CHANGE OF BASIS FOR LINEAR SPACES

1. Motivating Example

Consider P_{2} the space of polynomials of degree at most 2. Let $T: P_{2} \rightarrow P_{2}$ be defined by

$$
T(p)(x)=p^{\prime}(x)-p(x) .
$$

This is a linear transformation. We would like to associate to T a matrix (as this can make computations easier. To do so we need to pick a basis of P_{2}. Let

$$
\mathcal{B}=\left(1, x, x^{2}\right)
$$

be the standard basis, so

$$
L_{\mathcal{B}}\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right] .
$$

We compute

$$
\begin{aligned}
T\left(a_{0}+a_{1} x+a_{2} x^{2}\right) & =\left(a_{0}+a_{1} x+a_{2} x^{2}\right)^{\prime}-\left(a_{0}+a_{1} x+a_{2} x^{2}\right) \\
& =a_{1}+2 a_{2} x-a_{0}-a_{1} x-a_{2} x^{2} \\
& =\left(a_{1}-a_{0}\right)+\left(2 a_{2}-a_{1}\right) x-a_{2} x^{2}
\end{aligned}
$$

This gives

$$
\begin{gathered}
p(x)=a_{0}+a_{1} x+a_{2} x^{2} \xrightarrow{T}\left(a_{1}-a_{0}\right)+\left(2 a_{2}-a_{1}\right) x-a_{2} x^{2}=T(p)(x) \\
\downarrow_{L_{\mathcal{B}}} \\
\left.[p(x)]_{\mathcal{B}}=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right] \xrightarrow[L_{\mathcal{B}}]{ } \begin{array}{c}
T_{\mathcal{B}} \\
2 a_{2}-a_{1} \\
-a_{2}
\end{array}\right]=[T(p)(x)]_{\mathcal{B}}
\end{gathered}
$$

Here $T_{\mathcal{B}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation. It has matrix

$$
\left[T_{\mathcal{B}}\right]=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 2 \\
0 & 0 & -1
\end{array}\right]
$$

2. \mathcal{B}-matrix of a Linear transformation

We generalize the preceding example. Let V be a linear space with basis $\mathcal{B}=$ $\left(v_{1}, \ldots, v_{n}\right)$. For a linear transform $T: V \rightarrow V$ define a matrix, called the \mathcal{B}-matrix of T by

$$
[T]_{\mathcal{B}}=\left[\begin{array}{l|l|l}
{\left[T\left(v_{1}\right)\right]_{\mathcal{B}}} & \cdots & {\left[T\left(v_{n}\right)\right]_{\mathcal{B}}}
\end{array}\right]
$$

That is, the columns of the matrix are precisely the \mathcal{B}-coordinate vectors of the images under T of the elements of the basis \mathcal{B}. This is a direct generalization of the matrix of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with respect to a basis \mathcal{B} of \mathbb{R}^{n}.

Let's write $B=[T]_{\mathcal{B}}$. This matrix ensures that the following "diagrams" hold

where here the bottom arrow is multiplication by B. In other words, to find the value of $T(p)$ one computes

$$
T(p)=L_{\mathcal{B}}^{-1}\left(B[p]_{\mathcal{B}}\right)=L_{\mathcal{B}}^{-1}\left([T]_{\mathcal{B}}[p]_{\mathcal{B}}\right)
$$

EXAMPLE: Consider P_{2} with basis $\mathcal{B}=\left(1, x, x^{2}\right)$ and $T(p)=p^{\prime}-p$ we compute

$$
\begin{gathered}
T(1)=-1 \Rightarrow[T(1)]_{\mathcal{B}}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right] \text { and } T(x)=1-x \Rightarrow[T(x)]_{\mathcal{B}}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \\
\text { and } T\left(x^{2}\right)=2 x-x^{2} \Rightarrow\left[T\left(x^{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right] \\
\Rightarrow[T]_{\mathcal{B}}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 2 \\
0 & 0 & -1
\end{array}\right]
\end{gathered}
$$

This is $\left[T_{\mathcal{B}}\right]$ from before.

3. Image and Kernel

Fix a linear space V with basis $\mathcal{B}=\left(v_{1}, \ldots, v_{n}\right)$. The transformations $L_{\mathcal{B}}$ and $L_{\mathcal{B}}^{-1}$ give a dictionary between V and \mathbb{R}^{n}. In particular, they give a dictionary between the image and kernel of T and of $[T]_{\mathcal{B}}$.

