LINEAR COORDINATES

1. Bases of \mathbb{R}^{n}

There are many different bases of \mathbb{R}^{n}. We have already discussed the standard basis

$$
\vec{e}_{1}, \ldots, \vec{e}_{n}
$$

where here \vec{e}_{i} is the vector with i th entry 1 and all others 0 . If $\vec{v}_{1}, \cdots, \vec{v}_{n}$ is another basis, then

$$
S=\left[\begin{array}{lllll}
\vec{v}_{1} & \mid & \cdots & \vec{v}_{n}
\end{array}\right]
$$

must have
(1) $\operatorname{ker}(S)=\{\overrightarrow{0}\}$ which corresponds to $\vec{v}_{1}, \ldots, \vec{v}_{n}$ being linearly independent
(2) $\operatorname{Im}(S)=\mathbb{R}^{n}$ which corresponds to the vectors spanning all of \mathbb{R}^{n}.
and/or . In particular, $\vec{v}_{1}, \cdots, \vec{v}_{n}$ is a basis $\Longleftrightarrow S$ is an invertible $n \times n$ matrix.
EXAMPLE: $\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ is a basis of \mathbb{R}^{2}. As such the vector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ can be expressed as a linear combination of this basis. The matrix

$$
S=\left[\begin{array}{cc}
1 & -2 \\
-1 & 1
\end{array}\right]
$$

satisfies

$$
\operatorname{rref}\left[S \mid I_{2}\right]=\left[\begin{array}{cc|cc}
1 & 0 & \left|\begin{array}{ll}
-1 & -2 \\
0 & 1
\end{array}\right| & -1
\end{array}-1\right]
$$

and so S is invertible and we have a verified that the pair of vectors is a basis of \mathbb{R}^{2}. We wish to write

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]=c_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=S\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

for some choice of c_{1}, c_{2}. Clearly,

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=S^{-1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{ll}
-1 & -2 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
-4 \\
-3
\end{array}\right]
$$

So

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]=-4\left[\begin{array}{c}
1 \\
-1
\end{array}\right]-3\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

2. Linear Coordinates

Given a subspace W of dimension m we wish to "parameterize" W by \mathbb{R}^{m}. That is to associate m numbers (called coordinates) to each vector in W that uniquely determines the vector. For a general subspace this requires making some choice of basis of W. With that in mind, for $W \subset \mathbb{R}^{n}$ a subspace, let $\mathcal{B}=\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)$ be an (ordered) basis of W.

EXAMPLE: $\left(\vec{e}_{1}, \vec{e}_{2}\right)$ and $\left(\vec{e}_{2}, \vec{e}_{1}\right)$ are different ordered bases of \mathbb{R}^{2}.
Any $\vec{w} \in W$ can be uniquely written as

$$
\vec{w}=c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}
$$

The existence of the c_{i} is due to the fact that the basis spans. The uniqueness is due to the fact that it is linearly independent. Specifically, if

$$
\vec{x}=c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=d_{1} \vec{v}_{1}+\cdots+d_{m} \vec{v}_{m}
$$

then the linear relation

$$
\left(c_{1}-d_{1}\right) \vec{v}_{1}+\cdots+\left(c_{m}-d_{m}\right) \vec{v}_{m}=\overrightarrow{0}
$$

holds. As the vectors are linearly independent, this is trivial and hence $c_{i}=d_{i}$ as desired.

The scalars c_{1}, \ldots, c_{m} are called the \mathcal{B}-coordinates of \vec{w}. Putting thise together gives the vector

$$
[\vec{w}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{m}
\end{array}\right] \in \mathbb{R}^{m}
$$

is the \mathcal{B}-coordinate vector of \vec{x}.
EXAMPLE: If $\mathcal{E}=\left(\vec{e}_{1}, \cdots, \vec{e}_{n}\right)$ is the standard basis, then

$$
[\vec{x}]_{\mathcal{E}}=\vec{x}
$$

Observe that

$$
\vec{x}=\underbrace{\left.\begin{array}{lllll}
\vec{v}_{1} & & \cdots & \vec{v}_{m}
\end{array}\right]}_{S}[\vec{x}]_{\mathcal{B}}
$$

We will call the matrix

$$
S=\left[\begin{array}{lllll}
\vec{v}_{1} & \mid & \cdots & \vec{v}_{m}
\end{array}\right]
$$

a change of basis matrix. It takes the standard basis of \mathbb{R}^{m} to the basis \mathcal{B} of W.
EXAMPLE: If $\mathcal{B}=\left(\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right)$, are from the previous section, then

