Name

PRACTICE EXAM 2 40pts.

- There are 6 pages in the exam including this page.
- Write all your answers clearly. You have to show work to get points for your answers.
- You can write on both sides of the paper. Indicate that the answer follows on the back of the page.
- Use of Calculators is *not* allowed during the exam.
- $(1) \dots /8$
- $(2) \dots /8$
- $(3) \dots /8$
- $(4) \ldots / 16$

Total $\ldots ... /40$

(1) *8pts.* Let $T: I\!\!R^4 \to I\!\!R^4$ be defined by a matrix

$$A = \begin{bmatrix} 1 & 0 & -2 & 2 \\ 0 & 1 & -1 & 0 \\ 3 & 2 & 0 & 1 \\ 1 & -1 & 0 & 4 \end{bmatrix}$$

(a) Find the Kernel of T.

(b) Is T invertible? Why or why not?

(2a) *3pts* When is a set of vectors $\{v_1, \cdots, v_n\}$ in a vector space V said to be a basis of V?

(2b) 5pts. Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 4 & 1 & 2 \\ -1 & 2 & 1 & 1 \\ 2 & 0 & -1 & 0 \end{bmatrix}$$
 represent a linear transformation from T :
 $I\!\!R^4 \to I\!\!R^4$. Find a basis for the Im T .

(3) *8pts.* Check if the following sets are subspaces of \mathbb{R}^3 and \mathbb{R}^4 respectively or not. Explain your answers.

(a)
$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : \begin{array}{c} x - y + z = 0 \\ x + 1 - 2z = 0 \end{array} \right\}$$

(b)
$$V = \left\{ \begin{bmatrix} 0\\ a+b\\ c\\ c-5a \end{bmatrix} : a, b, c \in \mathbb{R} \right\}.$$

- (4) 16pts. Give short answers to the following.
 - (a) If A and B are 2×2 matrices such that AB = 0 then, either A = 0 or B = 0.

(b) Suppose that A is a 3×3 matrix such that Ax = x for all $x \in \mathbb{R}^3$. Let I_3 be the 3×3 identity matrix. Find $\text{Ker}(A - I_3)$, that is the Kernel of the transformation represented by $A - I_3$. (c) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation which maps a vector $v \in \mathbb{R}^2$ to its reflection along a line along $\begin{bmatrix} 1\\1 \end{bmatrix}$. Describe the matrix of this transformation.

(d) Is
$$\left\{ \begin{bmatrix} 1\\3\\-1 \end{bmatrix}, \begin{bmatrix} 3\\2\\0 \end{bmatrix}, \begin{bmatrix} 4\\5\\-1 \end{bmatrix} \right\}$$
 a basis of \mathbb{R}^3 ? Why or why not?