
LINEAR TRANSFORMATIONS AND MATRICES

1. Vectors

We can identify n×1 and 1×n matrices with n-dimensional vectors by taking the
entries as the Cartesian coordinates of the head of the (geometric) vector with tail at
the origin. When thought of this way we n×1 matrices are called (column) vectors
and 1 × n vectors are callled row vectors. We denote the space of n-dimensional
vectors by Rn and denote an element with an arrow, e.g., ~v ∈ Rn.

We can add two vectors by adding their entriesx1...
xn

+

y1...
yn

 =

x1 + y1
...

xn + yn


this geometrically corresponds to the vectors satisfying a parallelogram law. Simi-
larly, we can scale any vector by a k ∈ R by

k

x1...
xn

 =

kx1...
kxn

 .
Geometrically, when k > 0 this corresponds to stretching the vector by a fact of k.
When k < 0, this is accompanied by reflecting through the origin.

The zero vector, ~0, has all entries zero. The standard vectors, are the elements
~e1, . . . , ~en ∈ Rn which have entry 1 in the ith row and all other entries 0. Clearly,

~v = v1~e1 + · · ·+ vn~en for ~v =

v1...
vn

 .
The dot product of two vectors ~x, ~y ∈ Rn is defined to be

~x · ~y =

n∑
i=1

xiyi = x1y1 + · · ·xnyn where ~x =

x1...
xn

 and ~y =

y1...
yn

 .
The length of a vector ||~x|| satisfies

||~x||2 = ~x · ~x.

Furthermore, for two non-zero vectors, ~x, ~y

~x · ~y = ||~x|| · ||~y|| cos θ

where θ is the angle between ~x and ~y (the vectors are non-zero so θ makes sense).
Given a n×m matrix A it is often convenient to write A in terms of its columns

which we may think of as m vectors in Rn. This is expressed as

A =
[
~a1 | · · · | ~am

]
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where here ~ai ∈ Rn. For instance,

A =

[
2 0 1
0 2 0

]
=
[
~a1 | ~a2 | ~a3

]
has columns

~a1 =

[
2
0

]
,~a2 =

[
0
2

]
,~a3 =

[
1
0

]
.

Given a n×m matrix and m-dimensional matrix

A =

a11 · · · a1m
...

. . .
...

an1 · · · anm

 =
[
~a1 | · · · | ~am

]
and ~x =

x1...
xm

 ∈ Rm,

define the product of A and ~x to be

A~x =

x1a11 + · · ·+ xma1m
...

x1an1 + · · ·+ xmanm

 = x1~a1 + · · ·+ xm~am.

In particular,
~ai = A~ei.

That is, the ith column of A is the product of A and the ith standard vector.
Multiplication of a matrix with a vector satisfies:

(1) A(~x+ ~y) = A~x+A~y.
(2) A(k~x) = k(A~x) for k ∈ R.

2. Linear Transformations

A function (or transformation) consists of three things:

(1) A set X called the domain;
(2) A set Y called the target space;
(3) A rule f : X → Y that associates to each element x ∈ X exactly one

element y = f(x).

Two sets X and Y and a rule f that associates to each element x of X exactly one
element f(x) in Y . An element x in X will be called an input and the corresponding
value y = f(x) is the output.

A transformation T : Rm → Rn is said to be a linear transformation if the
following is true

(1) T (~x+ ~y) = T (~x) + T (~y) for all ~x, ~y ∈ Rm
(2) T (k~x) = kT (~x) for all ~x ∈ Rm and k ∈ R.

EXAMPLE: Any n×m matrix A, gives a linear transformation TA : Rm → Rn

TA(~x) = A~x.

Indeed, using the algebraic properties from above we have:

TA(~x+ ~y) = A(~x+ ~y) = A~x+A~y = TA(~x) + TA(~y)

and
TA(k~x) = A(k~x) = k(A~x) = kTA(~x).

Note that the textbook takes the opposite approach, as they define linear transfor-
mations as those given by multiplication by a matrix and then deduce our definition
of linear transformation as a property.
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Every linear transformation T : Rm → Rn is of the form T = TA for some n×m
matrix A. Indeed, for any linear transformation T : Rm → Rn define the matrix of
T which we indicate by [T ] to be the n×m matrix given by

[T ] =
[
T (~e1) | · · · | T (~em)

]
so the ith column of [T ] is the vector T (~ei) (i.e., the output of T given input
~ei). Clearly, [T ]~ei = T (~ei). By linearity and properties of multiplication of a
matrix and a vector it follows that [T ]~x = T (~x) for each ~x ∈ Rm. Indeed, write
~x = x1~e1 + · · ·+ xm~em and observe

T (~x) = T (x1~e1 + · · ·+ xm~em)

= x1T (~e1) + · · ·+ xmT (~em) by linearity of T

= x1[T ]~e1 + · · ·xm[T ]~em definition of [T ]

= [T ](x1~e1 + · · ·+ xm~em) algebraic properties

= [T ]~x .

