
ORTHOGONALITY

1. Dot Product

Recall, the dot product of two vectors ~v, ~w ∈ Rn is defined to be

~v =

v1...
vn

 , ~w =

w1

...
wn

 , ~v · ~w = v1w1 + . . .+ vnwn

The length of a vector, ||~v||, is defined by

||~v|| =
√
~v · ~v.

Notice, ||~v|| = 0 ⇐⇒ ~v = ~0. A vector ~u ∈ Rn is a unit vector if ||~u|| = 1. It
follows from basic properties of the dot product, that if ~v 6= 0, then ~u = 1

||~v||~v is a

unit vector. Indeed,

~u · ~u =

(
1

||~v||
~v

)
·
(

1

||~v||
~v

)
=

1

||~v||2
~v · ~v =

||~v||2

||~v||2
= 1.

2. Orthogonality

Two vectors ~v and ~w are said to be perpendicular or orthogonal if

~v · ~w = 0.

Geometrically, means that if the vectors non-zero, then they meet at 90◦. If V is a
subspace of Rn, then ~w is orthogonal to V if

~w · ~v = 0 for all ~v ∈ V .

Observe ~w is orthogonal to V ⇐⇒ ~w is orthogonal to each ~v1, . . . , ~vm where these
vectors form a basis of V . I leave the details of this verification as an exercise.

Vectors ~u1, . . . , ~um are said to be orthonormal if

(1) They are unit, i.e. ~ui · ~ui = 1 for i = 1, . . . ,m
(2) They are pairwise orthogonal, i.e. ~ui · ~uj = 0, i 6= j.

EX:

~u1 =

[
cos θ
sin θ

]
and ~u2 =

[
− sin θ
cos θ

]
are orthonormal for any θ.

Theorem 2.1. Orthonormal vectors have the following properties:

(1) If ~u1, . . . , ~um are orthonormal, then they are linearly independent
(2) If V ⊂ Rn is a subspace with dim(V ) = m and ~u1, . . . , ~um ∈ V are or-

thonormal, then ~v1, . . . , ~vm are a basis of V .
(3) If V ⊂ Rn is a subspace with dim(V ) = m, then there are ~u1, . . . , ~um ∈ V

which are orthonormal (and hence form an orthonormal basis of V ).

1



2 ORTHOGONALITY

Proof. Proof of (1): Suppose c1~u1 + . . .+ cm~um = ~0. This means

(c1~u1 + . . .+ cm~um) · ~ui = ~0 · ~ui.
Hence, c1~u1 · ~ui + · · ·+ ci~ui · ~ui + · · ·+ cm~um · ~ui = 0 Tnis means, ci = 0. As i was
arbitrary, the only relation is trivial one. Claim (2) follows immediately from this
and earlier work on dimension. Finally, for the proof of claim (3), see footnote on
pg. 205 of the text – you can also use the Gram-Schmidt algorithm. �

3. Orthogonal Projection

We have the following generalization of concept of orthogonal projection in R2:

Theorem 3.1. Fix a subspace V ⊂ Rn. For any ~x ∈ Rn we can write

~x = ~x|| + ~x⊥

where ~x|| ∈ V and ~x⊥ is orthogonal to V . This decomposition is unique. Further-
more, the transformation

projV : Rn → Rn

defined by projV (~x) = ~x|| is a linear transformation.

The map projV is called orthogonal projection of ~x onto V .

Proof. Pick an orthonormal basis ~u1, . . . , ~um of V . Let

~y = (~x · ~u1)~u1 + . . .+ (~x · ~um)~um

Observe, ~y ∈ V and ~y · ~ui = ~x · ~ui. Let ~z = ~x− ~y. So

~z · ~ui = (~x− ~y) · ~ui = ~x · ~ui − ~y · ~ui = 0.

Hence, ~z is orthogonal to a basis of V and hence is orthogonal to V itself. That is,
we may write

~x|| = ~y = (~x · ~u1)~u1 + . . .+ (~x · ~um)~um

and
~x⊥ = ~z = ~x− ~x||

and obtain desired decomposition. The uniqueness and linearity of projV is left as
an exercise for the reader. �

A consequence of the above proof is the following useful formula for projV in
terms of an orthonormal basis of V :

Theorem 3.2. If V ⊂ Rn a subspace and ~u1, . . . , ~um an orthonormal basis of V ,
then

projV (~x) = (~x · ~u1)~u1 + . . .+ (~x · ~um)~um.

Orthogonal Complement Given a subspace V ⊂ Rn. The orthogonal complement,
V ⊥ ⊂ Rn of V is defined by

V ⊥ = {~x ∈ Rn : ~x · ~v = 0 for all ~v ∈ V } .
EXAMPLE: In R3, (span(~e1))⊥ = span(~e2, ~e3).

Theorem 3.3. Properties of orthogonal complement for V ⊂ Rn:

(1) V ⊥ = ker(projV ) – in particular, V ⊥ is a subspace of Rn

(2) V ∩ V ⊥ =
{
~0
}

(3) dim(V ) + dim(V ⊥) = n
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(4) (V ⊥)⊥ = V .

Proof. Claim (1): Follows from the definition. Claim (2): If ~x ∈ V and ~x ∈ V ⊥,
then ~x is perpendicular to itself. That is ||~x||2 = ~x · ~x = 0 ⇒ ~x = 0. Claim (3):
We have V = Im (projV ) and V ⊥ = ker(projV ). Hence, the rank-nullity theorem
implies

n = dim(Im (projV )) + dim(ker(projV )) = dim(V ) + dim(V ⊥).

Claim (4): Clear V ⊂ (V ⊥)⊥. By Claim (3):

n = dim(V ) + dim(V ⊥) = dim(V ⊥) + dim((V ⊥)⊥)⇒ dim(V ) = dim((V ⊥)⊥)

Hence, V = (V ⊥)⊥. �

EXAMPLE: Let V = span

1
2
1

 ,
 0
−1
2

. Determine V ⊥ Observe,

~x =

x1x2
x3

 ∈ V ⊥ ⇐⇒ ~x ·

1
2
1

 = ~x ·

 0
−1
2

 = 0

That is
x1 + 2x2 + x3 = 0 = −x2 + 2x3

I.e., [
1 2 1
0 −1 2

]x1x2
x3

 =

[
0
0

]
Hence,

V ⊥ = ker

[
1 2 1
0 −1 2

]
rref

[
1 2 1
0 −1 2

]
=

[
1 0 5
0 1 −2

]
so

V ⊥ = span

−5
2
1

 .


