LINEAR TRANSFORMATIONS AND MATRICES

1. Vectors

We can identify $n \times 1$ and $1 \times n$ matrices with n-dimensional vectors by taking the entries as the Cartesian coordinates of the head of the (geometric) vector with tail at the origin. When thought of this way we $n \times 1$ matrices are called (column) vectors and $1 \times n$ vectors are callled row vectors. We denote the space of n-dimensional vectors by \mathbb{R}^{n} and denote an element with an arrow, e.g., $\vec{v} \in \mathbb{R}^{n}$.

We can add two vectors by adding their entries

$$
\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+y_{1} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right]
$$

this geometrically corresponds to the vectors satisfying a parallelogram law. Similarly, we can scale any vector by a $k \in \mathbb{R}$ by

$$
k\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
k x_{1} \\
\vdots \\
k x_{n}
\end{array}\right]
$$

Geometrically, when $k>0$ this corresponds to stretching the vector by a fact of k. When $k<0$, this is accompanied by reflecting through the origin.

The zero vector, $\overrightarrow{0}$, has all entries zero. The standard vectors, are the elements $\vec{e}_{1}, \ldots, \vec{e}_{n} \in \mathbb{R}^{n}$ which have entry 1 in the i th row and all other entries 0 . Clearly,

$$
\vec{v}=v_{1} \vec{e}_{1}+\cdots+v_{n} \vec{e}_{n} \text { for } \vec{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] .
$$

The dot product of two vectors $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ is defined to be

$$
\vec{x} \cdot \vec{y}=\sum_{i=1}^{n} x_{i} y_{i}=x_{1} y_{1}+\cdots x_{n} y_{n} \text { where } \vec{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \text { and } \vec{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] .
$$

The length of a vector $\|\vec{x}\|$ satisfies

$$
\|\vec{x}\|^{2}=\vec{x} \cdot \vec{x}
$$

Furthermore, for two non-zero vectors, \vec{x}, \vec{y}

$$
\vec{x} \cdot \vec{y}=\|\vec{x}\| \cdot\|\vec{y}\| \cos \theta
$$

where θ is the angle between \vec{x} and \vec{y} (the vectors are non-zero so θ makes sense).
Given a $n \times m$ matrix A it is often convenient to write A in terms of its columns which we may think of as m vectors in \mathbb{R}^{n}. This is expressed as

$$
A=\left[\begin{array}{lllll}
\vec{a}_{1} & \mid & \cdots & \vec{a}_{m}
\end{array}\right]
$$

where here $\vec{a}_{i} \in \mathbb{R}^{n}$. For instance,

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 0
\end{array}\right]=\left[\begin{array}{lllll}
\vec{a}_{1} & \mid & \vec{a}_{2} & \mid & \vec{a}_{3}
\end{array}\right]
$$

has columns

$$
\vec{a}_{1}=\left[\begin{array}{l}
2 \\
0
\end{array}\right], \vec{a}_{2}=\left[\begin{array}{l}
0 \\
2
\end{array}\right], \vec{a}_{3}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

Given a $n \times m$ matrix and m-dimensional matrix

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n m}
\end{array}\right]=\left[\begin{array}{llll}
\vec{a}_{1} & \mid & \cdots & \mid \\
a_{m}
\end{array}\right] \text { and } \vec{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right] \in \mathbb{R}^{m}
$$

define the product of A and \vec{x} to be

$$
A \vec{x}=\left[\begin{array}{c}
x_{1} a_{11}+\cdots+x_{m} a_{1 m} \\
\vdots \\
x_{1} a_{n 1}+\cdots+x_{m} a_{n m}
\end{array}\right]=x_{1} \vec{a}_{1}+\cdots+x_{m} \vec{a}_{m}
$$

In particular,

$$
\vec{a}_{i}=A \vec{e}_{i}
$$

That is, the i th column of A is the product of A and the i th standard vector.
Multiplication of a matrix with a vector satisfies:
(1) $A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}$.
(2) $A(k \vec{x})=k(A \vec{x})$ for $k \in \mathbb{R}$.