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{l}
-4 \\
-3
\end{array}\right]
$$

If $\mathcal{B}^{\prime}=\left(\left[\begin{array}{c}-2 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)$ are the same basis with the opposite ordering, then

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{\mathcal{B}^{\prime}}=\left[\begin{array}{l}
-3 \\
-4
\end{array}\right]
$$

If $[\vec{y}]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, then

$$
\vec{y}=2\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+1\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

while if $[\vec{y}]_{\mathcal{B}^{\prime}}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, then

$$
\vec{y}=1\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+2\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1
\end{array}\right] .
$$

EXAMPLE: Find an ordered basis of $\operatorname{ker}(A)$ for

$$
A=\left[\begin{array}{llll}
0 & 1 & 2 & 2 \\
0 & 2 & 4 & 5
\end{array}\right]
$$

First, compute

$$
\operatorname{rref}(A)=\left[\begin{array}{llll}
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Observe that the free variables are $f_{1}=x_{1}$ and $f_{2}=x_{3}$. Hence, have and ordered basis

$$
\mathcal{B}=\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-2 \\
1 \\
0
\end{array}\right]\right)
$$

If $\vec{z} \in \operatorname{ker}(A)$ and $[\vec{z}]_{\mathcal{B}}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$, then

$$
\vec{z}=2\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]-1\left[\begin{array}{c}
0 \\
-2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
1 \\
0
\end{array}\right]
$$

EXAMPLE: Find an ordered basis of $\operatorname{Im}(A)$ where

$$
A=\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 2 & 1 & 2
\end{array}\right]
$$

First compute,

$$
\operatorname{rref}(A)=\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and conclude from this that first and third columns are pivot columns. Hence, an ordered basis of $\operatorname{Im}(A)$ is

$$
\mathcal{B}=\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)
$$

Clearly, the fourth column of A,

$$
A \vec{e}_{4}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \in \operatorname{Im}(A)
$$

Moreover,

$$
\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \text { and so }\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

3. Linearity of coordinates

Linear coordinates have natural linearity properties. Indeed, if \mathcal{B} is an (ordered) basis of a subspace $W \subset \mathbb{R}^{n}$, then
(1) $[\vec{x}+\vec{y}]_{\mathcal{B}}=[\vec{x}]_{\mathcal{B}}+[\vec{y}]_{\mathcal{B}}$ for all $\vec{x}, \vec{y} \in W$.
(2) $[k \vec{x}]_{\mathcal{B}}=k[\vec{x}]_{\mathcal{B}}=$ for all $\vec{x} \in W$ and $k \in \mathbb{R}$.

To see why (1) holds, first let $\mathcal{B}=\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)$ and write

$$
\vec{x}=c_{1} \vec{v}_{1}+\ldots+c_{m} \vec{v}_{m} \text { and } \vec{y}=d_{1} \vec{v}_{1}+\ldots+d_{m} \vec{v}_{m}
$$

Readily see that,

$$
\vec{x}+\vec{y}=\left(c_{1}+d_{1}\right) \vec{v}_{1}+\cdots+\left(c_{m}+d_{m}\right) \vec{v}_{m}
$$

Hence,

$$
[\vec{x}+\vec{y}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1}+d_{1} \\
\vdots \\
c_{m}+d_{m}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{m}
\end{array}\right]+\left[\begin{array}{c}
d_{1} \\
\vdots \\
d_{m}
\end{array}\right]=[\vec{x}]_{\mathcal{B}}+[\vec{y}]_{\mathcal{B}}
$$

as claimed. (2) follows in the same fashion.
EXAMPLE: Let $\mathcal{B}=\left(\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2\end{array}\right]\right)$ be an ordered basis of \mathbb{R}^{2}. Find $\left[\vec{e}_{1}\right]_{\mathcal{B}}$ and
$\left[\vec{e}_{2}\right]_{\mathcal{B}}$ and use this to find $[\vec{x}]_{\mathcal{B}}$ for general \vec{x}. By inspection, $\vec{e}_{1}=2\left[\begin{array}{l}2 \\ 1\end{array}\right]-\left[\begin{array}{l}3 \\ 2\end{array}\right]$ so

$$
\left[\vec{e}_{1}\right]_{\mathcal{B}}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right] .
$$

Likewise,

$$
\vec{e}_{2}=2\left[\begin{array}{l}
3 \\
2
\end{array}\right]-3\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

and so

$$
\left[\vec{e}_{2}\right]_{\mathcal{B}}=\left[\begin{array}{c}
-3 \\
2
\end{array}\right]
$$

