Name:			
Section	Number/Time		
TT A	,		

April 11, 2006

MATH 201, MIDTERM #2 SOLUTIONS

Problems 1-4 will involve the linear space $V = \left\{2 \times 2 \text{ matrices } \begin{bmatrix} a & b \\ c & d \end{bmatrix}\right\}$.

- 1. [6 points] Find a basis for V.

 The elements $\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ form a basis of V.
- 2. [2 points] What is the dimension of V?

 There are four elements in the basis, so the dimension of V is 4.
- 3. Given any 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, we can "rotate" the entries to form a new matrix $T(A) = \begin{bmatrix} c & a \\ d & b \end{bmatrix}$. Find a matrix A which solves T(A) = -A.

We need to solve the equation $\begin{bmatrix} c & a \\ d & b \end{bmatrix} = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}$. Any scalar multiple of $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ will suffice.

4. Suppose we know that $T^4(A) = A$ for every 2×2 matrix A. Explain why every eigenvalue of T must satisfy $\lambda^4 = 1$.

If λ is an eigenvalue, we can find a nonzero matrix A so that $T(A) = \lambda A$. It follows that $T^2(A) = \lambda^2(A)$, $T^3(A) = \lambda^3 A$, and finally $A = T^4(A) = \lambda^4 A$. Since A is nonzero, that forces $\lambda^4 = 1$.

In Problems 5 and 6, we consider the linear transformation $Tf(x) = xf(x) - 3\int_0^x f(t) dt$, acting on the space $\mathcal{P}_2 = \{\text{All quadratic polynomials } f(x) = ax^2 + bx + c\}$.

- 5. If g represents the function g(x) = 1 for all x, what is the function Tg? $Tg(x) = x 3 \int_0^x 1 dt = x 3x = -2x.$
- 6. Show that if f is any function in \mathcal{P}_2 , then the resulting function Tf is also in \mathcal{P}_2 . Let $f(x) = ax^2 + bx + c$. Then $Tf(x) = x(ax^2 + bx + c) - 3\left(\int_0^x at^2 + bt + c dt\right)$ $= \left(ax^3 + bx^2 + cx\right) - \left(ax^3 + \frac{3}{2}bx^2 + 3cx\right) = -\frac{1}{2}bx^2 - 2cx.$ Which is again an element in \mathcal{P}_2 .
- 7. What is the determinant of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 5 & 6 \\ 0 & 0 & 5 & 7 \\ 0 & 0 & 0 & 10 \end{bmatrix}$?

Since the matrix is upper-triangular, you can multiply the entries along the diagonal. $det(A) = 1 \cdot 2 \cdot 5 \cdot 10 = 100$.

8. Now consider
$$B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 4 & 6 \\ 0 & 0 & 5 & 7 \\ 0 & 0 & 0 & 10 \end{bmatrix}$$
. How is the determinant of B related to the determinant of A ? Hint: Use row operations to turn matrix B into matrix A .

Subtracting $3 \times (\text{row I})$ from row II does not change the determinant.

Multiplying row II by -1 multiplies the determinant by -1.

This transforms matrix B into matrix A, so det(B) = -det(A).

9. Now consider
$$C = \begin{bmatrix} 0 & 0 & 0 & 10 \\ 0 & 0 & 5 & 7 \\ 0 & 2 & 5 & 6 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$
. How is the determinant of C related to the determinant of A ?

Matrix C can be turned into matrix A by swapping rows I and IV, then swapping rows II and III. Therefore $\det(C) = (-1)^2 \det(A)$.

10. What are the eigenvalues of the matrix $M = \begin{bmatrix} -1 & -3 \\ 4 & 6 \end{bmatrix}$? Call them λ_1 and λ_2 .

The determinant of $M - \lambda I$ is $\lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3)$.

The eigenvalues are $\lambda_1 = 2$, $\lambda_2 = 3$.

11. Write down a matrix whose kernel tells you the eigenvectors of M associated to the eigenvalue λ_1 .

The eigenspace associated to λ_1 is the kernel of the matrix $M - \lambda_1 I$.

Depending on whether you have chosen $\lambda_1 = 2$ or $\lambda_1 = 3$,

that matrix will be either $\begin{bmatrix} -3 & -3 \\ 4 & 4 \end{bmatrix}$ or $\begin{bmatrix} -4 & -3 \\ 4 & 3 \end{bmatrix}$.

12. Find an eigenvector \vec{v}_1 of M with eigenvalue λ_1 .

Depending on whether you have chosen $\lambda_1=2$ or $\lambda_1=3, \vec{v_1}$ should be a multiple of $\begin{bmatrix} 1\\-1 \end{bmatrix}$ or $\begin{bmatrix} 3\\-4 \end{bmatrix}$.

13. How large are the entries of the matrix M^{50} ?

Since M can be diagonalized, we can write $M=S\begin{bmatrix}2&0\\0&3\end{bmatrix}S^{-1}$ for some invertible matrix S.

That makes $M^{50} = S \begin{bmatrix} 2^{50} & 0 \\ 0 & 3^{50} \end{bmatrix} S^{-1}$. The entries of S and S^{-1} are unremarkable.

By far the largest quantity here is 3^{50} , which is about a 24-digit number. Every entry of M^{50} will be approximately this large, either as a positive or negative number.

14. What are the eigenvalues of the matrix $A = 2\begin{bmatrix} \cos 72^{\circ} & -\sin 72^{\circ} \\ \sin 72^{\circ} & \cos 72^{\circ} \end{bmatrix}$?

This is a rotation-scaling matrix, with eigenvalues $\lambda_{1,2} = 2(\cos(72^{\circ}) \pm i \sin 72^{\circ})$.

15. Fill in the blanks: $A^5 = \begin{bmatrix} & & & & \\ & & & & \end{bmatrix}$.

The matrix A^5 will rotate an angle of $72^{\circ} \times 5 = 360^{\circ}$ and scale by a factor of $2^5 = 32$.

This makes $A^5 = 32 \begin{bmatrix} \cos 360^{\circ} & -\sin 360^{\circ} \\ \sin 360^{\circ} & \cos 360^{\circ} \end{bmatrix} = \begin{bmatrix} 32 & 0 \\ 0 & 32 \end{bmatrix}$.