201 Linear Algebra, Practice Final

Duration: 180 mins

1. Solve the system
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}.$$

2. $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

Find the eigenvalues and eigenspaces for A. Is A diagonalizable? Explain.

3. $B = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$. Find an orthogonal matrix P such that $P^T B P$ is a diagonal matrix.

Consider the quadratic form $q(x, y) = \begin{pmatrix} x & y \end{pmatrix} B \begin{pmatrix} x \\ y \end{pmatrix}$. Sketch the curve q(x, y) = 1. Find the point on this curve that is closest to the origin.

- 4. Let T : ℝ^{2×2} → ℝ^{2×2} be the linear transformation T(A) = A^T.
 Let S be the standard basis for ℝ^{2×2}. Find the S-matrix A for T.
 Find out the eigenvalues and the eigenspaces for the matrix A.
 Use this to find the the eigenvalues and eigenspaces for the transformation T.
- 5. Let V be a 2-dimensional vector space and $T: V \to V$ a linear transformation with eigenvalues 2 and 3. Show that T is an invertible transformation.

What is the determinant of T?

6. Let $V = \text{Span}\left\{\begin{pmatrix} 1\\0\\2 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}\right\}$. Let A be the \mathcal{S} -matrix for the transformation $\text{Proj}_V : \mathbb{R}^3 \to \mathbb{R}^3$.

Find an orthogonal matrix Q so that $Q^T A Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

- 7. Let C^{∞} be the space of infinitely differentiable functions $[-\pi,\pi] \to \mathbb{R}$ equipped with the inner product $\langle f,g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x)dx$. Let $T_1 = \text{Span}\{1,\cos x,\sin x\}$ be the subspace of C^{∞} . Find the orthogonal projection of $t \in C^{\infty}$ on T_1 .
- 8. TRUE or FALSE. Justify your answer.
 - (a) There exists invertible matrix S such that $S^{-1}\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} S = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.
 - (b) The determinant of an orthogonal matrix is always positive.
 - (c) $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \vec{y}$ defines an inner product on \mathbb{R}^2 .
 - (d) A is a diagonalizable matrix implies A^2 is diagonalizable.