201 LINEAR ALGEBRA, MIDTERM 2 April 11, 2011

NAME:

Section no:

TA:

. There are 6 pages in the exam including this page.

. Write all your answers clearly. You have to show work to get points for your answers.

. Use of Calculators is not allowed during the exam.

I agree to complete this exam without unauthorized assistance from any person, materials or device.

Signature:

Date:

1 (10)	
2 (10)	
3 (10)	
4 (10)	
5 (10)	
Total (50)	

$1. \ 10 \ points$

- (a) $T: P_2 \to P_2$ be the linear transformation defined by T(f) = f + f''. Let $S = (1, x, x^2)$ be the standard basis for P_2 . Find the S-matrix A for T
- (b) Let $\mathcal{B} = (1 + x, x + x^2, 1 + x^2)$ be another basis for P_2 . Let B be the \mathcal{B} -matrix for the linear transformation T. Find the invertible matrix S such that $B = S^{-1}AS$.

- 2. 10 points True or False. Justify your answer.
 - (a) There exists an invertible 2×2 matrix S such that $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = S^{-1} \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} S$.

(b) If $\vec{v_1}, \vec{v_2}$ is a basis for \mathbb{R}^2 then $T(\vec{v_1}), T(\vec{v_2})$ is a basis for \mathbb{R}^2 for any linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$.

3. 10 points Find an orthonormal basis for $\operatorname{Ker}(\operatorname{Proj}_V)$ where $\operatorname{Proj}_V : \mathbb{R}^4 \to \mathbb{R}^4$ is the orthogonal projection onto the subspace $V = \operatorname{Span}\left\{\begin{pmatrix}1\\1\\1\\0\end{pmatrix}, \begin{pmatrix}0\\1\\0\\2\end{pmatrix}\right\}$.

- 4. 10 points True or False. Justify your answer.
 - (a) If A and S are orthogonal matrices, then $S^{-1}AS$ is orthogonal as well.

(b) Let A and B be two 2×2 matrices. If BA is orthogonal then A and B are orthogonal.

5. Find the least squares solution to the system $A\begin{pmatrix} x\\ y \end{pmatrix} = \vec{b}$ where $A = \begin{pmatrix} 1 & 0\\ 0 & 1\\ 0 & 2 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$. Find the orthogonal projection of \vec{b} onto the subspace ImA.