GRAM-SCHMIDT ALGORITHM AND QR FACTORIZATION

1. MOTIVATING PROBLEM

In many situations we have a basis of a subspace, V', but want to find an or-
thonormal basis. This is useful, for example, in giving a formula for proj;,. The
Gram-Schmidt algorithm allows us to convert any basis of V' to an orthonormal

basis. Strategy (for two dimensional V'):

(1) Scale first vector to make it unit.

(2) Project second vector onto orthogonal complement of first to make it or-

thogonal to first.
(3) Scale second vector to make it unit.

EXAMPLE: Find an orthonormal basis of V' = span
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i =01 == |2| = |2/3].
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Next, project onto orthogonal space to i
2
GE =0, — ) =0 — (G- i) = |0| —2|2/3
2
Finally, normalize the length of this vector:
1 2/3 1/3
iy = ﬂigzi—y3: —-2/3
|95 4/3 2/3

So 1, U is an orthonormal basis of V. Observe that

U1 = 3t and Uy = 211 + 21s

3 2

B = (171,?72) and U = (ﬁl,ﬁg)

That is,

where

In other words,

0 | %) =[@ | @] [3 2

. First, set
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2. GRAM-SCHMIDT ALGORITHM
We generalize the above procedure so that it holds any basis. Key Idea: Turn
a basis B = (¥1,...,¥Uy) of V.C R" into a orthonormal basis U = (i1, ..., Un) of
V. In order to write this most compactly, we observe that when V = {6}, then for
any T,
projy (7) = 0.
The algorithm is:
(1) Starti =1
(2) (Project) Let

U = U — projy, (%) = 0 — Y (i - ;)i
j=1
where V; = span(¥y,...,0;—1) = span(¥y, ..., Ui_1).
(3) (Scale) Let i; = =i Ui

oL e
(4) If i < m, then incHrelH‘l‘ent i and start again at (2). Otherwise, we are done.
In the above, by construction, V; = {6} so the first projection does nothing.
Some comments:

(1) One is constructing the orthonormal basis, 1, ..., 4;—1, of V; from the pre-
vious steps in the algorithm. This means one can compute the orthogonal
projection in a straightforward manner.

(2) The fact that B is a basis is what ensures that ||7:-|| > 0.

EXAMPLE: Compute an orthonormal basis of

1 3 0 -2
ker[o 0 1 2}.

This matrix is in rref already so we have

-3 2
1 0
ker = span R
0 1
Lets take a basis to be _
2 -3
L L |1
1= |, and U5 = 0
1 0 |
We apply the Gram-Schmidt algorithm to this to obtain:
2
L 110
Uy = § _9
1
and
-3 2 =5
N 1 110 213
Uy = Uy — (T - Uy)Uy = ol 3129 =3 |4
0 1 2
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and
2 2
g\/(—5)2 +32 4 (—4)2+22= g\/54 = 2V6.

15y [ =

Hence,
-5 -5
PR FY B F
T 36 |4 18 |4
2 2

3. QR FACTORIZATION

Let B = (04,...,0m) be a basis of V' C R™. Suppose that U = (U1, ..., Uy) is
the basis obtained from B by the Gram-Schmidt algorithm. If we write

R=Spy,M=[tn | -+ | U] andQ=1[ar | -+ | ],

then we have
M=QR
If one looks at how the Gram-Schmidt algorithm works, it is not hard to see that R
is upper triangular and the diagonal elements are all positive. Such a factorization
is called a @QR-factorization and is useful in many computational settings. Notice,
that by definition, if M has a QR-factorization M = @R, then the columns of Q
form an orthonormal basis of Im (M).
EXAMPLE: Compute the QR factorization of

2 0
M=11 6
-2 —6
Have
2 0
1= |1| andvo=| 6
-2 —6
As such,
1 2/3
i = =0 = | 1/3
3 ~2/3]
and ~
0 2/3 —4
Uf =Ty — (Uo-t)i1=| 6| —-6|1/3| =14
-6 | —2/3 -2
and
1 —4 —2/3
e==141]=12/3
61 o] |-1/3
Clearly, v7 = 3u; and s = 6u; + 6t and so
2 0 2/3  —-2/3 3 6
1 6(=1]1/3 2/3 [0 6]
-2 —6 -2/3 —1/3]|. ,
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