CHANGE OF BASIS FOR LINEAR SPACES

1. MOTIVATING EXAMPLE

Consider P_2 the space of polynomials of degree at most 2. Let $T: P_2 \to P_2$ be defined by

$$T(p)(x) = p'(x) - p(x).$$

This is a linear transformation. We would like to associate to T a matrix (as this can make computations easier. To do so we need to pick a basis of P_2 . Let

$$\mathcal{B} = (1, x, x^2)$$

be the standard basis, so

$$L_{\mathcal{B}}(a_0 + a_1x + a_2x^2) = \begin{bmatrix} a_0\\a_1\\a_2 \end{bmatrix}$$

We compute

$$T(a_0 + a_1x + a_2x^2) = (a_0 + a_1x + a_2x^2)' - (a_0 + a_1x + a_2x^2)$$
$$= a_1 + 2a_2x - a_0 - a_1x - a_2x^2$$
$$= (a_1 - a_0) + (2a_2 - a_1)x - a_2x^2.$$

This gives

Here $T_{\mathcal{B}}: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation. It has matrix

$$[T_{\mathcal{B}}] = \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 2\\ 0 & 0 & -1 \end{bmatrix}.$$

2. \mathcal{B} -matrix of a linear transformation

We generalize the preceding example. Let V be a linear space with basis $\mathcal{B} = (v_1, \ldots, v_n)$. For a linear transform $T: V \to V$ define a matrix, called the \mathcal{B} -matrix of T by

$$[T]_{\mathcal{B}} = \begin{bmatrix} [T(v_1)]_{\mathcal{B}} & | & \cdots & | & [T(v_n)]_{\mathcal{B}} \end{bmatrix}$$

That is, the columns of the matrix are precisely the \mathcal{B} -coordinate vectors of the images under T of the elements of the basis \mathcal{B} . This is a direct generalization of the matrix of a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ with respect to a basis \mathcal{B} of \mathbb{R}^n .

Let's write $B = [T]_{\mathcal{B}}$. This matrix ensures that the following "diagrams" hold

$V \xrightarrow{T} V$	р <u></u>	$\longrightarrow T(p)$
$L_{\mathcal{B}}$ $L_{\mathcal{B}}$	$L_{\mathcal{B}}$	$L_{\mathcal{B}}$
$\overset{\checkmark}{\mathbb{R}^n} \overset{B}{\longrightarrow} \overset{\checkmark}{\mathbb{R}^n}$	$[p]_{\mathcal{B}} \xrightarrow{B} $	$B[p]_{\mathcal{B}} = [T(p)]_{\mathcal{B}}$

where here the bottom arrow is multiplication by B. In other words, to find the value of T(p) one computes

$$T(p) = L_{\mathcal{B}}^{-1}(B[p]_{\mathcal{B}}) = L_{\mathcal{B}}^{-1}([T]_{\mathcal{B}}[p]_{\mathcal{B}}).$$

EXAMPLE: Consider P_2 with basis $\mathcal{B} = (1, x, x^2)$ and T(p) = p' - p we compute

$$T(1) = -1 \Rightarrow [T(1)]_{\mathcal{B}} = \begin{bmatrix} -1\\0\\0 \end{bmatrix} \text{ and } T(x) = 1 - x \Rightarrow [T(x)]_{\mathcal{B}} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$$

and $T(x^2) = 2x - x^2 \Rightarrow [T(x^2)]_{\mathcal{B}} = \begin{bmatrix} 0\\2\\-1 \end{bmatrix}$
$$\Rightarrow [T]_{\mathcal{B}} = \begin{bmatrix} -1 & 1 & 0\\0 & -1 & 2\\0 & 0 & -1 \end{bmatrix}.$$

This is $[T_{\mathcal{B}}]$ from before.

3. Image and Kernel

Fix a linear space V with basis $\mathcal{B} = (v_1, \ldots, v_n)$. The transformations $L_{\mathcal{B}}$ and $L_{\mathcal{B}}^{-1}$ give a dictionary between V and \mathbb{R}^n . In particular, they give a dictionary between the image and kernel of T and of $[T]_{\mathcal{B}}$.

EXAMPLE: Consider the linear transformation $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ defined by

$$T(A) = A \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} A.$$

Determine a basis of ker(T) and Im (T). Using the basis $\mathcal{B} = (e_{11}, e_{12}, e_{21}, e_{22})$ where

$$e_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, e_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, e_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, e_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

One computes,

$$B = [T]_{\mathcal{B}} = \left[[T(e_{11})]_{\mathcal{B}} \mid [T(e_{12})]_{\mathcal{B}} \mid [T(e_{21})]_{\mathcal{B}} \mid [T(e_{22})]_{\mathcal{B}} \right] = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 1 & -2 & 0 & -1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

For example: $[T(e_{12})]_{\mathcal{B}} = \left(\begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix} \right)_{\mathcal{B}} = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 0 \end{bmatrix}$.

