KERNEL AND IMAGE

1. Motivating Problem

Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 1 & 1 \\
2 & 3 & 1
\end{array}\right]
$$

we want to consider the following questions:
(1) For which $\vec{y} \in \mathbb{R}^{3}$ does the system $A \vec{x}=\vec{y}$ have some solution?
(2) What are all solutions $A \vec{x}=\vec{y}$ for a fixed $\vec{y} \in \mathbb{R}^{3}$?

First we use Gauss-Jordan elimination to compute:

$$
\operatorname{rref}[A \mid \vec{y}]=\operatorname{rref}\left[\begin{array}{ccc|c}
1 & 2 & 0 & \mid \\
1 & 1 & 1 & y_{1} \\
2 & 3 & 1 & y_{2} \\
y_{3}
\end{array}\right]=\operatorname{rref}\left[\begin{array}{ccc|c}
1 & 0 & 2 & -y_{1}+2 y_{2} \\
0 & 1 & -1 & y_{1}-y_{2} \\
0 & 0 & 0 & y_{3}-y_{1}-y_{2}
\end{array}\right]
$$

On the one hand, if $y_{3}-y_{1}-y_{2}=0$ then this is in RREF and we are done, on the other hand, if $y_{3}-y_{1}-y_{2} \neq 0$, then we will have a pivot in final column. In other words, there is a solution if and only if

$$
\vec{y} \in\left\{\left[\begin{array}{c}
s \\
t \\
s+t
\end{array}\right] s, t \in \mathbb{R}\right\}:=\operatorname{Im}(A)
$$

. Geometrically, $\operatorname{Im}(A)$ is a plane through the origin. Now, fix $\vec{y} \in \operatorname{Im}(A)$ (so $\left.y_{3}=y_{1}+y_{2}\right)$ and take the free variable $x_{3}=t$. This implies

$$
A \vec{v}=\vec{y} \Longleftrightarrow \vec{v} \in\left\{\left[\begin{array}{c}
-y_{1}+2 y_{2}-2 t \\
y_{1}-y_{2}+t \\
t
\end{array}\right]: t \in \mathbb{R}\right\}
$$

Geometrically, this is a line parallel to the vector

$$
\vec{w}=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right] \text { which goes through }\left[\begin{array}{c}
-y_{1}+2 y_{2} \\
y_{1}-y_{2} \\
0
\end{array}\right]
$$

Observe, $A \vec{w}=\overrightarrow{0}$, i.e., \vec{w} is a non-zero solution for $\vec{y}=\overrightarrow{0}$. Consider,

$$
\left\{t\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]: t \in \mathbb{R}\right\}=\operatorname{ker}(A)
$$

What we have already worked out means

$$
A \vec{v}=\vec{y} \Longleftrightarrow \vec{v} \in\left\{\left[\begin{array}{c}
-y_{1}+2 y_{2} \\
y_{1}-y_{2} \\
0 \\
1
\end{array}\right]+\vec{w}: \vec{w} \in \operatorname{ker}(A)\right\}
$$

That is, to find all solutions to $A \vec{x}=\vec{y}$ just need to find one solution. All other solutions obtained from it by adding an element of $\operatorname{ker}(A)$. As such we can answer our original questions:
(1) There is a solution only when $\vec{y} \in \operatorname{Im}(A)$, i.e., the vector \vec{y} lies on a plane through the origin in \mathbb{R}^{3} determined by A.
(2) If there is a solution to $A \vec{x}=\vec{y}$, then the set of all solutions consist of some line in \mathbb{R}^{3} and all of these lines are parallel to $\operatorname{ker}(A)$ which is the line through the origin corresponds to the solutions of $A \vec{x}=\overrightarrow{0}$.
As we will see this is a general phenomena.

2. Image of a Linear transformation/matrix

Given a linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ let

$$
\operatorname{Im}(T)=\left\{T(\vec{x}): \vec{x} \in \mathbb{R}^{m}\right\} \subset \mathbb{R}^{n}
$$

be the image of T. Similarly, for a $n \times m$ matrix A

$$
\operatorname{Im}(A):=\operatorname{Im}\left(T_{A}\right)=\left\{A \vec{x}: \vec{x} \in \mathbb{R}^{m}\right\}
$$

Call $\operatorname{Im}(A)$ the image of A or the column space of A. Observe that $\vec{y} \in \operatorname{Im}(A)$ if and only if the system $A \vec{x}=\vec{y}$ has at least one solution.

EXAMPLE:

$$
\begin{gathered}
\text { If } A=\left[\begin{array}{ll}
1 & -1 \\
2 & -2
\end{array}\right] \text {, then } \\
A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-x_{2} \\
2 x_{1}-2 x_{2}
\end{array}\right]=\left(x_{1}-x_{2}\right)\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
\end{gathered}
$$

As, x_{1} and x_{2} are arbitrary this means

$$
\operatorname{Im}(A)=\left\{t\left[\begin{array}{l}
1 \\
2
\end{array}\right]: t \in \mathbb{R}\right\}
$$

is the line through the origin $x_{2}=2 x_{1}$.
EXAMPLE: If A is $n \times n$ and invertible, then $\operatorname{Im}(A)=\mathbb{R}^{n}$. This is because, $A \vec{x}=\vec{y}$ must be solvable (by definition) for all $\vec{y} \in \mathbb{R}^{n}$.

