NAME:

Section no:

TA:
. There are 6 pages in the exam including this page.
. Write all your answers clearly. You have to show work to get points for your answers.
. Use of Calculators is not allowed during the exam.

I agree to complete this exam without unauthorized assistance from any person, materials or device.

Signature:

Date:

$1(10)$	
$2(10)$	
$3(10)$	
$4(10)$	
$5(10)$	
Total (50)	

1. 10 points
(a) $T: P_{2} \rightarrow P_{2}$ be the linear transformation defined by $T(f)=f+f^{\prime \prime}$. Let $\mathcal{S}=\left(1, x, x^{2}\right)$ be the standard basis for P_{2}. Find the \mathcal{S}-matrix A for T
(b) Let $\mathcal{B}=\left(1+x, x+x^{2}, 1+x^{2}\right)$ be another basis for P_{2}. Let B be the \mathcal{B}-matrix for the linear transformation T. Find the invertible matrix S such that $B=S^{-1} A S$.
2. 10 points True or False. Justify your answer.
(a) There exists an invertible 2×2 matrix S such that $\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)=S^{-1}\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right) S$.
(b) If $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$ is a basis for \mathbb{R}^{2} then $T\left(\overrightarrow{v_{1}}\right), T\left(\overrightarrow{v_{2}}\right)$ is a basis for \mathbb{R}^{2} for any linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
3. 10 points Find an orthonormal basis for $\operatorname{Ker}\left(\operatorname{Proj}_{V}\right)$ where $\operatorname{Proj}_{V}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is the orthogonal projection onto the subspace $V=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 2\end{array}\right)\right\}$.
4. 10 points True or False. Justify your answer.
(a) If A and S are orthogonal matrices, then $S^{-1} A S$ is orthogonal as well.
(b) Let A and B be two 2×2 matrices. If $B A$ is orthogonal then A and B are orthogonal.
5. Find the least squares solution to the system $A\binom{x}{y}=\vec{b}$ where $A=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 0 & 2\end{array}\right)$ and $\vec{b}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.

Find the orthogonal projection of \vec{b} onto the subspace $\operatorname{Im} A$.