Moreover,

$$\operatorname{rref}(B) = \begin{bmatrix} 1 & -2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Hence, the pivot columns are 1st and 3rd and free columns are 2nd and 4th. The kernel of B consists of solutions to $x_1 - 2x_2 - x_4 = 0$ and $x_3 = 0$. That is, by taking $x_2 = 1, x_4 = 0$ and $x_2 = 0, x_4 = 0$ and solving these simple systems one obtains

$$\ker(B) = \ker(\operatorname{rref}(B)) = \operatorname{span}\left(\begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} \right).$$

This corresponds to

$$ker(T) = \operatorname{span}\left(\begin{bmatrix} 2 & 1\\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\right).$$

Likewise, the pivot columns form a basis of the image of B and so

$$\operatorname{Im}\left(B\right) = \operatorname{span}\left(\begin{bmatrix}0\\1\\0\\0\end{bmatrix}, \begin{bmatrix}-1\\0\\2\\1\end{bmatrix}\right).$$

Hence,

Im
$$(T) = \operatorname{span}\left(\left(\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0\\ 2 & 1 \end{bmatrix}\right)$$
.

4. Change of Basis Matrix

Fix a linear space V with bases $\mathcal{B} = (v_1, \ldots, v_n)$ and $\mathcal{U} = (w_1, \ldots, w_n)$. Observe, that the map

$$L_{\mathcal{U}} \circ L_{\mathcal{B}}^{-1} : \mathbb{R}^n \to \mathbb{R}^n$$

is the composition of isomorphisms and hence is an isomorphism. We call

$$S_{\mathcal{B}\to\mathcal{U}} = [L_{\mathcal{U}} \circ L_{\mathcal{B}}^{-1}] \in \mathbb{R}^{n \times n}$$

the change of basis matrix from $\mathcal B$ to $\mathcal U$ Clearly, this is an invertible matrix. We have the diagrams

EXAMPLE: Let $V \subset C^{\infty}$ be the space $V = \text{span}(1, \cos(2x), \sin(2x))$. Compute $S_{\mathcal{U} \to \mathcal{B}}$ for the bases (I will leave it to you to check these are both bases)

$$\mathcal{B} = (1, \cos(2x), \sin(2x))$$

$$\mathcal{U} = (1, \cos^2(x), \sin(x)\cos(x))$$

To do so observe, that a basic trigonometric identity tells us that

 $\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1$ and $\sin(2x) = 2\cos(x)\sin(x)$.

In particular,

$$L_{\mathcal{U}}\left(L_{\mathcal{B}}^{-1}\left(\begin{bmatrix}a\\b\\c\end{bmatrix}\right)\right) = L_{\mathcal{U}}(a+b\cos(2x)+c\sin(2x))$$
$$= L_{\mathcal{U}}(a-b+2b\cos^{2}(x)+2c\cos(x)\sin(x))$$
$$= \begin{bmatrix}a-b\\2b\\2c\end{bmatrix}.$$

Hence,

$$S_{\mathcal{B}\to\mathcal{U}} = \begin{bmatrix} 1 & -1 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{bmatrix}.$$

5. Change of basis for subspaces

EXAMPLE: Consider V to be the subspace of \mathbb{R}^3 given by $x_1 + x_2 + x_3 = 0$. This has bases

$$\mathcal{B} = \left(\begin{bmatrix} -2\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right) \text{ and } \mathcal{U} = \left(\begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right).$$

We compute

$$L_{\mathcal{U}}(L_{\mathcal{B}}^{-1}(\vec{e}_{1})) = L_{\mathcal{U}}\left(\begin{bmatrix} -2\\1\\1 \end{bmatrix} \right) = L_{\mathcal{U}}\left(-2\begin{bmatrix} 1\\-1\\0 \end{bmatrix} + \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right) = -2\vec{e}_{1} + \vec{e}_{2}$$

and

$$L_{\mathcal{U}}(L_{\mathcal{B}}^{-1}(\vec{e}_2)) = L_{\mathcal{U}}\left(\begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right) = L_{\mathcal{U}}\left(\begin{bmatrix} 1\\-1\\0 \end{bmatrix} - \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right) = \vec{e}_1 - \vec{e}_2$$

Hence,

$$S_{\mathcal{B}\to\mathcal{U}} = \begin{bmatrix} -2 & 1\\ 1 & -1 \end{bmatrix}$$

Observe,

$$\begin{bmatrix} -2 & 1\\ 1 & 0\\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ -1 & -1\\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1\\ 1 & -1 \end{bmatrix}$$

Here the left hand matrix has columns the elements of \mathcal{B} and the righthand side is the matrix with columns the elements of \mathcal{U} .

