April 1, 2009
Name ..................
Section/ Name of your TA ...................

3 ~
SVEGESTED Souttions To MipTERM EXAM 2 100pts.
MATH 201 VER *¥***

» There are 6 pages in the exam including this page.

» Write all your answers clearly. You have to show work to get
points for your answers.

¢ Read all the questions carefully and make sure you answer all
the parts.

¢ You can write on both sides of the paper. Indicate that the
answer follows on the back of the page.

¢ Use of Calculators is not allowed during the exam.
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(a) Find the determinant of A. Show work.
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{b) Find the classical adjoint of A. Show work
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(¢} What is the inverse of A? Show work.
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(2) 20 pts. Let Py be the set of polynomials with degree less than or equal to 1, that
is, Pr = {f(t}) = ap + a1t : ag,a; € R}. Then both B, = {1,¢} and
Ba{1,t — 1} are bases of P,.
(a) What is the S matrix that transforms a vector in By-coordinates into
Bi-coordinates. Show work.
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(b) Let T : P, — Py be the transformation defined as T(ag + art) =
ag + a;(2t — 1), Find the matrix B of the transformation T with
respect to the basis Bs. Show work.
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{c] Let f & Py be written as [flg, = in Biy-coordinates. Let T he
L ety 1

as in part (b}, then find [T'(f)ig,, that is, find T{f} in Bi-coordinates.
Show work.
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{(3) 22pts.  (a) Let {[ ?J , [ i J} and {!' ; J . [ mé J} be two different sets
. 0 1 1 -1

in R* spanning the same subspace. Which of these two sets are
orthogonal? Show work.
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(b) Let { (1} , ; g]} be a basis of a subspace V of R, Find
0 1 0
an orthonormal basis of V. Show work.
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{4) 36 pts. These are all short answer questions. Explain your answer. Each of these
problems is worth 12 points.
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(a) Let det | d e f | = 6. Find det g h i]. Ex-
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{b) The space of polynomials of degree less than or equal to 1, P, is
isomorphic to the space of complex numbers C = {a + bi : a,b € R}.
State true or false. Give reasons.

“TRVUE 23 i
-“\ﬁ 3?&@ Y)(:: %CQG TC\{ {: } Qp ) 4 Q‘—E 1%
2 dumenseend Ve ckoy Spae with abas % "{3 ‘
T 5 a ?wd&miﬁfwnaﬁ b%cf;v(g%ma with |
| lycpin %f ,Ei  wnd 0w ence 150 mﬁ’*’f’\““c~
Dl‘f ; T; /?K ) CY - ©
Ll B Y Go T LY I
o Hay NPT Loy %éz\a"@iéjﬁ

o, ’Tzii [\.%‘%&i%} tG (ot it ) ;C\(%*{‘s“‘\) TG (%%{%/E

= Tlamtad) 4 6 Thoalnl

Atfes



Nhen T om lonean ‘k'mfns{@mmaﬁo@

ond . Tlew t4k) =bd 20 +10



2
(¢) Find the volume of the parallelepiped which has the vectors { -1 J ,

1 0
{ 2 } and [ 2 J as three edges. Show work and explain your answer.
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