
LINEAR COORDINATES

1. Bases of Rn

There are many different bases of Rn. We have already discussed the standard
basis

~e1, . . . , ~en

where here ~ei is the vector with ith entry 1 and all others 0. If ~v1, · · · , ~vn is another
basis, then

S =
[
~v1 | · · · | ~vn

]
must have

(1) ker(S) =
{
~0
}

which corresponds to ~v1, . . . , ~vn being linearly independent

(2) Im (S) = Rn which corresponds to the vectors spanning all of Rn.

and/or . In particular, ~v1, · · · , ~vn is a basis ⇐⇒ S is an invertible n× n matrix.

EXAMPLE:

[
1
−1

]
,

[
−2
1

]
is a basis of R2. As such the vector

[
2
1

]
can be ex-

pressed as a linear combination of this basis. The matrix

S =

[
1 −2
−1 1

]
satisfies

rref[S|I2] =

[
1 0 | −1 −2
0 1 | −1 −1

]
and so S is invertible and we have a verified that the pair of vectors is a basis of
R2. We wish to write [

2
1

]
= c1

[
1
−1

]
+ c2

[
−2
1

]
= S

[
c1
c2

]
for some choice of c1, c2. Clearly,[

c1
c2

]
= S−1

[
2
1

]
=

[
−1 −2
−1 −1

] [
2
1

]
=

[
−4
−3

]
So [

2
1

]
= −4

[
1
−1

]
− 3

[
−2
1

]
2. Linear Coordinates

Given a subspace W of dimension m we wish to “parameterize” W by Rm. That
is to associate m numbers (called coordinates) to each vector in W that uniquely
determines the vector. For a general subspace this requires making some choice of
basis of W . With that in mind, for W ⊂ Rn a subspace, let B = (~v1, . . . , ~vm) be an
(ordered) basis of W .

EXAMPLE: (~e1, ~e2) and (~e2, ~e1) are different ordered bases of R2.
Any ~w ∈W can be uniquely written as

~w = c1~v1 + · · ·+ cm~vm
1
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The existence of the ci is due to the fact that the basis spans. The uniqueness is
due to the fact that it is linearly independent. Specifically, if

~x = c1~v1 + · · ·+ cm~vm = d1~v1 + · · ·+ dm~vm,

then the linear relation

(c1 − d1)~v1 + · · ·+ (cm − dm)~vm = ~0

holds. As the vectors are linearly independent, this is trivial and hence ci = di as
desired.

The scalars c1, . . . , cm are called the B-coordinates of ~w. Putting thise together
gives the vector

[~w]B =

 c1...
cm

 ∈ Rm

is the B−coordinate vector of ~x.
EXAMPLE: If E = (~e1, · · · , ~en) is the standard basis, then

[~x]E = ~x

.
Observe that

~x =
[
~v1 | · · · | ~vm

]︸ ︷︷ ︸
S

[~x]B

We will call the matrix

S =
[
~v1 | · · · | ~vm

]
a change of basis matrix. It takes the standard basis of Rm to the basis B of W .

EXAMPLE: If B =

([
1
−1

]
,

[
−2
1

])
, are from the previous section, then[

2
1

]
B

=

[
−4
−3

]
If B′ =

([
−2
1

]
,

[
1
−1

])
are the same basis with the opposite ordering, then[

2
1

]
B′

=

[
−3
−4

]
If [~y]B =

[
2
1

]
, then

~y = 2

[
1
−1

]
+ 1

[
−2
1

]
=

[
0
−1

]
while if [~y]B′ =

[
2
1

]
, then

~y = 1

[
1
−1

]
+ 2

[
−2
1

]
=

[
−3
1

]
.

EXAMPLE: Find an ordered basis of ker(A) for

A =

[
0 1 2 2
0 2 4 5

]
.
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First, compute

rref(A) =

[
0 1 2 0
0 0 0 1

]
.

Observe that the free variables are f1 = x1 and f2 = x3. Hence, have and ordered
basis

B =




1
0
0
0

 ,


0
−2
1
0


 .

If ~z ∈ ker(A) and [~z]B =

[
2
−1

]
, then

~z = 2


1
0
0
0

− 1


0
−2
1
0

 =


2
2
1
0


EXAMPLE: Find an ordered basis of Im (A) where

A =

1 2 0 1
0 0 1 1
1 2 1 2


First compute,

rref(A) =

1 2 0 1
0 0 1 1
0 0 0 0


and conclude from this that first and third columns are pivot columns. Hence, an
ordered basis of Im (A) is

B =

1
0
1

 ,

0
1
1

 .

Clearly, the fourth column of A,

A~e4 =

1
1
2

 ∈ Im (A)

Moreover, 1
1
2

 =

1
0
1

+

0
1
1

 , and so

1
1
2


B

=

[
1
1

]
.

