\qquad
Sample Midterm 2 100pts.

- There are 6 pages in the exam including this page.
- Write all your answers clearly. You have to show work to get points for your answers.
- You can write on both sides of the paper. Indicate that the answer follows on the back of the page.
- Use of Calculators is not allowed during the exam.
(1) $\ldots \ldots \cdot / 22$
(2) $\ldots \ldots \cdot / 22$
(3) $\ldots \ldots \cdot / 20$
(4) $\ldots \ldots \cdot / 36$

Total / $/ 100$
(1) 22pts. Let \mathcal{P}_{2} denote the set of all polynomials of degree less than or equal to 2 . Let $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be a linear transformation defined as $T(f(t))=f(t-1)$, where $f(t)$ is a polynomial of degree less than or equal to 2 .
(a) Find the matrix of this transformation with respect to the basis $\left\{1, t, t^{2}\right\}$ of \mathcal{P}_{2}. Show work.
(b) Evaluate the determinant of the matrix you found in part (a). Show work.
(2)22 pts. Let $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ be a basis of the subspace W of \mathbb{R}^{3}.
(a) Find a orthonormal basis of W. Show work.
(b) Find the orthogonal projection of the vector $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ onto W. Show work.

4
(3) 20pts. Let \mathbb{C} denote the set of complex numbers $\{a+b i: a, b \in \mathbb{R}\}$. Then both $\mathcal{B}_{1}=\{1, i\}$ and $\mathcal{B}_{2}=\{1+i, 1-i\}$ are bases for \mathbb{C}.
(a) What is the matrix that transforms a vector in \mathcal{B}_{1} coordinates into a matrix in \mathcal{B}_{2}-coordinates? Show work.
(b) Write down the element $4+2 i$ in \mathcal{B}_{2}-coordinates. Show work.
(4) $16 p t s$. Give short answers to the following.
(a) Let $\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=-3$. Compute $\operatorname{det}\left[\begin{array}{rrr}a+d & b+e & c+f \\ 2 g & 2 h & 2 i \\ d & e & f\end{array}\right]$. Give reasons to support your answer.
(b) Let A be a 2×2 matrix such that $\operatorname{det} A=-1$ then A is orthogonal. State true or false with justification.
(c) Let u, v, w be vectors in \mathbb{R}^{n}. Let w be orthogonal to both u and v. Then $u+v$ is orthogonal to $3 w$. State true or false with justification.

