
201 Linear Algebra, Practice Final Solutions

1. z = 0, y = 1, x+ y = 2. Therefore the solutions are

 x
y
z

 =

 1
1
0

.

2. The characteristic polynomial PA(x) = (1 − x)3. Therefore there is one eigenvalue λ = 1 with
algebraic multiplicity 3.

The eigenspace E1 = Ker(A− I). A is diagonalizable if E1 has dimension 3.

A− I =

 0 1 0
0 0 0
0 0 0

 has rank 1, therefore has nullity 2. Therefore dimE1 = 2. A is not diagonal-

izable.

E1 = Span{~e1, ~e3}.

3. B is a symmetric matrix and is therefore orthogonaly diagonalizable.

The characteristic polynomial PB(x) = det

(
1− x 2

2 3− x

)
= (1 − x)(3 − x) − 4 = x2 − 4x − 1.

The eigenvalues are λ1 = 2 +
√

5, λ2 = 2−
√

5.

The eigenspaces,

Eλ1 = Ker(B − λ1I) = Ker

(
−1−

√
5 2

2 1−
√

5

)
= Span{

( √
5− 1
2

)
}

Eλ2 = Ker(B − λ2I) = Ker

(
−1 +

√
5 2

2 1 +
√

5

)
= Span{

( √
5 + 1
−2

)
}

The eigenspaces are perpendicular to each other since the matrix is symmetric. Let B = {~u1, ~u2} be
the orthonormal eigenbasis where

~u1 = 1√
10−2

√
5

( √
5− 1
2

)
and ~u2 = 1√

10+2
√
5

( √
5 + 1
−2

)
.

P = (~u1~u2).

The quadratic form q in B-coordinates looks like q(x, y) = λ1c
2
1 +λ2c

2
2, where λ1 > 0 ans λ2 < 0. The

level set q(x, y) = 1 therefore describes a hyperbola with the eigenspaces Eλ1 and Eλ2 it’s principal
axes.

The point ± 1√
λ1
~u1 are the points on the hyperbola closest to the origin.

4. T : R2×2 → R2×2, T

[
a b
c d

]
=

[
a c
b d

]
. The S-matrix for T is the 4 × 4 matrix A such that

A


a
b
c
d

 =


a
c
b
d

, therefore A =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.

The characteristic polynomial PA(x) = det(A− xI) = (1− x)(1− x)(x2 − 1) = (x− 1)3(x+ 1).

Two eigenvalues, λ1 = 1, algebraic multiplicity = 3.

λ2 = −1, algebraic multiplicity = 1.

The eigenspaces,
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E1 = Ker(A− I) = Ker


0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

 = Span{


1
0
0
0

 ,


0
1
1
0

 ,


0
0
0
1

}.

E−1 = Ker(A+ I) = Ker


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 = Span{


0
1
−1
0

}.
The eigenvalues of the transformation T are 1 and −1. The eigenspaces,

E1 = Span{
[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
}

E−1 = Span{
[

0 1
−1 0

]
}.

5. Let E2 = Span{v1} and E3 = Span{v2}. Then B = {v1, v2} is an eigenbasis for V with respect to T .

The B-matrix for T =

(
2 0
0 3

)
, which is invertible. Therefore T is invertible.

The determinant of T = det

(
2 0
0 3

)
= 6.

6. ProjV has eigenvalues 0 and 1. The eigenspaces are E0 = V ⊥, E1 = V .

V ⊥ = Ker

(
1 0 2
0 1 1

)
= {

 −2t
−t
t

 , t ∈ R} = Span{

 −2
−1
1

}.
V = Span{

 1
0
2

 ,

 0
1
1

}.
These are bases for the eigenspaces E0 and E1. Notice that the eigenspaces are perpendicular to
each other, therefore, we can apply Gram-Schmidt to the basis for each eigenspace asn obtain an
orthonormal eigenbasis.

Let {~u1, ~u2} be an orthonormal basis for V = E1, and ~u3 an orthonormal basis for V ⊥ = E0. Then
Q = (~u1, ~u2, ~u3).

(finish calculations)

7. (1/2, cosx, sinx) is an orthonormal basis for T1. Therefore projT1(x) =< x, 1/2 > 1/2+ < x, cosx >
cosx+ < x, sinx > sinx.

< x, 1/2 >= 1
π

∫ π
−π x/2dx

< x, cosx >= 1
π

∫ π
−π x cosxdx

< x, sinx >= 1
π

∫ π
−π x sinxdx

(finish calculations)

8. (a) TRUE.

(
1 1
0 2

)
has two distict eigenvalues 1 and 2, therefore is diagonalizable with the eigen-

values the diagonal entries.
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(b) FALSE.

(
1 0
0 −1

)
is orthogonal.

(c) FALSE. The eigenvalues of

(
1 2
2 3

)
are posititive and negetive, therefore the matrix is not

positive definite.

(d) TRUE. S−1AS = D ⇒ S−1A2S = S−1ASS−1AS = D2 is diagonal.
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