In other words, if A = [T ], then T = TA. You should think of a matrix as a way to
(numerically) represent a linear transformation just as a column vector is a way to
numerically represent a geometric vector.

EXAMPLE: Let IRn : Rn → Rn with IRn(~x) = ~x be the identity transform. It
is easy to see this is linear and that

[IRn ] = In

where here In is the n× n identity matrix (i.e. the matrix with 1 on the diagonal
and all other entries 0).

EXAMPLE: Let Rθ : R2 → R2 be the transformation that rotates a vector
counter-clockwise by θ-radians. Geometrically, clear this is a linear transformation.

Rθ

([
1
0

])
=

[
cos θ
sin θ

]
and Rθ

([
0
1

])
=

[
− sin θ
cos θ

]
.

Hence,

[Rθ] =

[
cos θ − sin θ
sin θ cos θ

]
and so

Rθ

([
x1
x2

])
=

[
cos θ − sin θ
sin θ cos θ

] [
x1
x2

]
=

[
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

]
.

3. Matrix Multiplication and Composition of Linear Transforms

If B is a n× p matrix and A is a p×m matrix, then the matrix product, BA, is

BA =
[
B~a1 | · · · | B~am

]
where

A =
[
~a1 | · · · | ~am

]
has columns ~aj ∈ Rp. This is equivalent to the following: if

A =

a11 · · · a1m
...

. . .
...

ap1 · · · apm

 , B =

b11 · · · b1p
...

. . .
...

bn1 · · · bnp

 and C =

c11 · · · c1m
...

. . .
...

cn1 · · · cnm

 ,
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then C = BA means

cij =

p∑
k=1

bikakj .

EXAMPLE: [
2 1
1 0

] [
1 2 0
0 1 −1

]
=

[
2 5 −1
1 2 0

]
is equivalent to[

2 1
1 0

] [
1
0

]
=

[
2
1

]
,

[
2 1
1 0

] [
2
1

]
=

[
5
2

]
,

[
2 1
1 0

] [
0
−1

]
=

[
−1
0

]
.

Matrix multiplication’s definition makes it compatible with composition of linear
transformations. Specifically, suppose T : Rm → Rp and S : Rp → Rn are both
linear transformations. Their composition S ◦ T : Rm → Rn is defined by (S ◦
T )(~x) = S(T (~x)). It is easy to check that S ◦ T is linear. For example,

(S ◦ T )(~x+ ~y) = S(T (~x+ ~y)) = S(T (~x) + T (~y))

= S(T (~x)) + S(T (~x)) = (S ◦ T )(~x) + (S ◦ T )(~y).

As such, it makes sense to consider [S ◦ T ], the matrix associated to S ◦ T . The
definition of matrix multiplication ensures that:

[S ◦ T ] = [S][T ].

To see this observe that,

[S ◦ T ] =
[
S(T (~e1)) | · · · | S(T (~em))

]
definition of [S ◦ T ]

=
[
[S]T (~e1)) | · · · | [S]T (~em))

]
[S] is the matrix of S

= [S]
[
T (~e1)) | · · · | T (~em))

]
definition of matrix multiplication

= [S][T ]

4. Invertible Matrices

A linear transformation T : Rm → Rn is invertible (with inverse T−1) if for
each ~y ∈ Rn the equation

(1) T (~x) = ~y

has exactly one solution. This solution is ~x = T−1(~y) which allows us to think of

T−1 : Rn → Rm

as a transformation sending ~y ∈ Rn and to T−1(~y), the unique solution to (1).
One readily checks that T−1 is linear. For instance, as ~x = T−1(~y) solves (1), the
linearity of T means ~x = kT−1(~y) solves T (~x) = k~y. Hence, kT−1(~y) = T−1(k~y).

The easiest way to check if a candidate transformation, S, is the inverse of T
is to use the following fact: If S : Rn → Rm is a linear transform that satisfies
S ◦ T = IRm (such S is said to be a left inverse of T ) and T ◦ S = IRn (such S is
said to be a right inverse of T ), then T is invertible and S = T−1 (e.g., T−1 is both
a left and right inverse and so is sometimes called a two-sided inverse).