A general $\vec{x}=x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}$ then hass

$$
[\vec{x}]_{\mathcal{B}}=x_{1}\left[\begin{array}{c}
2 \\
-1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{cc}
2 & -3 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

4. Matrix of a Linear transformation

Consider a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and an (ordered) basis $\mathcal{B}=$ $\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)$ of \mathbb{R}^{n} with change of basis matrix

$$
S=\left[\begin{array}{l|l|l}
\vec{v}_{1} & \mid & \cdots \\
\vec{v}_{n}
\end{array}\right] .
$$

There exists a unique $n \times n$ matrix $[T]_{\mathcal{B}}$ so that

$$
[T(\vec{x})]_{\mathcal{B}}=[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}
$$

We call this matrix the \mathcal{B}-matrix of T. One explicitly has

$$
[T]_{\mathcal{B}}=\left[\begin{array}{l|l|l}
{\left[T\left(\vec{v}_{1}\right)\right]_{\mathcal{B}}} & \cdots & \left.\cdots\left(\vec{v}_{n}\right)\right]_{\mathcal{B}}
\end{array}\right] .
$$

That is, the columns of $[T]_{\mathcal{B}}$ are precisely the \mathcal{B}-coordinate vectors of the images under T of the ordered basis vectors.

EXAMPLE: If $\mathcal{E}=\left(\vec{e}_{1}, \ldots, \vec{e}_{n}\right)$ is the standard basis, then

$$
[T]_{\mathcal{E}}=[T] .
$$

Call $[T]$ the standard matrix of T.
EXAMPLE: Suppose $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], T(\vec{x})=A \vec{x}$ and $\mathcal{B}=\left(\vec{e}_{2}, \vec{e}_{1}\right)$. One computes,

$$
\left[T\left(\vec{e}_{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { and }\left[T\left(\vec{e}_{1}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Hence,

$$
B=[T]_{\mathcal{B}}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

In this case, the change of basis matrix is

$$
S=\left[\begin{array}{lll}
\vec{e}_{2} & \mid & \vec{e}_{1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Together these form a "diagram"

This is understood to mean that

$$
A\left(S[\vec{x}]_{\mathcal{B}}\right)=S\left(B\left([\vec{x}]_{\mathcal{B}}\right)\right)=T(\vec{x}) .
$$

As $\left[\vec{x}_{\mathcal{B}}\right.$ is arbitrary, this really means $A S=S B$ as matrices. Indeed, one readily checks

$$
A S=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

while

$$
S B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

More generally, let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be linear and suppose $\mathcal{B}=\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)$ is an (ordered) basis. If $S=\left[\begin{array}{l|l|l}\vec{v}_{1} & \cdots & \vec{v}_{n}\end{array}\right]$ is the change of basis matrix of \mathcal{B}, then the following equivalent identities hold
(1) $[T] S=S[T]_{\mathcal{B}}$,
(2) $[T]=S[T]_{\mathcal{B}} S^{-1}$, and
(3) $[T]_{\mathcal{B}}=S^{-1}[T] S$.

EXAMPLE: Consider

$$
T(\vec{x})=A \vec{x}, A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Find a basis \mathcal{B} so that

$$
[T]_{\mathcal{B}}=\left[\begin{array}{lll}
\hat{A} & \mid & \overrightarrow{0}
\end{array}\right]
$$

where \hat{A} is 2×3. Idea: Find an ordered basis whose last vector is a non-zero member of $\operatorname{ker}(A)$. Can see

$$
\operatorname{ker}(A)=\operatorname{span}\left(\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]\right)
$$

So want \mathcal{B} to have its third vector be

$$
\vec{v}_{3}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

Need two more vectors to get a basis we have a lot of freedom in this choice. By inspection, can take $\vec{v}_{1}=\vec{e}_{1}$ and $\vec{v}_{2}=\vec{e}_{3}$ and so $\mathcal{B}=\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)$ has change of basis matrix

$$
S=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

One readily computes that

$$
S^{-1}=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Hence,

$$
[T]_{\mathcal{B}}=S^{-1}[T] S=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Observe $\hat{A}=\left[\begin{array}{cc}1 & -2 \\ 0 & 0 \\ 0 & 1\end{array}\right]$ and has $\operatorname{rank}(\hat{A})=2$ so $\operatorname{ker}(\hat{A})=\{\overrightarrow{0}\}$.