2. Linear Transformations

A function (or transformation) consists of three things:
(1) A set X called the domain;
(2) A set Y called the target space;
(3) A rule $f: X \rightarrow Y$ that associates to each element $x \in X$ exactly one element $y=f(x)$.
Two sets X and Y and a rule f that associates to each element x of X exactly one element $f(x)$ in Y. An element x in X will be called an input and the corresponding value $y=f(x)$ is the output.

A transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is said to be a linear transformation if the following is true
(1) $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$ for all $\vec{x}, \vec{y} \in \mathbb{R}^{m}$
(2) $T(k \vec{x})=k T(\vec{x})$ for all $\vec{x} \in \mathbb{R}^{m}$ and $k \in \mathbb{R}$.

EXAMPLE: Any $n \times m$ matrix A, gives a linear transformation $T_{A}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$

$$
T_{A}(\vec{x})=A \vec{x}
$$

Indeed, using the algebraic properties from above we have:

$$
T_{A}(\vec{x}+\vec{y})=A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}=T_{A}(\vec{x})+T_{A}(\vec{y})
$$

and

$$
T_{A}(k \vec{x})=A(k \vec{x})=k(A \vec{x})=k T_{A}(\vec{x})
$$

Note that the textbook takes the opposite approach, as they define linear transformations as those given by multiplication by a matrix and then deduce our definition of linear transformation as a property.

Every linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is of the form $T=T_{A}$ for some $n \times m$ matrix A. Indeed, for any linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ define the matrix of T which we indicate by $[T]$ to be the $n \times m$ matrix given by

$$
[T]=\left[\begin{array}{lllll}
T\left(\vec{e}_{1}\right) & \mid & \cdots & T\left(\vec{e}_{m}\right)
\end{array}\right]
$$

so the i th column of $[T]$ is the vector $T\left(\vec{e}_{i}\right)$ (i.e., the output of T given input $\left.\vec{e}_{i}\right)$. Clearly, $[T] \vec{e}_{i}=T\left(\vec{e}_{i}\right)$. By linearity and properties of multiplication of a matrix and a vector it follows that $[T] \vec{x}=T(\vec{x})$ for each $\vec{x} \in \mathbb{R}^{m}$. Indeed, write $\vec{x}=x_{1} \vec{e}_{1}+\cdots+x_{m} \vec{e}_{m}$ and observe

$$
\begin{array}{rlr}
T(\vec{x}) & =T\left(x_{1} \vec{e}_{1}+\cdots+x_{m} \vec{e}_{m}\right) & \\
& =x_{1} T\left(\vec{e}_{1}\right)+\cdots+x_{m} T\left(\vec{e}_{m}\right) & \text { by linearity of } T \\
& =x_{1}[T] \vec{e}_{1}+\cdots x_{m}[T] \vec{e}_{m} & \text { definition of }[T] \\
& =[T]\left(x_{1} \vec{e}_{1}+\cdots+x_{m} \vec{e}_{m}\right) & \text { algebraic properties } \\
& =[T] \vec{x} &
\end{array}
$$

In other words, if $A=[T]$, then $T=T_{A}$. You should think of a matrix as a way to (numerically) represent a linear transformation just as a column vector is a way to numerically represent a geometric vector.

EXAMPLE: Let $I_{\mathbb{R}^{n}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $I_{\mathbb{R}^{n}}(\vec{x})=\vec{x}$ be the identity transform. It is easy to see this is linear and that

$$
\left[I_{\mathbb{R}^{n}}\right]=I_{n}
$$

where here I_{n} is the $n \times n$ identity matrix (i.e. the matrix with 1 on the diagonal and all other entries 0).