EXAMPLE: Consider the linear transformation $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ defined by

$$
T(A)=A\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]-\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] A
$$

Determine a basis of $\operatorname{ker}(T)$ and $\operatorname{Im}(T)$. Using the basis $\mathcal{B}=\left(e_{11}, e_{12}, e_{21}, e_{22}\right)$ where

$$
e_{11}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], e_{12}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], e_{21}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], e_{22}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

One computes,
$B=[T]_{\mathcal{B}}=\left[\left[\begin{array}{lllll}\left.T\left(e_{11}\right)\right]_{\mathcal{B}} & \mid & {\left[T\left(e_{12}\right)\right]_{\mathcal{B}}} & \mid\left[T\left(e_{21}\right)\right]_{\mathcal{B}} & \mid\end{array} \quad\left[T\left(e_{22}\right)\right]_{\mathcal{B}}\right]=\left[\begin{array}{cccc}0 & 0 & -1 & 0 \\ 1 & -2 & 0 & -1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\right.$
For example: $\left[T\left(e_{12}\right)\right]_{\mathcal{B}}=\left(\left[\begin{array}{cc}0 & -2 \\ 0 & 0\end{array}\right]\right)_{\mathcal{B}}=\left[\begin{array}{c}0 \\ -2 \\ 0 \\ 0\end{array}\right]$.

Moreover,

$$
\operatorname{rref}(B)=\left[\begin{array}{cccc}
1 & -2 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Hence, the pivot columns are 1st and 3rd and free columns are 2nd and 4th. The kernel of B consists of solutions to $x_{1}-2 x_{2}-x_{4}=0$ and $x_{3}=0$. That is, by taking $x_{2}=1, x_{4}=0$ and $x_{2}=0, x_{4}=0$ and solving these simple systems one obtains

$$
\operatorname{ker}(B)=\operatorname{ker}(\operatorname{rref}(B))=\operatorname{span}\left(\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right)
$$

This corresponds to

$$
\operatorname{ker}(T)=\operatorname{span}\left(\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)
$$

Likewise, the pivot columns form a basis of the image of B and so

$$
\operatorname{Im}(B)=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
2 \\
1
\end{array}\right]\right)
$$

Hence,

$$
\operatorname{Im}(T)=\operatorname{span}\left(\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
2 & 1
\end{array}\right]\right)\right.
$$

4. Change of Basis Matrix

Fix a linear space V with bases $\mathcal{B}=\left(v_{1}, \ldots, v_{n}\right)$ and $\mathcal{U}=\left(w_{1}, \ldots, w_{n}\right)$. Observe, that the map

$$
L_{\mathcal{U}} \circ L_{\mathcal{B}}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is the composition of isomorphisms and hence is an isomorphism. We call

$$
S_{\mathcal{B} \rightarrow \mathcal{U}}=\left[L_{\mathcal{U}} \circ L_{\mathcal{B}}^{-1}\right] \in \mathbb{R}^{n \times n}
$$

the change of basis matrix from \mathcal{B} to \mathcal{U} Clearly, this is an invertible matrix. We have the diagrams

EXAMPLE: Let $V \subset C^{\infty}$ be the space $V=\operatorname{span}(1, \cos (2 x), \sin (2 x))$. Compute $S_{\mathcal{U} \rightarrow \mathcal{B}}$ for the bases (I will leave it to you to check these are both bases)

$$
\begin{gathered}
\mathcal{B}=(1, \cos (2 x), \sin (2 x)) \\
\mathcal{U}=\left(1, \cos ^{2}(x), \sin (x) \cos (x)\right)
\end{gathered}
$$

To do so observe, that a basic trigonometric identity tells us that

$$
\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1 \text { and } \sin (2 x)=2 \cos (x) \sin (x)
$$

In particular,

$$
\begin{aligned}
L_{\mathcal{U}}\left(L_{\mathcal{B}}^{-1}\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)\right) & =L_{\mathcal{U}}(a+b \cos (2 x)+c \sin (2 x)) \\
& =L_{\mathcal{U}}\left(a-b+2 b \cos ^{2}(x)+2 c \cos (x) \sin (x)\right) \\
& =\left[\begin{array}{c}
a-b \\
2 b \\
2 c
\end{array}\right]
\end{aligned}
$$

Hence,

$$
S_{\mathcal{B} \rightarrow \mathcal{U}}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

5. Change of basis for subspaces

EXAMPLE: Consider V to be the subspace of \mathbb{R}^{3} given by $x_{1}+x_{2}+x_{3}=0$.
This has bases

$$
\mathcal{B}=\left(\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right) \text { and } \mathcal{U}=\left(\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right)
$$

We compute

$$
L_{\mathcal{U}}\left(L_{\mathcal{B}}^{-1}\left(\vec{e}_{1}\right)\right)=L_{\mathcal{U}}\left(\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right)=L_{\mathcal{U}}\left(-2\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right)=-2 \vec{e}_{1}+\vec{e}_{2}
$$

and

$$
L_{\mathcal{U}}\left(L_{\mathcal{B}}^{-1}\left(\vec{e}_{2}\right)\right)=L_{\mathcal{U}}\left(\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right)=L_{\mathcal{U}}\left(\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]-\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right)=\vec{e}_{1}-\vec{e}_{2}
$$

Hence,

$$
S_{\mathcal{B} \rightarrow \mathcal{U}}=\left[\begin{array}{cc}
-2 & 1 \\
1 & -1
\end{array}\right]
$$

Observe,

$$
\left[\begin{array}{cc}
-2 & 1 \\
1 & 0 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-2 & 1 \\
1 & -1
\end{array}\right]
$$

Here the left hand matrix has columns the elements of \mathcal{B} and the righthand side is the matrix with columns the elements of \mathcal{U}.

