LINEAR ALGEBRA (MATH 110.201)

FINAL EXAM - DECEMBER 2015

Name: \qquad

Section number/TA: \qquad

Instructions:

(1) Do not open this packet until instructed to do so.
(2) This midterm should be completed in $\mathbf{3}$ hours.
(3) Notes, the textbook, and digital devices are not permitted.
(4) Discussion or collaboration is not permitted.
(5) All solutions must be written on the pages of this booklet.
(6) Justify your answers, and write clearly; points will be subtracted otherwise.

Exercise	Points	Your score
1	5	
2	5	
3	5	
4	5	
5	8	
6	8	
7	8	
8	8	
9	8	
10	10	
11	8	
12	12	
Total	90	

Exercise 1 (5 points): Let a, b be real numbers. Consider the following system of equations:

$$
\begin{aligned}
X+Y+2 Z & =a \\
2 X+2 Y+3 Z & =b \\
3 X+3 Y+4 Z & =a+b
\end{aligned}
$$

(1) Determine all possible values of a, b for which the above system has a solution. When the system has a solution, describe all solutions in terms of a and b.
(2) Are there any real numbers a, b for which the system of equations above has exactly one solution?

Solution:

Solution (continued):

Exercise 2 (5 points):

(1) Give an example of 2×2 matrices C and D such that $C D \neq D C$.
(2) Let $A=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$ with a a real number. Show that if B is any 2×2 matrix, then $A B=B A$.
(3) Are there any other 2×2 matrices A having the property that $A B=B A$ for all 2×2 matrices B ? Hint: Start by considering matrices like $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.

Solution:

Solution (continued):

Exercise 3 (5 points): Let V be a real vector space. Suppose that $v_{1}, v_{2}, v_{3}, v_{4}$ are vectors in V which are linearly independent. Show that the vectors

$$
v_{1}, \quad v_{1}+v_{2}, \quad v_{1}+v_{2}+v_{3}, \quad v_{1}+v_{2}+v_{3}+v_{4}
$$

are also linearly independent.

Solution:

Solution (continued):

Exercise 4 (5 points): Let a, b be real numbers. Consider the following matrix:

$$
A=\left(\begin{array}{llll}
1 & a & b & 0 \\
0 & 1 & a & b \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right)
$$

For which values a and b is A invertible? For these values, write down A^{-1} in terms of a and b (simplify all expressions).

Solution:

Solution (continued):

Exercise 5 (8 points): Which of the following are subspaces of \mathbb{R}^{2} ? If you think the given set is a subspace, prove it. If you think the given set is not a subspace, show that it isn't.
(1) The set V of vectors $\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]$ such that $\left|x_{1}\right|=\left|x_{2}\right|$.
(2) The set V of vectors $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ such that $x_{1}-2 x_{2}=0$.

Which of the following maps are linear transformations? (Justify your answer)
(3) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T\left(\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \cdot x_{2} \\ x_{1}+x_{2}\end{array}\right]$.
(4) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{l}x_{1}+x_{2} \\ x_{1}-x_{2}\end{array}\right]$.

Solution:

Solution (continued):

Exericse 6 (8 points): Consider the following matrix:

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6
\end{array}\right]
$$

(1) Find a basis for $\operatorname{Ker}(A)$. What is $\operatorname{dim}(\operatorname{Ker}(A))$?
(2) Find a basis for $\operatorname{Im}(A)$. What is $\operatorname{dim}(\operatorname{Im}(A))$?

Solution:

Solution (continued):

Exercise 7 (8 points): Let $V \subseteq P_{2}(\mathbb{R})$ be the set of polynomials $f(X)=a_{0}+a_{1} X+a_{2} X^{2}$ such that $f(1)=0$.
(1) Show that V is a subspace of $P_{2}(\mathbb{R})$.
(2) Find a basis of V. What is $\operatorname{dim}(V)$?

Solution:

Solution (continued):

Exercise 8 (8 points): Consider the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right]
$$

(1) Show that v_{1}, v_{2}, v_{3} are linearly independent in \mathbb{R}^{4}.
(2) Construct an orthonormal basis of $V=\operatorname{Span}\left(v_{1}, v_{2}, v_{3}\right)$.

Solution:

Solution (continued):

Exercise 9 (8 points): Find all least squares solutions of the following system of equations:

$$
\begin{array}{r}
X+Y+2 Z=2 \\
2 X+2 Y+3 Z=1 \\
3 X+3 Y+4 Z=3
\end{array}
$$

Solution:

Solution (continued):

Exercise 10 (10 points): Let $\mathcal{C}([-2,2])$ denote the vector space of continuous functions $f:[-2,2] \rightarrow \mathbb{R}$, equipped with the inner product:

$$
\langle f, g\rangle=\int_{-2}^{2} f(t) g(t) d t
$$

(1) Consider the function $f(t)=t$. Compute $\|f\|$.
(2) Construct an orthonormal basis (with respect to the inner product $\langle-,-\rangle$ above) of the sub-space $P_{1}(\mathbb{R})$ of polynomials of degree ≤ 1.
(3) Consider the function $g(t)=t^{3}$. Compute $\operatorname{Proj}_{P_{1}(\mathbb{R})}(g)$, and draw it (together with $g(t))$ on the interval $[-2,2]$.

Solution:

Solution (continued):

Exercise 11 (8 points): Compute the determinant of the following matrix (show your work):

$$
A=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 2 & 2 & 2 & 2 \\
1 & 0 & 3 & 0 & 0 \\
1 & 0 & 3 & 4 & 4 \\
1 & 0 & 3 & 0 & 5
\end{array}\right)
$$

Solution:

Solution (continued):

Exercise 12 (12 points): Consider the following matrix:

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

(1) Write down the characteristic polynomial $f_{A}(X)$. What are the real eigenvalues of A, and their corresponding algebraic multiplicities?
(2) A is diagonalizable. Find a basis of \mathbb{R}^{4} consisting of eigenvectors of A.
(3) Find an orthonormal basis of \mathbb{R}^{4} consisting of eigenvectors of A.
(4) Use your answer to compute A^{7} by diagonalizing A.

Solution:

Solution (continued):