EXAMPLE: Let $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that rotates a vector counter-clockwise by θ-radians. Geometrically, clear this is a linear transformation.

$$
R_{\theta}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right] \text { and } R_{\theta}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right] .
$$

Hence,

$$
\left[R_{\theta}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

and so

$$
R_{\theta}\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \cos \theta-x_{2} \sin \theta \\
x_{1} \sin \theta+x_{2} \cos \theta
\end{array}\right] .
$$

3. Matrix Multiplication and Composition of Linear Transforms

If B is a $n \times p$ matrix and A is a $p \times m$ matrix, then the matrix product, $B A$, is

$$
B A=\left[\begin{array}{lll|l}
B \vec{a}_{1} & \mid & \cdots & B \vec{a}_{m}
\end{array}\right]
$$

where

$$
A=\left[\begin{array}{lllll}
\vec{a}_{1} & \mid & \cdots & \vec{a}_{m}
\end{array}\right]
$$

has columns $\vec{a}_{j} \in \mathbb{R}^{p}$. This is equivalent to the following: if

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{p 1} & \cdots & a_{p m}
\end{array}\right], B=\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 p} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n p}
\end{array}\right] \text { and } C=\left[\begin{array}{ccc}
c_{11} & \cdots & c_{1 m} \\
\vdots & \ddots & \vdots \\
c_{n 1} & \cdots & c_{n m}
\end{array}\right]
$$

then $C=B A$ means

$$
c_{i j}=\sum_{k=1}^{p} b_{i k} a_{k j} .
$$

EXAMPLE:

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 5 & -1 \\
1 & 2 & 0
\end{array}\right]
$$

is equivalent to

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
2
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

Matrix multiplication's definition makes it compatible with composition of linear transformations. Specifically, suppose $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ and $S: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ are both linear transformations. Their composition $S \circ T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is defined by ($S \circ$ $T)(\vec{x})=S(T(\vec{x}))$. It is easy to check that $S \circ T$ is linear. For example,

$$
\begin{aligned}
(S \circ T)(\vec{x}+\vec{y}) & =S(T(\vec{x}+\vec{y}))=S(T(\vec{x})+T(\vec{y})) \\
& =S(T(\vec{x}))+S(T(\vec{x}))=(S \circ T)(\vec{x})+(S \circ T)(\vec{y}) .
\end{aligned}
$$

As such, it makes sense to consider $[S \circ T$], the matrix associated to $S \circ T$. The definition of matrix multiplication ensures that:

$$
[S \circ T]=[S][T]
$$

To see this observe that,

$$
\left.\left.\begin{array}{rl}
{[S \circ T]} & =\left[S\left(T\left(\vec{e}_{1}\right)\right)\right. \\
& \mid \\
\cdots & \mid \\
& =\left[[S] T\left(\vec{e}_{1}\right)\right) \\
& \mid \\
\cdots & \left.\left.S\left(\vec{e}_{m}\right)\right)\right] \\
& =[S]\left[T\left(\vec{e}_{1}\right)\right) \\
& \mid \\
\cdots & \left.\left.[S] T\left(\vec{e}_{m}\right)\right)\right]
\end{array} \quad T\left(\vec{e}_{m}\right)\right)\right] \quad \text { definition of }[S \circ T] \begin{aligned}
& {[S] \text { is the matrix of } S } \\
&=[S][T]
\end{aligned}
$$

4. Invertible Matrices

A linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is invertible (with inverse T^{-1}) if for each $\vec{y} \in \mathbb{R}^{n}$ the equation

$$
\begin{equation*}
T(\vec{x})=\vec{y} \tag{1}
\end{equation*}
$$

has exactly one solution. This solution is $\vec{x}=T^{-1}(\vec{y})$ which allows us to think of

$$
T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

as a transformation sending $\vec{y} \in \mathbb{R}^{n}$ and to $T^{-1}(\vec{y})$, the unique solution to (1). One readily checks that T^{-1} is linear. For instance, as $\vec{x}=T^{-1}(\vec{y})$ solves (1), the linearity of T means $\vec{x}=k T^{-1}(\vec{y})$ solves $T(\vec{x})=k \vec{y}$. Hence, $k T^{-1}(\vec{y})=T^{-1}(k \vec{y})$.

