Name:	
${ m Section~Number/Time}$	
ГА	

MATH 201, MIDTERM #2

Directions: This is a pencil-and-paper exam. You are asked to put away all books, notes, calculators, cell phones, and other computing and/or telecommunications equipment. The last page of this booklet is blank and is intended for use as scrap paper. Additional sheets of paper are available upon request.

Grading: There are fifteen questions on the exam, typically worth 4 points, for a total of 60 points.

Special Note: Many of the problems in this exam may be interrelated. If the answer to one question appears to require the answer to a previous question which you have not solved, you may instead explain how this missing information would be used to solve the problem.

Problems 1-4 will involve the linear space $V = \left\{2 \times 2 \text{ matrices } \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right\}$.

1. [6 points] Find a basis for V.

- 2. [2 points] What is the dimension of V?
- 3. Given any 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, we can "rotate" the entries to form a new matrix $T(A) = \begin{bmatrix} c & a \\ d & b \end{bmatrix}$. Find a matrix A which solves T(A) = -A.

Name	
Section/TA	

We continue examining the linear transformation $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} c & a \\ d & b \end{bmatrix}$

4. Suppose we know that $T^4(A) = A$ for every 2×2 matrix A. Explain why every eigenvalue of T must satisfy $\lambda^4 = 1$.

In Problems 5 and 6, we consider the linear transformation $Tf(x)=xf(x)-3\int_0^x f(t)\,dt$, acting on the space $\mathcal{P}_2=\Big\{\text{All quadratic polynomials }f(x)=ax^2+bx+c\Big\}.$

5. If g represents the function g(x) = 1 for all x, what is the function Tg?

6. Show that if f is any function in \mathcal{P}_2 , then the resulting function Tf is also in \mathcal{P}_2 .

Name _____ Section/TA ____

7. What is the determinant of the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 5 & 6 \\ 0 & 0 & 5 & 7 \\ 0 & 0 & 0 & 10 \end{bmatrix}$$
?

8. Now consider
$$B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 4 & 6 \\ 0 & 0 & 5 & 7 \\ 0 & 0 & 0 & 10 \end{bmatrix}$$
. How is the determinant of B related to the determinant of A ? Hint: Use row operations to turn matrix B into matrix A .

9. Now consider
$$C = \begin{bmatrix} 0 & 0 & 0 & 10 \\ 0 & 0 & 5 & 7 \\ 0 & 2 & 5 & 6 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$
. How is the determinant of C related to the determinant of A ?

Name		
Section/TA		

10. What are the eigenvalues of the matrix $M = \begin{bmatrix} -1 & -3 \\ 4 & 6 \end{bmatrix}$? Call them λ_1 and λ_2 .

Your answer may include complex numbers, if the eigenvalues are complex.

Check your work carefully! You will have trouble with the next few questions if there is a mistake here.

11. Write down a matrix whose kernel tells you the eigenvectors of M associated to the eigenvalue λ_1 . Again, your answer may have some complex numbers in it.

12. Find an eigenvector \vec{v}_1 of M with eigenvalue λ_1 .

Name				
Section	л /ТА			

On the previous page we found that the matrix $M=\begin{bmatrix} -1 & -3 \\ 4 & 5 \end{bmatrix}$ has the eigenvalues $\lambda_1=$ ___ and $\lambda_2=$ ___ .

13. How large are the entries of the matrix M^{50} ?

First give an approximate answer in terms of the eigenvalues of M.

Then circle the most accurate description from the list below:

- a) Larger than 1,000,000
- b) Between 1 and 1,000,000
- c) Between 0.000001 and 1
- d) Smaller than 0.000001
- e) It depends which entry of the matrix M^{50} we're looking at.
- 14. What are the eigenvalues of the matrix $A = 2\begin{bmatrix} \cos 72^{\circ} & -\sin 72^{\circ} \\ \sin 72^{\circ} & \cos 72^{\circ} \end{bmatrix}$? Your answer may be expressed in terms of trigonometric functions.

15. Fill in the blanks: $A^5 = \begin{bmatrix} & & & \\ & & & & \end{bmatrix}$.

[Here, A is the same matrix as in Problem 14.]