\qquad

Practice Exam 1 40pts.

- There are 6 pages in the exam including this page.
- Write all your answers clearly. You have to show work to get points for your answers.
- You can write on both sides of the paper. Indicate that the answer follows on the back of the page.
- Use of Calculators is not allowed during the exam.
(1) $\ldots / 10$
(2) $\ldots \ldots . / 10$
(3) $\ldots \ldots \ldots / 8$
(4) $\ldots \ldots . / 12$

Total / 40

1(a) 7pts. Find all solutions to the given system of equations.

$$
\begin{aligned}
& x_{1}+x_{3}+x_{4}=0 \\
& 2 x_{1}+x_{2}-x_{4}=0 \\
& x_{1}-x_{2}+2 x_{3}+2 x_{4}=0 \\
& x_{1}+x_{2}+3 x_{3}+6 x_{4}=0
\end{aligned}
$$

1(b)3pts. Are the vectors $\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{r}1 \\ -1 \\ 2 \\ 6\end{array}\right]$ linearly independent? Why or why not?

2(a) $7 p t s$. Let $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 3\end{array}\right]$. Compute the inverse of A, if it exists.

2(b) 3pts. Find all possible solutions for the system

$$
\begin{aligned}
2 x_{1}+x_{2}-x_{3} & =2 \\
x_{1}+x_{2}+x_{3} & =3 \\
2 x_{1}+2 x_{2}+3 x_{3} & =-1
\end{aligned}
$$

(3) 8pts. Let $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right]$ and $v_{3}=\left[\begin{array}{l}2 \\ 1 \\ h\end{array}\right]$.
(a) $6 p t s$. Find all values of h such that $v=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ in the $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$?
(b) 2pts. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined as $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}$. For what values of h is $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ is in $\operatorname{Im} T$.
(4) 12pts. State True or False with justification. 3pts. each for the justification.
(a) The linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(v)=v+v$ is a linear transformation.
(b) If A, B and C are 2×2 invertible matrices then, $(A B) C$ is invertible.

4(c) The vectors $\left[\begin{array}{r}4 \\ -8 \\ 2\end{array}\right],\left[\begin{array}{r}6 \\ -12 \\ 3\end{array}\right]$ and $\left[\begin{array}{r}-2 \\ 4 \\ -1\end{array}\right]$, span \mathbb{R}^{3}.

4(d) The matrix $\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$ represents reflection about a line.

