ORTHOGONAL MATRICES AND THE TRANSPOSE

1. PYTHAGOREAN THEOREM AND CAUCHY INEQUALITY
We wish to generalize certain geometric facts from R? to R™.
Theorem 1.1. (Pythagorean Theorem) Given two vectors T,y € R™ we have
|2+ 411> = 171> + [|9]]* <= &-7=0.
Proof. One computes
1Z+ 711> = @ +7) - (@ +§) = [|2]]° + 27 7+ |71
Hence, [|7 + 71> = [|Z|]* + ||7]]* <= &-§=0. O

A consequence, of this is that for any subspace, V' C R, ||projy (Z)|| < ||#]|. To
see this, note that & = proj, (¥) + Z+ and two terms are orthogonal. Hence, by the
Pythagorean theorem

1Z11* = llprojy (D)I* + (|41 = ||projy- ()]
Theorem 1.2. (Cauchy-Schwarz Inequality) If Z,5 € R™, then |Z - g| < ||Z||||7]]-
Proof. Suppose § # 0 (its trivial otherwise). Let @ = |—1ng' If V = span(y) =

7]
span(), then

prody (@) = | @y = - = [
Hence, o
a1l llprosy (2} = 77
multiplying through completes proof. [

Recall, for non-zero &, % € R? we observed that
-y = [|Z]||[4]] cos 0

where 0 was the angle between & and 3. The Cauchy-Schwarz inequality implies
we can define the angle, 6, between non-zero &,y € R™ in general to be

Il

2. ORTHOGONAL TRANSFORMATIONS AND MATRICES

0 = arccos

Linear transformations that preserve length are of particular interest. A linear
transform T : R™ — R"™ is orthogonal if for all £ € R™
T @) = 1121].
Likewise, a matrix U € R"*" is orthogonal if U = [T] for T an orthogonal trans-
formation. That is, for all 7,
[z = |12l
EXAMPLE: Ry : R? — R?, rotation counter-clockwise by @, is orthogonal.
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NON-EXAMPLE: If V # R™, then proj, : R" — R" is not orthogonal. Indeed,
w ¢ V satisfies ||projy (@)|| < ||@]].

3. PROPERTIES OF ORTHOGONAL TRANSFORMATIONS
Orthogonal transformations are so called as they preserve orthogonality:
Theorem 3.1. If T : R™ — R"™ is orthogonal and U - W = 0, then T(¥) - T(w) = 0.
The matrices kI, preserve orthogonality, but are only orthogonal when |k| = 1.
Proof. We have
17(9) + T(@)|]* = |T(0 +@D)|[* = [|7+@||* = |]]* + [[]|* = [|T(@)]]* + ||T'()]|*
Hence, the claim follows from the Pythagorean theorem. O

‘We have

(1) Alinear tranform 7" : R™ — R™ is orthogonal if and only if T'(€1),...,T(éy,)
is an orthonormal basis of R™

(2) Similar, U € R™*" is orthogonal if and only if the columns of U form an
orthonormal basis of R™.

To see the first claim, note that if 7" is orthogonal, then by definition T'(€;) is unit
and the previous result implies T'(€;) - T'(€;) = 0 for i # j (as €; - €; = 0). Hence,
T(€1),...,T(€,) is an orthonormal basis. Conversely, suppose T(€1),...,T(€,)
forms an orthonormal basis. Consider ¥ = x1€1 + ... + x,€, We compute

IT@)? = l|l21T(€) + - .. + 2T (@) = |21 TEDI* + .. + |lznT (€I = [|2]]*.
This completes the proof of Claim (1). The second claim is immediate.

Theorem 3.2. If A, B € R™*" are orthogonal, then so is AB. Moreover, A is
invertible and A1 is also orthogonal.