The easiest way to check if a candidate transformation, S, is the inverse of T is to use the following fact: If $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transform that satisfies $S \circ T=I_{\mathbb{R}^{m}}$ (such S is said to be a left inverse of T) and $T \circ S=I_{\mathbb{R}^{n}}($ such S is said to be a right inverse of T), then T is invertible and $S=T^{-1}$ (e.g., T^{-1} is both a left and right inverse and so is sometimes called a two-sided inverse).

To understand why this is so, first observe that if $T \circ S=I_{\mathbb{R}^{n}}$, then (1) has at least one solution given by $\vec{x}=S(\vec{y})$, but could have more solutions. Conversely, if $S \circ T=I_{\mathbb{R}^{m}}$, then (1) can have at most one solution, but may have no solutions. In other words, a right inverse ensures existence of some solution while a left inverse ensures uniqueness of any given solution.

A $n \times m$ matrix A is invertible if T_{A} is invertible and the inverse matrix is $A^{-1}=\left[T_{A}^{-1}\right]$. In similar fashion to the above, if B is $m \times n$ matrix and $A B=I_{n}$ and $B A=I_{m}$, then A is invertible and $A^{-1}=B$.

EXAMPLE: Consider, R_{θ} rotation counterclockwise by θ. Geometrically, $I_{\mathbb{R}^{2}}=$ $R_{-\theta} \circ R_{\theta}=R_{\theta} \circ R_{-\theta}$ so $R_{\theta}^{-1}=R_{-\theta}$. Moreover,

$$
\left[R_{\theta}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

and can check

$$
\left[R_{\theta}\right]\left[R_{-\theta}\right]=I_{2}=\left[R_{-\theta}\right]\left[R_{\theta}\right]
$$

EXAMPLE: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be linear transform $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=x_{1}+x_{2}$. The matrix of T is $[T]=\left[\begin{array}{ll}1 & 1\end{array}\right]$. If $R\left(x_{1}\right)=\left[\begin{array}{c}x_{1} \\ 0\end{array}\right]$ can check $T\left(R\left(x_{1}\right)\right)=x_{1}$. That is, R is a right inverse. However, there is no left inverse. Indeed, let $L: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be an arbitrary linear map, so $[L]=\left[\begin{array}{l}a \\ b\end{array}\right]$.

$$
[L \circ T]=[L][T]=\left[\begin{array}{l}
a \\
b
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
a & a \\
b & b
\end{array}\right] \neq I_{2}
$$

for any a, b.

5. Calculating the inverse of a matrix

We wish to determine how we can compute A^{-1} for agiven matrix $n \times m$ matrix A. As a first step, recall that A is invertible means $A \vec{x}=\vec{y}$ has a unique solution for each \vec{y}. By properties of Gauss-Jordan elimination, this means $\operatorname{rref}(A)$
(1) Has a pivot in each column (ensuring uniqueness of the solution)
(2) Has a pivot in each row (ensuring existence).

In other words, $m=n$ and $\operatorname{rref}(A)=I_{n}$. This is equivalent to A being $n \times n$ and $\operatorname{rank}(A)=n$. Observe, this immediately means that if $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is an invertible linear map, then $m=n$.

