}{ccc}
\vec{w}_{1}^{\top} \vec{v}_{1} & \cdots & \vec{w}_{1}^{\top} \vec{v}_{m} \\
\vdots & \ddots & \vdots \\
\vec{w}_{n}^{\top} \vec{v}_{1} & \cdots & \vec{w}_{n}^{\top} \vec{v}_{m}
\end{array}\right]=\left[\begin{array}{ccc}
\vec{v}_{1} \cdot \vec{w}_{1} & \cdots & \vec{v}_{m} \cdot \vec{w}_{1} \\
\vdots & \ddots & \vdots \\
\vec{v}_{1} \cdot \vec{w}_{n} & \cdots & \vec{v}_{m} \cdot \vec{w}_{n}
\end{array}\right] \\
B^{\top} A^{\top}=\left[\begin{array}{ccc}
\vec{v}_{1}^{\top} \vec{w}_{1} & \cdots & \vec{v}_{1}^{\top} \vec{w}_{n} \\
\vdots & \ddots & \vdots \\
\vec{v}_{m}^{\top} \vec{w}_{1} & \cdots & \vec{v}_{m}^{\top} \vec{w}_{n}
\end{array}\right]=\left[\begin{array}{ccc}
\vec{v}_{1} \cdot \vec{w}_{1} & \cdots & \vec{v}_{1} \cdot \vec{w}_{n} \\
\vdots & \ddots & \vdots \\
\vec{v}_{m} \cdot \vec{w}_{1} & \cdots & \vec{v}_{m} \cdot \vec{w}_{n}
\end{array}\right]
\end{gathered}
$$

One concludes that $(A B)^{\top}=B^{\top} A^{\top}$. To see Property (4) use

$$
(A \vec{x}) \cdot \vec{y}=(A \vec{x})^{\top} \vec{y}=\left(\vec{x}^{\top} A^{\top}\right) \vec{y}=\vec{x}^{\top}\left(A^{\top} \vec{y}\right)=\vec{x} \cdot\left(A^{\top} \vec{y}\right) .
$$

Finally, Property (5) can be seen by noting that, as A is invertible,

$$
I_{n}=A A^{-1} \Rightarrow I_{n}=I_{n}^{\top}=\left(A A^{-1}\right)^{\top}=\left(A^{-1}\right)^{\top} A^{\top}
$$

Hence, $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$.
Theorem 5.1. Consider a $A \in \mathbb{R}^{n \times n}$. The following are equivalent
(1) A is orthogonal matrix
(2) The transformation $T(\vec{x})=A \vec{x}$ is orthogonal (i.e. preserves length)
(3) The columns of A form a orthonormal basis of \mathbb{R}^{n}
(4) $A^{\top} A=I_{n}$
(5) $A^{-1}=A^{\top}$
(6) A preserves the dot product, i.e. $A \vec{x} \cdot A \vec{y}=\vec{x} \cdot \vec{y}$

Proof. We've already seen why (1)-(4) are equivalent. (4) $\Longleftrightarrow(5)$ is immediate. Finally,

$$
A \vec{x} \cdot A \vec{y}=\vec{x}\left(A^{\top} A\right) \vec{y}
$$

So $(4) \Rightarrow(6)$. Going the other direction,

$$
\|A \vec{x}\|^{2}=A \vec{x} \cdot A \vec{x}
$$

so $(6) \Rightarrow(1)$.

6. Matrix of an orthogonal projection

Recall, if \vec{u}_{1} is unit and $V=\operatorname{span}\left(\vec{u}_{1}\right)$, then

$$
\operatorname{proj}_{V}(\vec{x})=\left(\vec{x} \cdot \vec{u}_{1}\right) \vec{u}_{1}=\left(\vec{u}^{\top} \vec{x}\right) \vec{u}_{1}=\vec{u}_{1}\left(\vec{u}_{1}^{\top} \vec{x}\right)=\left(\vec{u}_{1} \vec{u}_{1}^{\top}\right) \vec{x}
$$

Hence, in this case

$$
\left[\operatorname{proj}_{V}\right]=\vec{u}_{1} \vec{u}_{1}^{\top} \in \mathbb{R}^{n \times n}
$$

More generally, if $\vec{u}_{1}, \ldots, \vec{u}_{m}$ is an orthonormal basis of $V \subset \mathbb{R}^{n}$, then we have

$$
\operatorname{proj}_{V}(\vec{x})=\left(\vec{x} \cdot \vec{u}_{1}\right) \vec{u}_{1}+\cdots+\left(\vec{x} \cdot \vec{u}_{m}\right) \vec{u}_{m}=\left[\begin{array}{lllll}
\vec{u}_{1} & \mid & \cdots & \mid & \vec{u}_{m}
\end{array}\right]\left[\begin{array}{c}
\vec{u}_{1}^{\top} \\
\vdots \\
\vec{u}_{m}^{\top}
\end{array}\right] \vec{x}
$$

That is if

$$
Q=\left[\begin{array}{l|l|l}
\vec{u}_{1} & \cdots & \cdots
\end{array} \vec{u}_{m}\right],
$$

then $\operatorname{proj}_{V}(\vec{x})=Q Q^{\top} \vec{x}$ Hence,

$$
\left[\operatorname{proj}_{V}\right]=Q Q^{\top}
$$

EXAMPLE: Let

$$
\vec{u}_{1}=\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right], \vec{u}_{2}=\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right]
$$

be an orthonormal basis of $V \subset \mathbb{R}^{4}$. Clearly,

$$
P=\left[\operatorname{proj}_{V}\right]=\frac{1}{4}\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cccc}
2 & 0 & 0 & -2 \\
0 & 2 & 2 & 0 \\
0 & 2 & 2 & 0 \\
-2 & 0 & 0 & 2
\end{array}\right] .
$$