3. Linearity of coordinates

Linear coordinates have natural linearity properties. Indeed, if B is an (ordered)
basis of a subspace W ⊂ Rn, then

(1) [~x + ~y]B = [~x]B + [~y]B for all ~x, ~y ∈W .
(2) [k~x]B = k[~x]B = for all ~x ∈W and k ∈ R.
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To see why (1) holds, first let B = (~v1, . . . , ~vm) and write

~x = c1~v1 + . . . + cm~vm and ~y = d1~v1 + . . . + dm~vm

Readily see that,

~x + ~y = (c1 + d1)~v1 + · · ·+ (cm + dm)~vm.

Hence,

[~x + ~y]B =

 c1 + d1
...

cm + dm

 =

 c1...
cm

+

d1...
dm

 = [~x]B + [~y]B

as claimed. (2) follows in the same fashion.

EXAMPLE: Let B =

([
2
1

]
,

[
3
2

])
be an ordered basis of R2. Find [~e1]B and

[~e2]B and use this to find [~x]B for general ~x. By inspection, ~e1 = 2

[
2
1

]
−
[
3
2

]
so

[~e1]B =

[
2
−1

]
.

Likewise,

~e2 = 2

[
3
2

]
− 3

[
2
1

]
and so

[~e2]B =

[
−3
2

]
.

A general ~x = x1~e1 + x2~e2 then hass

[~x]B = x1

[
2
−1

]
+ x2

[
−3
2

]
=

[
2 −3
−1 2

] [
x1

x2

]
.

4. Matrix of a linear transformation

Consider a linear transformation T : Rn → Rn and an (ordered) basis B =
(~v1, . . . , ~vn) of Rn with change of basis matrix

S =
[
~v1 | · · · | ~vn

]
.

There exists a unique n× n matrix [T ]B so that

[T (~x)]B = [T ]B[~x]B

We call this matrix the B-matrix of T . One explicitly has

[T ]B =
[
[T (~v1)]B | · · · | [T (~vn)]B

]
.

That is, the columns of [T ]B are precisely the B-coordinate vectors of the images
under T of the ordered basis vectors.

EXAMPLE: If E = (~e1, . . . , ~en) is the standard basis, then

[T ]E = [T ].

Call [T ] the standard matrix of T .

EXAMPLE: Suppose A =

[
1 1
0 1

]
, T (~x) = A~x and B = (~e2, ~e1). One computes,

[T (~e2)]B =

[
1
1

]
B

=

[
1
1

]
and [T (~e1)]B =

[
1
0

]
B

=

[
0
1

]
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Hence,

B = [T ]B =

[
1 0
1 1

]
In this case, the change of basis matrix is

S =
[
~e2 | ~e1

]
=

[
0 1
1 0

]
.

Together these form a “diagram”

~x A~x = T (~x)

[~x]B B[~x]B = [T (~x)]B

A

S

B

S

This is understood to mean that

A(S[~x]B) = S(B([~x]B)) = T (~x).

As [~xB is arbitrary, this really means AS = SB as matrices. Indeed, one readily
checks

AS =

[
1 1
0 1

] [
0 1
1 0

]
=

[
1 1
1 0

]
while

SB =

[
0 1
1 0

] [
1 0
1 1

]
=

[
1 1
1 0

]
.

More generally, let T : Rn → Rn be linear and suppose B = (~v1, . . . , ~vn) is an
(ordered) basis. If S =

[
~v1 | · · · | ~vn

]
is the change of basis matrix of B, then

the following equivalent identities hold

(1) [T ]S = S[T ]B,
(2) [T ] = S[T ]BS

−1, and
(3) [T ]B = S−1[T ]S.

EXAMPLE: Consider

T (~x) = A~x,A =

1 −2 0
0 0 1
0 0 0


Find a basis B so that

[T ]B =
[
Â | ~0

]
where Â is 2 × 3. Idea: Find an ordered basis whose last vector is a non-zero
member of ker(A). Can see

ker(A) = span

2
1
0

 .

So want B to have its third vector be

~v3 =

2
1
0

 .
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Need two more vectors to get a basis we have a lot of freedom in this choice. By
inspection, can take ~v1 = ~e1 and ~v2 = ~e3 and so B = (~v1, ~v2, ~v3) has change of basis
matrix

S =

1 0 2
0 0 1
0 1 0

 .

One readily computes that

S−1 =

1 −2 0
0 0 1
0 1 0

 .

Hence,

[T ]B = S−1[T ]S =

1 −2 0
0 0 1
0 1 0

1 −2 0
0 0 1
0 0 0

1 0 2
0 0 1
0 1 0

 =

1 −2 0
0 0 0
0 1 0


Observe Â =

1 −2
0 0
0 1

 and has rank(Â) = 2 so ker(Â) =
{
~0
}

.


