
GRAM-SCHMIDT ALGORITHM AND QR FACTORIZATION

1. Motivating Problem

In many situations we have a basis of a subspace, V , but want to find an or-
thonormal basis. This is useful, for example, in giving a formula for projV . The
Gram-Schmidt algorithm allows us to convert any basis of V to an orthonormal
basis. Strategy (for two dimensional V ):

(1) Scale first vector to make it unit.
(2) Project second vector onto orthogonal complement of first to make it or-

thogonal to first.
(3) Scale second vector to make it unit.

EXAMPLE: Find an orthonormal basis of V = span

2
2
1

 ,

2
0
2

. First, set

~u1 =
1

||~v1||
~v1 =

1

3

2
2
1

 =

2/3
2/3
1/3

 .

Next, project onto orthogonal space to ~u1

~v⊥2 = ~v2 − ~v
||
2 = ~v2 − (~v2 · ~u1)~u1 =

2
0
2

− 2

2/3
2/3
1/3

 =

 2/3
−4/3
4/3

 .

Finally, normalize the length of this vector:

~u2 =
1

||~v⊥2 ||
~v⊥2 =

1

2

 2/3
−4/3
4/3

 =

 1/3
−2/3
2/3


So ~u1, ~u2 is an orthonormal basis of V . Observe that

~v1 = 3~u1 and ~v2 = 2~u1 + 2~u2

That is,

SB→U =

[
3 2
0 2

]
where

B = (~v1, ~v2) and U = (~u1, ~u2)

In other words, [
~v1 | ~v2

]
=
[
~u1 | ~u2

] [3 2
0 2

]
.

1



2 GRAM-SCHMIDT ALGORITHM AND QR FACTORIZATION

2. Gram-Schmidt algorithm

We generalize the above procedure so that it holds any basis. Key Idea: Turn
a basis B = (~v1, . . . , ~vm) of V ⊂ Rn into a orthonormal basis U = (~u1, . . . , ~um) of

V . In order to write this most compactly, we observe that when V =
{
~0
}

, then for

any ~x,

projV (~x) = ~0.

The algorithm is:

(1) Start i = 1
(2) (Project) Let

~v⊥i := ~vi − projVi
(~vi) = ~vi −

i−1∑
j=1

(~uj · ~vi)~uj

where Vi = span(~v1, . . . , ~vi−1) = span(~v1, . . . , ~vi−1).
(3) (Scale) Let ~ui = 1

||~v⊥
i ||

~v⊥i
(4) If i < m, then increment i and start again at (2). Otherwise, we are done.

In the above, by construction, V1 =
{
~0
}

so the first projection does nothing.

Some comments:

(1) One is constructing the orthonormal basis, ~u1, . . . , ~ui−1, of Vi from the pre-
vious steps in the algorithm. This means one can compute the orthogonal
projection in a straightforward manner.

(2) The fact that B is a basis is what ensures that ||~v⊥i || > 0.

EXAMPLE: Compute an orthonormal basis of

ker

[
1 3 0 −2
0 0 1 2

]
.

This matrix is in rref already so we have

ker = span



−3
1
0
0

 ,


2
0
−2
1




Lets take a basis to be

~v1 =


2
0
−2
1

 and ~v2 =


−3
1
0
0


We apply the Gram-Schmidt algorithm to this to obtain:

~u1 =
1

3


2
0
−2
1


and

~v⊥2 = ~v2 − (~v2 · ~u1)~u1 =


−3
1
0
0

+
1

3


2
0
−2
1

 =
2

3


−5
3
−4
2


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and

||~v⊥2 || =
2

3

√
(−5)2 + 32 + (−4)2 + 22 =

2

3

√
54 = 2

√
6.

Hence,

~u2 =
1

3
√

6


−5
3
−4
2

 =

√
6

18


−5
3
−4
2

 .

3. QR factorization

Let B = (~v1, . . . , ~vm) be a basis of V ⊂ Rn. Suppose that U = (~u1, . . . , ~um) is
the basis obtained from B by the Gram-Schmidt algorithm. If we write

R = SB→U ,M =
[
~v1 | · · · | ~vm

]
and Q =

[
~u1 | · · · | ~um

]
,

then we have
M = QR

If one looks at how the Gram-Schmidt algorithm works, it is not hard to see that R
is upper triangular and the diagonal elements are all positive. Such a factorization
is called a QR-factorization and is useful in many computational settings. Notice,
that by definition, if M has a QR-factorization M = QR, then the columns of Q
form an orthonormal basis of Im (M).

EXAMPLE: Compute the QR factorization of

M =

 2 0
1 6
−2 −6


Have

~v1 =

 2
1
−2

 and ~v2 =

 0
6
−6

 .

As such,

~u1 =
1

3
~v1 =

 2/3
1/3
−2/3


and

~v⊥2 = ~v2 − (~v2 · ~u1)~u1 =

 0
6
−6

− 6

 2/3
1/3
−2/3

 =

−4
4
−2


and

~u2 =
1

6

−4
4
−2

 =

−2/3
2/3
−1/3

 .

Clearly, ~v1 = 3~u1 and ~v2 = 6~u1 + 6~u2 and so 2 0
1 6
−2 −6


︸ ︷︷ ︸

M

=

 2/3 −2/3
1/3 2/3
−2/3 −1/3


︸ ︷︷ ︸

Q

[
3 6
0 6

]
︸ ︷︷ ︸

R