Proof. As A and B are orthogonal, we have for any ¥ € R"”
|ABZ|| = [[A(BT)|| = ||BZ|| = [|£]].
This proves the first claim. For the second claim, note that if AZ = 0, then
121l = [lAZ]| = |0]| = 0
hence, # = 0. In particular, ker(A) = {6} so A is invertible. Furthermore,
|A™2]| = |A(A™ D)|| = ||Z]]

so A~ is orthonormal. O

4. TRANSPOSE

Consider an m x n matrix A. The transpose, AT, of A is the n x m matrix
whose entry in the ith row and jth column is the entry of A in the jth row and ith
column. Geometrically, AT is obtained from A by reflecting across the diagonal of
A We say A is symmetric if AT = A and A is skew-symmetric if AT = —A.

EXAMPLE: .

2 1
10:{211}
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We compute for o, € R™ that

T-w=7 0

EXAMPLE:

-
1 -1 1 -1 -1
1B ] o s
Theorem 4.1. A € R"*" is orthogonal if and only if ATA=1,, i.e., A71 = AT.
Proof. Let

A= [171 | | ﬁn]
Hence,
vl
AT = |
Un
and so
U1 - Ua U1 - Up,
ATA =
A AU S
Clearly, AT A = I,, if and only if the columns of A are orthonormal. t

5. PROPERTIES OF TRANSPOSE

The transpose has has several natural algebraic properties
1) (A+B)T = AT + BT for A, B € R"™*™,
2) (kA)T = kAT for A€ R™™ kR,
3) (AB)T = BTAT for A € R"*P, B € RPX™,
4) (AZ)-yj=2-ATgfor Ac R™™ ¥ cR™, i€ R".
(5) (AT)"t=(A=1)T for A € R™*™ invertible.
Properties (1) and (2) are straightforward to check. To see property (3), write A
and B in terms of of their rows and columns

P

wy
A=| | andB=[h | -+ | Tn
W,

Where ¥;,w; € RP. Likewise,

ol
AT = [w; | | @,] and BT = | :
T
w0 @ U Uy - Wy U+ W1
AB=| : Lol =]
A AR U1 - Wy, Ty + W,
o] W o] @, Uy - 0y ¥y - W,
BTAT = : : =
GARTA AR Vo - W1 v+ Uy Wy
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One concludes that (AB)T = BT AT. To see Property (4) use
(AB) -5 = (A7) Tj= (@7 AT)j= & (A7) = & (ATp).
Finally, Property (5) can be seen by noting that, as A is invertible,
L,=AA'=1,=1 =(AAH)T = (A~ H)TAT
Hence, (A7)t = (A=HT.

Theorem 5.1. Consider a A € R™*"™. The following are equivalent

1) A is orthogonal matriz
2) The transformation T(Z) = AZ is orthogonal (i.e. preserves length)
3) The columns of A form a orthonormal basis of R™

4) ATA=1,

5) A7l =AT

6) A preserves the dot product, i.e. AZ-Ay=1=2 ¢

Proof. We've already seen why (1)-(4) are equivalent. (4) <= (5) is immediate.
Finally,

AZ - Ay = Z(AT Ay
So (4)= (6). Going the other direction,
||AZ||? = A% - AT
so (6)= (1). O

6. MATRIX OF AN ORTHOGONAL PROJECTION

Recall, if #; is unit and V' = span(i; ), then
(

projy (¥) = (£ - ity )iy = (@' %)ty = @, (@ T) = (i )7
Hence, in this case
[projy| = Wi} € R™*".
More generally, if i1, ..., U, is an orthonormal basis of V' C R", then we have
ay
projy (Z) = (& @)y + -+ + (T )l = [T | | U] | 2| T
U,
That is if
Q - I:ﬁl ‘ | ﬁm] )
then projy, (¥) = QQ ' 7 Hence,
[projy] = QQT
EXAMPLE: Let
1 -1
L 11 L 1|1
uy =z 1 y U2 — 3 1
-1 1
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be an orthonormal basis of V' C R*. Clearly,

1 -1 2
11 1|1 11 —1] 110
P=lprojv]=711 {—1 11 1}_4 0
-1 1 -2

O NN O

O NN O

N OO