EXAMPLE: Is $A=\left[\begin{array}{cc}2 & 4 \\ 1 & -1\end{array}\right]$ invertible?

$$
\operatorname{rref}\left[\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

so answer is yes.
Suppose now A is an invertible $n \times n$ matrix. The columns of A^{-1} are

$$
\vec{v}_{1}=A^{-1} \vec{e}_{1}, \ldots, \vec{v}_{n}=A^{-1} \vec{e}_{n}
$$

One determines the \vec{v}_{i} by solving

$$
A \vec{x}=\vec{e}_{i}
$$

for each $i=1, \ldots, n$. This requires solving n different systems of n equations in n unknowns. As the coefficient matrix the same for each system, you only need to apply Gauss-Jordan elimination once. This is because you can augment n additional columns (instead of just one) corresponding to each standard vector. In this case the augemented matrix is

$$
\left[\begin{array}{llllll}
A & \mid & \vec{e}_{1} & \cdots & \vec{e}_{n}
\end{array}\right]=\left[\begin{array}{lll}
A & \mid & I_{n}
\end{array}\right]
$$

and one has (for invertible A)

$$
\operatorname{rref}\left[\begin{array}{lll}
A & \mid & I_{n}
\end{array}\right]=\left[\begin{array}{lllllll}
I_{n} & \mid & \vec{v}_{1} & \mid & \cdots & \vec{v}_{n}
\end{array}\right]=\left[\begin{array}{lll}
I_{n} & \mid & A^{-1}
\end{array}\right] .
$$

EXAMPLE: Compute inverse of $\left[\begin{array}{cc}-1 & 2 \\ 2 & -5\end{array}\right]$

$$
\operatorname{rref}\left[\begin{array}{cc|cc}
-1 & 2 & 1 & 0 \\
2 & -5 & 0 & 1
\end{array}\right]=\left[\begin{array}{ll|ll}
1 & 0 & -5 & -2 \\
0 & 1 & -2 & -1
\end{array}\right]
$$

so

$$
\left[\begin{array}{cc}
-1 & 2 \\
2 & -5
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-5 & -2 \\
-2 & -1
\end{array}\right]
$$

NON-EXAMPLE:

$$
\operatorname{rref}\left[\begin{array}{cc|cc}
2 & 1 & 1 & 0 \\
-4 & -2 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc|cc}
1 & \frac{1}{2} & 0 & -\frac{1}{4} \\
0 & 0 & 1 & \frac{1}{2}
\end{array}\right]
$$

first 2×2 matrix not I_{2} so $\left[\begin{array}{cc}2 & 1 \\ -4 & -2\end{array}\right]$ is not invertible.

6. Properties of Matrix Multiplication and the Matrix Inverse

Here are some properties of matrix multiplication and the matrix inverse:
(1) Matrix multiplication is non-commutative, e.g., in general $A B \neq B A$. Reflects fact that, in general, $S \circ T \neq T \circ S$.
(2) I_{n} is the multiplicative identity. That is, if A is $n \times m$ matrix, then

$$
I_{n} A=A=A I_{m}
$$

(3) Matrix multiplication is associative

$$
(A B) C=A(B C) \Rightarrow A B C \text { makes sense. }
$$

(4) Matrix multiplication distributes over matrix addition

$$
A(C+D)=A C+A D \text { and }(A+B) C=A C+B C
$$

(5) If A is invertible, then so is A^{-1} and $\left(A^{-1}\right)^{-1}=A$.
(6) If A and B are $n \times n$ matrices and $A B=I_{n}$ (or $B A=I_{n}$), then $B A=I_{n}$ (or $A B=I_{n}$) and so $B=A^{-1}$. In other words for square matrices, it is enough to check that B is either a right or a left inverse.
(7) Suppose A and B are invertible $n \times n$ matrices, then so is $A B$ and $(A B)^{-1}=$ $B^{-1} A^{-1}$. Matrix multiplication is not commutative so the order matters.
EXAMPLE: Item (7) follows from (2),(3) and (6). Indeed, using (2) and (3)

$$
\left(B^{-1} A^{-1}\right) A B=B^{-1}\left(A^{-1} A\right) B=B^{-1} I_{n} B=B^{-1} B=I_{n}
$$

and so, by (6),

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