This last fact can be generalized as follows:
Theorem 5.1. If $V \subset \mathbb{R}^{n}$ has basis $\mathcal{B}=\left(\vec{b}_{1}, \ldots, \vec{b}_{m}\right)$ and $\mathcal{U}=\left(\vec{u}_{1}, \ldots, \vec{u}_{m}\right)$ then

$$
\left[\begin{array}{l|ll|}
\vec{b}_{1} & \cdots & \vec{b}_{m}
\end{array}\right]=\left[\begin{array}{lllll}
\vec{u}_{1} & \mid & \cdots & \vec{u}_{m}
\end{array}\right] S_{\mathcal{B} \rightarrow \mathcal{U}} .
$$

6. Change of basis matrix and linear transformations

Fix a linear space V with with $\operatorname{dim}(V)=n$. Suppose that $T: V \rightarrow V$ is linear transformation from V to V. If $\mathcal{B}=\left(v_{1}, \ldots, v_{n}\right)$ and $\mathcal{U}=\left(u_{1}, \ldots, u_{n}\right)$ form two bases of V, then it is natural to ask what is the relationship between $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{U}}$. That is, what is the relationship between the matrix of T with respect to the two bases.

Theorem 6.1. In the above situation, if $S=S_{\mathcal{B} \rightarrow \mathcal{U}}$ is the change of basis matrix, then

$$
[T]_{\mathcal{U}} S=S[T]_{\mathcal{B}} \text { and }[T]_{\mathcal{U}}=S[T]_{\mathcal{B}} S^{-1} \text { and }[T]_{\mathcal{B}}=S^{-1}[T]_{\mathcal{B}} S
$$

A heuristic to remember the order of multiplication is the following: $[T]_{\mathcal{U}}$ "eats" a \mathcal{U}-coordinate vector and so is multiplied on the right by $S=S_{\mathcal{B} \rightarrow \mathcal{U}}$ (as this outputs \mathcal{U}-coordinate vectors). This product "eats" \mathcal{B}-vectors and outputs \mathcal{B}-coordinate vectors. Similarly, $[T]_{\mathcal{B}}$ outputs \mathcal{B}-coordinate vectors and so has to be multiplied on the left by $S=S_{\mathcal{B} \rightarrow \mathcal{U}}$ (which "eats" \mathcal{B}-vectors). This product "eats" \mathcal{B}-coordinate vectors and outputs \mathcal{U}-coordinate vectors.

EXAMPLE: Consider $V=\operatorname{span}(1, \cos (2 x), \sin (2 x)) \subset C^{\infty}$ with basis

$$
\mathcal{B}=(1, \cos (2 x), \sin (2 x)) \text { and } \mathcal{U}=\left(1, \cos ^{2}(x), \sin (x) \cos (x)\right)
$$

One checks the map $D: V \rightarrow V$ given by $D(f)=f^{\prime}$ is a well defined linear transformation. Indeed,

$$
D(a+b \cos (2 x))+c \sin (2 x))=-2 b \sin (2 x)+2 c \cos (2 x) \in V
$$

Clearly,

$$
[D]_{\mathcal{B}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 2 \\
0 & -2 & 0
\end{array}\right]
$$

As $D(1)=0, D\left(\cos ^{2}(x)\right)=-2 \cos (x) \sin (x)$ and

$$
\begin{gathered}
D(\cos (x) \sin (x))=\cos ^{2}(x)-\sin ^{2}(x)=-1+2 \cos ^{2}(x) \\
{[D]_{\mathcal{U}}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 2 \\
0 & -2 & 0
\end{array}\right]}
\end{gathered}
$$

We check

$$
\begin{aligned}
& {[D]_{\mathcal{U}} S_{\mathcal{B} \rightarrow \mathcal{U}}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 2 \\
0 & -2 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & -2 \\
0 & 0 & 4 \\
0 & -4 & 0
\end{array}\right]} \\
& S_{\mathcal{B} \rightarrow \mathcal{U}}[D]_{\mathcal{B}}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 2 \\
0 & -2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & -2 \\
0 & 0 & 4 \\
0 & -4 & 0
\end{array}\right]
\end{aligned}
$$

these agree as expected.

