LINEAR ALGEBRA (MATH 110.201)

FINAL EXAM - DECEMBER 2015

Name: ____

Section number/TA:

Instructions:

- (1) Do not open this packet until instructed to do so.
- (2) This midterm should be completed in **3 hours**.
- (3) Notes, the textbook, and digital devices are not permitted.
- (4) Discussion or collaboration is **not permitted**.
- (5) All solutions must be written on the pages of this booklet.
- (6) Justify your answers, and write clearly; points will be subtracted otherwise.

Exercise	Points	Your score
1	5	
2	5	
3	5	
4	5	
5	8	
6	8	
7	8	
8	8	
9	8	
10	10	
11	8	
12	12	
Total	90	

Exercise 1 (5 points): Let a, b be real numbers. Consider the following system of equations:

$$X + Y + 2Z = a$$
$$2X + 2Y + 3Z = b$$
$$3X + 3Y + 4Z = a + b$$

- (1) Determine all possible values of a, b for which the above system has a solution. When the system has a solution, describe all solutions in terms of a and b.
- (2) Are there any real numbers a, b for which the system of equations above has exactly one solution?

Exercise 2 (5 points):

- (1) Give an example of 2×2 matrices C and D such that $CD \neq DC$.
- (2) Let $A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ with a real number. Show that if B is any 2×2 matrix, then AB = BA.
- (3) Are there any other 2×2 matrices A having the property that AB = BA for all 2×2 matrices B? Hint: Start by considering matrices like $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Exercise 3 (5 points): Let V be a real vector space. Suppose that v_1, v_2, v_3, v_4 are vectors in V which are linearly independent. Show that the vectors

 $v_1, v_1 + v_2, v_1 + v_2 + v_3, v_1 + v_2 + v_3 + v_4$

are also linearly independent.

Exercise 4 (5 points): Let a, b be real numbers. Consider the following matrix:

$$A = \begin{pmatrix} 1 & a & b & 0\\ 0 & 1 & a & b\\ 0 & 0 & 1 & a\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

For which values a and b is A invertible? For these values, write down A^{-1} in terms of a and b (simplify all expressions).

Exercise 5 (8 points): Which of the following are subspaces of \mathbb{R}^2 ? If you think the given set is a subspace, prove it. If you think the given set is not a subspace, show that it isn't.

(1) The set V of vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ such that $|x_1| = |x_2|$. (2) The set V of vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ such that $x_1 - 2x_2 = 0$.

Which of the following maps are linear transformations? (Justify your answer)

(3) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} x_1 \cdot x_2 \\ x_1 + x_2 \end{bmatrix}$. (4) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \end{bmatrix}$.

Exericse 6 (8 points): Consider the following matrix:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{bmatrix}$$

(1) Find a basis for $\operatorname{Ker}(A)$. What is $\dim(\operatorname{Ker}(A))$? (2) Find a basis for $\operatorname{Im}(A)$. What is $\dim(\operatorname{Im}(A))$?

Exercise 7 (8 points): Let $V \subseteq P_2(\mathbb{R})$ be the set of polynomials $f(X) = a_0 + a_1 X + a_2 X^2$ such that f(1) = 0.

- (1) Show that V is a subspace of P₂(ℝ).
 (2) Find a basis of V. What is dim(V)?

Exercise 8 (8 points): Consider the vectors

$$v_1 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1\\0\\1\\-1 \end{bmatrix}$$

- (1) Show that v_1, v_2, v_3 are linearly independent in \mathbb{R}^4 . (2) Construct an orthonormal basis of $V = \text{Span}(v_1, v_2, v_3)$.

Exercise 9 (8 points): Find all least squares solutions of the following system of equations:

$$X + Y + 2Z = 2$$
$$2X + 2Y + 3Z = 1$$
$$3X + 3Y + 4Z = 3$$

Exercise 10 (10 points): Let C([-2,2]) denote the vector space of continuous functions $f: [-2,2] \to \mathbb{R}$, equipped with the inner product:

$$\langle f,g \rangle = \int_{-2}^{2} f(t)g(t)dt$$

- (1) Consider the function f(t) = t. Compute ||f||.
- (2) Construct an orthonormal basis (with respect to the inner product $\langle -, \rangle$ above)
- (3) Consider the function g(t) = t³. Compute Proj_{P1(ℝ)}(g), and draw it (together with g(t)) on the interval [-2, 2].

Exercise 11 (8 points): Compute the determinant of the following matrix (show your work):

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 0 & 3 & 0 & 0 \\ 1 & 0 & 3 & 4 & 4 \\ 1 & 0 & 3 & 0 & 5 \end{pmatrix}$$

Exercise 12 (12 points): Consider the following matrix:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

- (1) Write down the characteristic polynomial $f_A(X)$. What are the real eigenvalues of A, and their corresponding algebraic multiplicities?
- (2) A is diagonalizable. Find a basis of \mathbb{R}^4 consisting of eigenvectors of A.
- (3) Find an orthonormal basis of \mathbb{R}^4 consisting of eigenvectors of A.
- (4) Use your answer to compute A^7 by diagonalizing A.