
1. (a) Suppose ~0 = a1~x1 +a2~x2. Applying (A−λ1I) to both sides gives ~0 = (A−λ1I)(a1~x1 +a2~x2) = a1(A−λ1I)~x1 +
a2(A− λ1I)~x2 = a2(λ2 − λ1)~x2. Hence a2 = 0 because (λ2 − λ1)~x2 6= ~0, and the original equation now implies that
a1 = 0: the vectors are linearly independent.

(b) Suppose ~0 = a~x + b~y + c~z. Taking the dot product with ~x, we get 0 = a~x · ~x + b~x · ~y + c~x · ~z = a~x · ~x. Hence
a = 0 because ~x 6= 0. In the same way, taking the dot product with ~y, resp. ~z, yields b = 0, resp. c = 0. Thus the
vectors are linearly independent.

2. (a) We simply compute: P~y · (~x − P~x) = ~y · P>(~x − P~x) = ~y · P (~x − P~x) because P> = P , and ~y · P (~x − P~x) =
~y · (P~x− P 2~x) = 0 because P = P 2.

(b) The assumption is that dim(kerP ) = 0. The image of P is therefore the whole space Rn, because by the rank-
nullity theorem the rank of P is n− dim(kerP ) = n. Thus every vector ~z ∈ Rn is of the form P~y (for some vector
~y), and so part (a) implies that ~z · (~x− P~x) = 0 for every vector ~z. Thus ~x− P~x = ~0. But because ~x is an arbitrary
vector, this means that P is the identity matrix.

3. (a) The two columns of A are not scalar multiplies of each other, so they are linearly independent. Thus for a basis
of ImA we can simply take the columns of A, namely

~x1 =

 1
1
0

 , ~x2 =

 0
1
1

 .
From these vectors the Gram-Schmidt procedure gives the following orthonormal basis of ImA:

~u1 =
~x1
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 , ~u2 =
~x2 − (~x2 · ~u1)~u1

‖x2 − (~x2 · ~u1)~u1‖
=

1√
6
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1
2

 .
(b) The QR decomposition of A is 1 0
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 = A = QR =

 1/
√

2 −1/
√

6
1/
√

2 1/
√

6
0 2/

√
6

[α1 ~x2 · ~u1

0 α2

]
,

where α1 = ‖~x1‖ =
√

2, α2 = ‖x2 − (~x2 · ~u1)~u1‖ =
√

3/2, and ~x2 · ~u1 = 1/
√

2.

(c) Recall that a least squares solution ~x satisfies the condition A>(A~x − ~b) = ~0 (since this is equivalent to the
condition that A~x is the orthogonal projection of ~b onto ImA). The matrix A>A is invertible because its kernel
equals kerA = {~0}. Hence there is unique a least squares solution, which is ~x = (A>A)−1A>~b. From the QR
decomposition and its properties (Q>Q = I, R is invertible) we have (A>A)−1A> = R−1Q>, and so the least
squares solution is

~x = R−1Q>~b =
[
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[

2/3
2/3

]
.

4. (a) The trace and determinant are TrA = 2, detA = −3. The characteristic polynomial is det(A − λI) = λ2 −
(TrA)λ+ detA = λ2 − 2λ− 3 = (λ− 3)(λ+ 1).

(b) Since the matrix is symmetric there is an orthonormal basis of eigenvectors. From the characteristic polynomial
we see that the eigenvalues are 3 and −1. By inspection we see that [1, 1]> is a 3-eigenvalue. The (−1)-eigenvalue
must be orthogonal to this, so by inspection, again, we see that [1,−1]> is a (−1)-eigenvector. Thus when we
normalize these eigenvectors and put them into the columns of a matrix to form the othogonal matrix

U =
1√
2

[
1 1
1 −1

]
,

we get U>AU =
[

3 0
0 −1

]
.

(c) Express [1, 0]> as a linear combination of the eigenvectors, and then apply A4: since[
1
0

]
=

1
2

([
1
1

]
+
[

1
−1

])
,

we get, by linearity,

A4

[
1
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=
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(
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[
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=
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34
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=
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]
.