To understand why this is so, first observe that if T ◦ S = IRn , then (1) has at
least one solution given by ~x = S(~y), but could have more solutions. Conversely, if
S ◦T = IRm , then (1) can have at most one solution, but may have no solutions. In
other words, a right inverse ensures existence of some solution while a left inverse
ensures uniqueness of any given solution.
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A n × m matrix A is invertible if TA is invertible and the inverse matrix is
A−1 = [T−1

A ]. In similar fashion to the above, if B is m × n matrix and AB = In
and BA = Im, then A is invertible and A−1 = B.

EXAMPLE: Consider, Rθ rotation counterclockwise by θ. Geometrically, IR2 =
R−θ ◦Rθ = Rθ ◦R−θ so R−1

θ = R−θ. Moreover,

[Rθ] =

[
cos θ − sin θ
sin θ cos θ

]
and can check

[Rθ][R−θ] = I2 = [R−θ][Rθ].

EXAMPLE: Let T : R2 → R be linear transform T

([
x1
x2

])
= x1 + x2. The

matrix of T is [T ] =
[
1 1

]
. If R(x1) =

[
x1
0

]
can check T (R(x1)) = x1. That is, R

is a right inverse. However, there is no left inverse. Indeed, let L : R → R2 be an

arbitrary linear map, so [L] =

[
a
b

]
.

[L ◦ T ] = [L][T ] =

[
a
b

] [
1 1

]
=

[
a a
b b

]
6= I2

for any a, b.

5. Calculating the inverse of a matrix

We wish to determine how we can compute A−1 for agiven matrix n×m matrix
A. As a first step, recall that A is invertible means A~x = ~y has a unique solution
for each ~y. By properties of Gauss-Jordan elimination, this means rref(A)

(1) Has a pivot in each column (ensuring uniqueness of the solution)
(2) Has a pivot in each row (ensuring existence).

In other words, m = n and rref(A) = In. This is equivalent to A being n × n
and rank(A) = n. Observe, this immediately means that if T : Rm → Rn is an
invertible linear map, then m = n.

EXAMPLE: Is A =

[
2 4
1 −1

]
invertible?

rref

[
2 4
1 −1

]
=

[
1 0
0 1

]
so answer is yes.

Suppose now A is an invertible n× n matrix. The columns of A−1 are

~v1 = A−1~e1, . . . , ~vn = A−1~en

One determines the ~vi by solving

A~x = ~ei

for each i = 1, . . . , n. This requires solving n different systems of n equations in n
unknowns. As the coefficient matrix the same for each system, you only need to
apply Gauss-Jordan elimination once. This is because you can augment n additional
columns (instead of just one) corresponding to each standard vector. In this case
the augemented matrix is[

A | ~e1 | · · · | ~en
]

=
[
A | In

]
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and one has (for invertible A)

rref
[
A | In

]
=
[
In | ~v1 | · · · | ~vn

]
=
[
In | A−1

]
.

EXAMPLE: Compute inverse of

[
−1 2
2 −5

]
rref

[
−1 2 | 1 0
2 −5 | 0 1

]
=

[
1 0 | −5 −2
0 1 | −2 −1

]
so [

−1 2
2 −5

]−1

=

[
−5 −2
−2 −1

]
.

NON-EXAMPLE:

rref

[
2 1 | 1 0
−4 −2 | 0 1

]
=

[
1 1

2 | 0 − 1
4

0 0 | 1 1
2

]
first 2× 2 matrix not I2 so

[
2 1
−4 −2

]
is not invertible.

6. Properties of Matrix Multiplication and the Matrix Inverse

Here are some properties of matrix multiplication and the matrix inverse:

(1) Matrix multiplication is non-commutative, e.g., in general AB 6= BA. Re-
flects fact that, in general, S ◦ T 6= T ◦ S.

(2) In is the multiplicative identity. That is, if A is n×m matrix, then

InA = A = AIm.

(3) Matrix multiplication is associative

(AB)C = A(BC)⇒ ABC makes sense.

(4) Matrix multiplication distributes over matrix addition

A(C +D) = AC +AD and (A+B)C = AC +BC

(5) If A is invertible, then so is A−1 and (A−1)−1 = A.
(6) If A and B are n× n matrices and AB = In (or BA = In), then BA = In

(or AB = In) and so B = A−1. In other words for square matrices, it is
enough to check that B is either a right or a left inverse.

(7) Suppose A and B are invertible n×n matrices, then so is AB and (AB)−1 =
B−1A−1. Matrix multiplication is not commutative so the order matters.

EXAMPLE: Item (7) follows from (2),(3) and (6). Indeed, using (2) and (3)

(B−1A−1)AB = B−1(A−1A)B = B−1InB = B−1B = In

and so, by (6),
(AB)−1 = B−1A−1.