This last fact can be generalized as follows:

Theorem 5.1. If $V \subset \mathbb{R}^n$ has basis $\mathcal{B} = (\vec{b}_1, \ldots, \vec{b}_m)$ and $\mathcal{U} = (\vec{u}_1, \ldots, \vec{u}_m)$ then

$$\begin{bmatrix} \vec{b}_1 & | & \cdots & | & \vec{b}_m \end{bmatrix} = \begin{bmatrix} \vec{u}_1 & | & \cdots & | & \vec{u}_m \end{bmatrix} S_{\mathcal{B} \to \mathcal{U}}.$$

4

6. CHANGE OF BASIS MATRIX AND LINEAR TRANSFORMATIONS

Fix a linear space V with with dim(V) = n. Suppose that $T: V \to V$ is linear transformation from V to V. If $\mathcal{B} = (v_1, \ldots, v_n)$ and $\mathcal{U} = (u_1, \ldots, u_n)$ form two bases of V, then it is natural to ask what is the relationship between $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{U}}$. That is, what is the relationship between the matrix of T with respect to the two bases.

Theorem 6.1. In the above situation, if $S = S_{\mathcal{B}\to\mathcal{U}}$ is the change of basis matrix, then

$$[T]_{\mathcal{U}}S = S[T]_{\mathcal{B}} \text{ and } [T]_{\mathcal{U}} = S[T]_{\mathcal{B}}S^{-1} \text{ and } [T]_{\mathcal{B}} = S^{-1}[T]_{\mathcal{B}}S.$$

A heuristic to remember the order of multiplication is the following: $[T]_{\mathcal{U}}$ "eats" a \mathcal{U} -coordinate vector and so is multiplied on the right by $S = S_{\mathcal{B}\to\mathcal{U}}$ (as this outputs \mathcal{U} -coordinate vectors). This product "eats" \mathcal{B} -vectors and outputs \mathcal{B} -coordinate vectors. Similarly, $[T]_{\mathcal{B}}$ outputs \mathcal{B} -coordinate vectors and so has to be multiplied on the left by $S = S_{\mathcal{B}\to\mathcal{U}}$ (which "eats" \mathcal{B} -vectors). This product "eats" \mathcal{B} -coordinate vectors and so has to be multiplied on the left by $S = S_{\mathcal{B}\to\mathcal{U}}$ (which "eats" \mathcal{B} -vectors). This product "eats" \mathcal{B} -coordinate vectors and outputs \mathcal{U} -coordinate vectors.

EXAMPLE: Consider $V = span(1, \cos(2x), \sin(2x)) \subset C^{\infty}$ with basis

$$\mathcal{B} = (1, \cos(2x), \sin(2x))$$
 and $\mathcal{U} = (1, \cos^2(x), \sin(x)\cos(x))$

One checks the map $D: V \to V$ given by D(f) = f' is a well defined linear transformation. Indeed,

$$D(a + b\cos(2x)) + c\sin(2x)) = -2b\sin(2x) + 2c\cos(2x) \in V$$

Clearly,

 \mathbf{As}

$$[D]_{\mathcal{B}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & -2 & 0 \end{bmatrix}.$$

$$D(1) = 0, D(\cos^2(x)) = -2\cos(x)\sin(x) \text{ and}$$
$$D(\cos(x)\sin(x)) = \cos^2(x) - \sin^2(x) = -1 + 2\cos^2(x),$$
$$[D]_{\mathcal{U}} = \begin{bmatrix} 0 & 0 & -1\\ 0 & 0 & 2\\ 0 & -2 & 0 \end{bmatrix}$$

We check

$$[D]_{\mathcal{U}}S_{\mathcal{B}\to\mathcal{U}} = \begin{bmatrix} 0 & 0 & -1\\ 0 & 0 & 2\\ 0 & -2 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -2\\ 0 & 0 & 4\\ 0 & -4 & 0 \end{bmatrix}$$
$$S_{\mathcal{B}\to\mathcal{U}}[D]_{\mathcal{B}} = \begin{bmatrix} 1 & -1 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 2\\ 0 & -2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -2\\ 0 & 0 & 4\\ 0 & -4 & 0 \end{bmatrix},$$

these agree as expected.