
LEAST SQUARES SOLUTIONS

1. Orthogonal projection as closest point

The following minimizing property of orthogonal projection is very important:

Theorem 1.1. Fix a subspace V ⊂ Rn and a vector ~x ∈ Rn. The orthogonal
projection projV (~x) onto V is the vector in V closest to ~x. That is,

||~x− projV (~x)|| < ||~x− ~v||

for all ~v ∈ V with ~v 6= projV (~x).

Proof. Algebraically, have

~x = projV (~x) + ~x⊥

Notice, for any ~v ∈ V , projV (~x)− ~v ∈ V and so is orthogonal to ~x⊥. Hence,

||~x− ~v||2 = ||(projV ~x− ~v) + ~x⊥||2 = ||projV ~x− ~v||2 + ||~x⊥||2.

Where the last equality used the Pythagorean theorem. Hence,

||~x− ~v||2 = ||~x− projV (~x)||2 + ||~x− projV (~x)||2 > ||~x− projV (~x)||2

where we used that ~x 6= projV (~x)⇒ ||projV ~x− ~v|| > 0. �

2. Orthogonal Complements and the Transpose

Recall, the fundamental identity

A ∈ Rn×m, ~x ∈ Rm, ~y ∈ Rn

(A~x) · ~y = ~x ·A>~y
This implies, that if ~y ∈ ker(A>), then ~y is orthogonal to Im (A). That is,

ker(A>) ⊂ Im (A)⊥.

Conversely, if ~y ∈ (im(A))⊥, then A>~y is orthogonal to every vector ~x. That is,

A⊥~y ∈ (Rm)⊥ =
{
~0
}

Im (A)⊥ ⊂ ker(A>)

Hence, ker(A>) = im(A)⊥. Note that,

n− dim(Im (A)) = dim(Im (A)⊥) = dim(ker(A>)) = n− dim(Im (A>)).

Hence,

rank(A) = dim(Im (A)) = dim(Im (A⊥)) = rank(A>)

Moreover,

Theorem 2.1. (1) If A ∈ Rn×m, then ker(A) = ker(A>A)

(2) If A ∈ Rn×m has ker(A) =
{
~0
}
, then A>A is invertible.
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Proof. To see Claim (1) observe that, as we have seen before, ker(A) ⊂ ker(A>A). If
~x ∈ ker(A>A), then A~x ∈ ker(A>) = (Im(A))>. This means A~x ∈ Im(A)∩Im(A)>

so A~x = ~0. Hence, ~x ∈ ker(A) and so ker(A>A) ⊂ ker(A). Together, this proves
the claim. Claim (2) follows from the fact that A>A ∈ Rm×m is square. By by the

first claim, ker(A>A) = ker(A) =
{
~0
}

. This means A>A is invertible by previous

work. �

3. Least Squares Solution

Suppose we have an inconsistent system

A~x = ~b

Here A ∈ Rn×m and ~b ∈ Rn. Recall, this means that ~b 6∈ Im (A). We say ~x∗ ∈ Rm

is a least squares solution if

||~b−A~x∗|| ≤ ||~b−A~x||
for all ~x ∈ Rm. In other words, ~y∗ = A~x∗ is the vector in Im (A) that is closest to
~b, that is is closest to being a true solution. We call the distance,

E = ||A~x∗ −~b||
the error. This measures how far a least squares solution is from being a true
solution.

How to compute a least squares solution? From our first observation in this

handout, the point ~y∗ closest to ~b is given by

~y∗ = projV (~b)

where V = Im (A). As ~y∗ ∈ Im (A), then can find the least square solutions by
solving the (now consistent) system

A~x = ~y∗ = projV (~b)

Notice, this approach requires us to find projV (~b). In general, this is non-trivial
step as we need an orthonormal basis of Im (A).

4. The normal equation

The following theorem gives a more direct method for finding least squares so-
lutions.

Theorem 4.1. The least square solutions of

A~x = ~b

are the exact solutions of the (necessarily consistent) system

A>A~x = A>~b

This system is called the normal equation of A~x = ~b.

Proof. We have the following equivalent statements: ~x∗ is a least squares solution

⇐⇒ ~b−A~x∗ = ~b− projV (~b) ∈ V ⊥ = (Im (A))⊥ = ker(A>)

⇐⇒ A>(A~x∗ −~b) = ~0 ⇐⇒ A>A~x∗ = A>~b.
�
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Notice, that ker(A>A) = ker(A) so the least square solution need not be unique.
However, the lack of uniqueness is encoded in ker(A).

Theorem 4.2. If ker(A) =
{
~0
}
, then the linear system

A~x = ~b

has the unique least squares solution

~x∗ = (A>A)−1A>~b

Usually, it is more computationally efficient to apply Gaussian elimination to
the normal equation.

EXAMPLE: Find a least squares solution to 1 2
0 1
−2 1

 ~x =

1
0
0


The normal equation of this system is 1 2

0 1
−2 1

>  1 2
0 1
−2 1

 ~x =

 1 2
0 1
−2 1

> 1
0
0

⇒ [
5 0
0 6

]
~x =

[
1
2

]
We can solve this by inspection and see that the unique least squares solution is

~x∗ =

[
1/5
1/3

]
.

Notice,

~b−A~x∗ =

1
0
0

−
13/15

1/3
−1/15

 =
1

15

 2
−5
1


So ~x∗ is not a true solution. The (square of) the error is

||~b−A~x∗||2 =
30

152
=

2

15
.

5. Data fitting

An important use of least square methods is in finding functions that fit some
data (this is also called regression analysis). While there are many different methods
to do this, the first was to use least squares. To understand the idea, recall that, in
general, it is not possible to find a quadratic polynomial whose graph goes through
more than three specified points. However, using least squares, one can try and
find the quadratic polynomial that is as close as possible (in a certain sense) to
going through the points.

EXAMPLE: Fit a quadratic polynomial p ∈ P2 to

(1, 2), (0, 0), (2, 0), (−1,−2).

Write p(x) = a0 + a1x+ a2x
2. Our goal is to find a p that is as close as possible to

satisfying: 
p(1) = 2
p(0) = 0
p(2) = 0

p(−1) = −2

⇐⇒


a0 + a1 + a2 = 2

a0 = 0
a0 + 2a1 + 4a2 = 0
a0 − a1 + a2 = −2
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We can rewrite this system in matrix form as:
1 1 1
1 0 0
1 2 4
1 −1 1


a0a1
a2

 =


2
0
0
−2

 .

The normal equation of this system is
1 1 1
1 0 0
1 2 4
1 −1 1


> 

1 1 1
1 0 0
1 2 4
1 −1 1

~a =


1 1 1
1 0 0
1 2 4
1 −1 1


> 

2
0
0
−2


4 2 6

2 6 8
6 8 18

~a =

0
4
0


rref

4 2 6 | 0
2 6 8 | 4
6 8 18 | 0

 =

1 0 0 | 3/5
0 1 0 | 9/5
0 0 1 | −1


So

~a∗ =

3/5
9/5
−1


and

p∗(x) =
3

5
+

9

5
x− x2

is least squares solution in sense that of all quadratic polynomials p∗ minimizes

E(p)2 = (p(1)− 2)2 + (p(0)− 0)2 + (p(2)− 0)2 + (p(−1) + 2)2.

That is,

E(p)2 ≥ E(p∗)2 =

(
−3

5

)2

+

(
3

5

)2

+

(
1

5

)2

+

(
−1

5

)2

=
20

25
=

4

5
.


