1. (a) Suppose $\overrightarrow{0}=a_{1} \vec{x}_{1}+a_{2} \vec{x}_{2}$. Applying $\left(A-\lambda_{1} I\right)$ to both sides gives $\overrightarrow{0}=\left(A-\lambda_{1} I\right)\left(a_{1} \vec{x}_{1}+a_{2} \vec{x}_{2}\right)=a_{1}\left(A-\lambda_{1} I\right) \vec{x}_{1}+$ $a_{2}\left(A-\lambda_{1} I\right) \vec{x}_{2}=a_{2}\left(\lambda_{2}-\lambda_{1}\right) \vec{x}_{2}$. Hence $a_{2}=0$ because $\left(\lambda_{2}-\lambda_{1}\right) \vec{x}_{2} \neq \overrightarrow{0}$, and the original equation now implies that $a_{1}=0$: the vectors are linearly independent.
(b) Suppose $\overrightarrow{0}=a \vec{x}+b \vec{y}+c \vec{z}$. Taking the dot product with \vec{x}, we get $0=a \vec{x} \cdot \vec{x}+b \vec{x} \cdot \vec{y}+c \vec{x} \cdot \vec{z}=a \vec{x} \cdot \vec{x}$. Hence $a=0$ because $\vec{x} \neq 0$. In the same way, taking the dot product with \vec{y}, resp. \vec{z}, yields $b=0$, resp. $c=0$. Thus the vectors are linearly independent.
2. (a) We simply compute: $P \vec{y} \cdot(\vec{x}-P \vec{x})=\vec{y} \cdot P^{\top}(\vec{x}-P \vec{x})=\vec{y} \cdot P(\vec{x}-P \vec{x})$ because $P^{\top}=P$, and $\vec{y} \cdot P(\vec{x}-P \vec{x})=$ $\vec{y} \cdot\left(P \vec{x}-P^{2} \vec{x}\right)=0$ because $P=P^{2}$.
(b) The assumption is that $\operatorname{dim}(\operatorname{ker} P)=0$. The image of P is therefore the whole space \mathbf{R}^{n}, because by the ranknullity theorem the rank of P is $n-\operatorname{dim}(\operatorname{ker} P)=n$. Thus every vector $\vec{z} \in \mathbf{R}^{n}$ is of the form $P \vec{y}$ (for some vector \vec{y}), and so part (a) implies that $\vec{z} \cdot(\vec{x}-P \vec{x})=0$ for every vector \vec{z}. Thus $\vec{x}-P \vec{x}=\overrightarrow{0}$. But because \vec{x} is an arbitrary vector, this means that P is the identity matrix.
3. (a) The two columns of A are not scalar multiplies of each other, so they are linearly independent. Thus for a basis of $\operatorname{Im} A$ we can simply take the columns of A, namely

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
$$

From these vectors the Gram-Schmidt procedure gives the following orthonormal basis of $\operatorname{Im} A$:

$$
\vec{u}_{1}=\frac{\vec{x}_{1}}{\left\|\vec{x}_{1}\right\|}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right], \quad \vec{u}_{2}=\frac{\vec{x}_{2}-\left(\vec{x}_{2} \cdot \vec{u}_{1}\right) \vec{u}_{1}}{\left\|x_{2}-\left(\vec{x}_{2} \cdot \vec{u}_{1}\right) \vec{u}_{1}\right\|}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right] .
$$

(b) The QR decomposition of A is

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]=A=Q R=\left[\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{2} & 1 / \sqrt{6} \\
0 & 2 / \sqrt{6}
\end{array}\right]\left[\begin{array}{cc}
\alpha_{1} & \vec{x}_{2} \cdot \vec{u}_{1} \\
0 & \alpha_{2}
\end{array}\right]
$$

where $\alpha_{1}=\left\|\vec{x}_{1}\right\|=\sqrt{2}, \alpha_{2}=\left\|x_{2}-\left(\vec{x}_{2} \cdot \vec{u}_{1}\right) \vec{u}_{1}\right\|=\sqrt{3 / 2}$, and $\vec{x}_{2} \cdot \vec{u}_{1}=1 / \sqrt{2}$.
(c) Recall that a least squares solution \vec{x} satisfies the condition $A^{\top}(A \vec{x}-\vec{b})=\overrightarrow{0}$ (since this is equivalent to the condition that $A \vec{x}$ is the orthogonal projection of \vec{b} onto $\operatorname{Im} A$). The matrix $A^{\top} A$ is invertible because its kernel equals ker $A=\{\overrightarrow{0}\}$. Hence there is unique a least squares solution, which is $\vec{x}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}$. From the QR decomposition and its properties ($Q^{\top} Q=I, R$ is invertible) we have $\left(A^{\top} A\right)^{-1} A^{\top}=R^{-1} Q^{\top}$, and so the least squares solution is

$$
\vec{x}=R^{-1} Q^{\top} \vec{b}=\left[\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{6} \\
0 & \sqrt{2 / 3}
\end{array}\right]\left[\begin{array}{rcc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
-1 / \sqrt{6} & 1 / \sqrt{6} & 2 / \sqrt{6}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 / 3 \\
2 / 3
\end{array}\right] .
$$

4. (a) The trace and determinant are $\operatorname{Tr} A=2$, $\operatorname{det} A=-3$. The characteristic polynomial is $\operatorname{det}(A-\lambda I)=\lambda^{2}-$ $(\operatorname{Tr} A) \lambda+\operatorname{det} A=\lambda^{2}-2 \lambda-3=(\lambda-3)(\lambda+1)$.
(b) Since the matrix is symmetric there is an orthonormal basis of eigenvectors. From the characteristic polynomial we see that the eigenvalues are 3 and -1 . By inspection we see that $[1,1]^{\top}$ is a 3 -eigenvalue. The (-1)-eigenvalue must be orthogonal to this, so by inspection, again, we see that $[1,-1]^{\top}$ is a (-1)-eigenvector. Thus when we normalize these eigenvectors and put them into the columns of a matrix to form the othogonal matrix

$$
U=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

we get $U^{\top} A U=\left[\begin{array}{rr}3 & 0 \\ 0 & -1\end{array}\right]$.
(c) Express $[1,0]^{\top}$ as a linear combination of the eigenvectors, and then apply A^{4} : since

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{2}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right),
$$

we get, by linearity,

$$
A^{4}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{2}\left(A^{4}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+A^{4}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right)=\frac{1}{2}\left(3^{4}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+(-1)^{4}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
41 \\
40
\end{array}\right] .
$$

