
KERNEL AND IMAGE

1. Motivating problem

Let

A =

1 2 0
1 1 1
2 3 1


we want to consider the following questions:

(1) For which ~y ∈ R3 does the system A~x = ~y have some solution?
(2) What are all solutions A~x = ~y for a fixed ~y ∈ R3?

First we use Gauss-Jordan elimination to compute:

rref[A|~y] = rref

1 2 0 | y1
1 1 1 | y2
2 3 1 | y3

 = rref

1 0 2 | −y1 + 2y2
0 1 −1 | y1 − y2
0 0 0 | y3 − y1 − y2


On the one hand, if y3 − y1 − y2 = 0 then this is in RREF and we are done, on the
other hand, if y3 − y1 − y2 6= 0, then we will have a pivot in final column. In other
words, there is a solution if and only if

~y ∈


 s

t
s + t

 s, t ∈ R

 := Im (A)

. Geometrically, Im (A) is a plane through the origin. Now, fix ~y ∈ Im (A) (so
y3 = y1 + y2) and take the free variable x3 = t. This implies

A~v = ~y ⇐⇒ ~v ∈


−y1 + 2y2 − 2t

y1 − y2 + t
t

 : t ∈ R

 .

Geometrically, this is a line parallel to the vector

~w =

−2
1
1

 which goes through

−y1 + 2y2
y1 − y2

0

 .

Observe, A~w = ~0, i.e., ~w is a non-zero solution for ~y = ~0. Consider,t

−2
1
1

 : t ∈ R

 = ker(A).

What we have already worked out means

A~v = ~y ⇐⇒ ~v ∈


−y1 + 2y2

y1 − y2
0

+ ~w : ~w ∈ ker(A)

 .
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That is, to find all solutions to A~x = ~y just need to find one solution. All other
solutions obtained from it by adding an element of ker(A). As such we can answer
our original questions:

(1) There is a solution only when ~y ∈ Im (A), i.e., the vector ~y lies on a plane
through the origin in R3 determined by A.

(2) If there is a solution to A~x = ~y, then the set of all solutions consist of
some line in R3 and all of these lines are parallel to ker(A) which is the line

through the origin corresponds to the solutions of A~x = ~0.

As we will see this is a general phenomena.

2. Image of a linear transformation/matrix

Given a linear transformation T : Rm → Rn let

Im (T ) = {T (~x) : ~x ∈ Rm} ⊂ Rn

be the image of T . Similarly, for a n×m matrix A

Im (A) := Im (TA) = {A~x : ~x ∈ Rm} .
Call Im (A) the image of A or the column space of A. Observe that ~y ∈ Im (A) if
and only if the system A~x = ~y has at least one solution.

EXAMPLE:

If A =

[
1 −1
2 −2

]
, then

A

[
x1

x2

]
=

[
x1 − x2

2x1 − 2x2

]
= (x1 − x2)

[
1
2

]
.

As, x1 and x2 are arbitrary this means

Im (A) =

{
t

[
1
2

]
: t ∈ R

}
is the line through the origin x2 = 2x1.

EXAMPLE: If A is n × n and invertible, then Im (A) = Rn. This is because,
A~x = ~y must be solvable (by definition) for all ~y ∈ Rn.

EXAMPLE: If A = 0n×m is the n×m zero matrix, then Im (A) =
{
~0
}

.

EXAMPLE: Let A be an n× p matrix and B be a p×m matrix, then

Im (AB) ⊂ Im (A).

Indeed, ~y ∈ Im (AB) if and only if ~y = (AB)~x for some ~x ∈ Rm, but (AB)~x =
A(B~x) = ~y which means that ~y ∈ Im (A) as it is the image of B~x under A.

3. Kernel of a linear transformation/matrix

Given a linear transformation T : Rm → Rn let

ker(T ) =
{
~x : T (~x) = ~0

}
⊂ Rn

be the kernel of T . Similarly, for a n×m matrix A let

ker(A) := ker(TA) =
{
~x : A~x = ~0

}
.

Call ker(A) the kernel of A or the null space of A. Observe that ~w ∈ ker(A) that
if the system A~x = ~y has solution ~x = ~v, then ~x = ~v + ~w is also a solution. A



KERNEL AND IMAGE 3

Rm

Rn

~0

~y

~x

~0

ker(T )
Im (T )

T

Figure 1. A schematic picture of ker(T ), Im (T ) and points ~y =
T (~x) for a linear map T : Rm → Rn.

consequence of this is that if ker(A) =
{
~0
}

, then the system A~x = ~y can have at

most one solution.
EXAMPLE: Find ker(T ) where T : R4 → R2 is given by

T (~x) =

[
1 1 1 0
0 −2 0 2

]
~x.

First compute

rref([T ]) =

[
1 0 1 1
0 1 0 −1

]
.

Setting the free variables x3 = s and x4 = t obtain,

A~x = ~0 ⇐⇒ ~~x =



−s− t

s
t
s

 : s, t ∈ R

 .

EXAMPLE: If A is an n× n invertible matrix, then ker(A) =
{
~0
}

.

EXAMPLE: If A = 0n×m, then ker(A) = Rm.
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EXAMPLE: If A is n× p and B is p×m, then

ker(B) ⊂ ker(AB).

Indeed, if ~x ∈ ker(B), then B~x = ~0 and so (AB)~x = A(B~x) = A~0 = ~0.

EXAMPLE: If A =

[
0 1
0 0

]
, then ker(A) =

{[
t
0

]
: t ∈ R

}
. However, A2 = 02×2,

so ker(A2) = R2.
Let us now summarize some facts about the relationship between the image, the

kernel and the rank of a n×m A matrix (in (4) we assume A is square).

(1) Im (A) =
{
~0
}
⇐⇒ A = 0m×n ⇐⇒ ker(A) = Rm ⇐⇒ rank(A) = 0.

(2) Im (A) = Rn ⇐⇒ rank(A) = n. This is because there is a pivot in every
row of rref(A) if and only if one can always solve A~x = ~y for any ~y.

(3) ker(A) =
{
~0
}
⇐⇒ rank(A) = m. This is because there is a pivot in every

column of rref(A) if and only if A~x = ~0 has only the solution ~x = ~0.

(4) (n = m) A is invertible ⇐⇒ ker(A) =
{
~0
}
⇐⇒ Im (A) = Rn.

To see (4) first note that if A is invertible, then ker(A) =
{
~0
}

by definition.

Conversely, if ker(A) =
{
~0
}

, then rank(A) = n, so as A is square, Im (A) = Rn.

Hence, can always solve A~x = ~y (as A has full image) and also this solution is
unique (as ker(A) = {0}). This means A is invertible.

EXAMPLE: If A and B are n × n matrices and BA = In, then AB = In and

B = A−1. To see this observe that ker(BA) = ker(In) =
{
~0
}

. As ker(A) ⊂

ker(BA) =
{
~0
}

have ker(A) =
{
~0
}

, and so A is invertible. Finally,

A−1 = InA
−1 = (BA)A−1 = B(AA−1) = BIn = B

.