EXAMPLE: If $A=0_{n \times m}$ is the $n \times m$ zero matrix, then $\operatorname{Im}(A)=\{\overrightarrow{0}\}$.
EXAMPLE: Let A be an $n \times p$ matrix and B be a $p \times m$ matrix, then

$$
\operatorname{Im}(A B) \subset \operatorname{Im}(A)
$$

Indeed, $\vec{y} \in \operatorname{Im}(A B)$ if and only if $\vec{y}=(A B) \vec{x}$ for some $\vec{x} \in \mathbb{R}^{m}$, but $(A B) \vec{x}=$ $A(B \vec{x})=\vec{y}$ which means that $\vec{y} \in \operatorname{Im}(A)$ as it is the image of $B \vec{x}$ under A.

3. Kernel of a linear transformation/matrix

Given a linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ let

$$
\operatorname{ker}(T)=\{\vec{x}: T(\vec{x})=\overrightarrow{0}\} \subset \mathbb{R}^{n}
$$

be the kernel of T. Similarly, for a $n \times m$ matrix A let

$$
\operatorname{ker}(A):=\operatorname{ker}\left(T_{A}\right)=\{\vec{x}: A \vec{x}=\overrightarrow{0}\}
$$

Call $\operatorname{ker}(A)$ the kernel of A or the null space of A. Observe that $\vec{w} \in \operatorname{ker}(A)$ that if the system $A \vec{x}=\vec{y}$ has solution $\vec{x}=\vec{v}$, then $\vec{x}=\vec{v}+\vec{w}$ is also a solution. A

Figure 1. A schematic picture of $\operatorname{ker}(T), \operatorname{Im}(T)$ and points $\vec{y}=$ $T(\vec{x})$ for a linear map $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
consequence of this is that if $\operatorname{ker}(A)=\{\overrightarrow{0}\}$, then the system $A \vec{x}=\vec{y}$ can have at most one solution.

EXAMPLE: Find $\operatorname{ker}(T)$ where $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is given by

$$
T(\vec{x})=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & -2 & 0 & 2
\end{array}\right] \vec{x} .
$$

First compute

$$
\operatorname{rref}([T])=\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

Setting the free variables $x_{3}=s$ and $x_{4}=t$ obtain,

$$
A \vec{x}=\overrightarrow{0} \Longleftrightarrow \overrightarrow{\vec{x}}=\left\{\left[\begin{array}{c}
-s-t \\
s \\
t \\
s
\end{array}\right]: s, t \in \mathbb{R}\right\}
$$

EXAMPLE: If A is an $n \times n$ invertible matrix, then $\operatorname{ker}(A)=\{\overrightarrow{0}\}$.
EXAMPLE: If $A=0_{n \times m}$, then $\operatorname{ker}(A)=\mathbb{R}^{m}$.

EXAMPLE: If A is $n \times p$ and B is $p \times m$, then

$$
\operatorname{ker}(B) \subset \operatorname{ker}(A B)
$$

Indeed, if $\vec{x} \in \operatorname{ker}(B)$, then $B \vec{x}=\overrightarrow{0}$ and so $(A B) \vec{x}=A(B \vec{x})=A \overrightarrow{0}=\overrightarrow{0}$.
EXAMPLE: If $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, then $\operatorname{ker}(A)=\left\{\left[\begin{array}{l}t \\ 0\end{array}\right]: t \in \mathbb{R}\right\}$. However, $A^{2}=0_{2 \times 2}$, so $\operatorname{ker}\left(A^{2}\right)=\mathbb{R}^{2}$.

Let us now summarize some facts about the relationship between the image, the kernel and the rank of a $n \times m A$ matrix (in (4) we assume A is square).
(1) $\operatorname{Im}(A)=\{\overrightarrow{0}\} \Longleftrightarrow A=0_{m \times n} \Longleftrightarrow \operatorname{ker}(A)=\mathbb{R}^{m} \Longleftrightarrow \operatorname{rank}(A)=0$.
(2) $\operatorname{Im}(A)=\mathbb{R}^{n} \Longleftrightarrow \operatorname{rank}(A)=n$. This is because there is a pivot in every row of $\operatorname{rref}(A)$ if and only if one can always solve $A \vec{x}=\vec{y}$ for any \vec{y}.
(3) $\operatorname{ker}(A)=\{\overrightarrow{0}\} \Longleftrightarrow \operatorname{rank}(A)=m$. This is because there is a pivot in every column of $\operatorname{rref}(A)$ if and only if $A \vec{x}=\overrightarrow{0}$ has only the solution $\vec{x}=\overrightarrow{0}$.
(4) $(n=m) A$ is invertible $\Longleftrightarrow \operatorname{ker}(A)=\{\overrightarrow{0}\} \Longleftrightarrow \operatorname{Im}(A)=\mathbb{R}^{n}$.

To see (4) first note that if A is invertible, then $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ by definition. Conversely, if $\operatorname{ker}(A)=\{\overrightarrow{0}\}$, then $\operatorname{rank}(A)=n$, so as A is square, $\operatorname{Im}(A)=\mathbb{R}^{n}$. Hence, can always solve $A \vec{x}=\vec{y}$ (as A has full image) and also this solution is unique (as $\operatorname{ker}(A)=\{0\}$). This means A is invertible.

EXAMPLE: If A and B are $n \times n$ matrices and $B A=I_{n}$, then $A B=I_{n}$ and $B=A^{-1}$. To see this observe that $\operatorname{ker}(B A)=\operatorname{ker}\left(I_{n}\right)=\{\overrightarrow{0}\}$. As $\operatorname{ker}(A) \subset$ $\operatorname{ker}(B A)=\{\overrightarrow{0}\}$ have $\operatorname{ker}(A)=\{\overrightarrow{0}\}$, and so A is invertible. Finally,

$$
A^{-1}=I_{n} A^{-1}=(B A) A^{-1}=B\left(A A^{-1}\right)=B I_{n}=B
$$

