Vame:		
Section	Number/Time	
ΓΔ		

February 28, 2006

MATH 201, MIDTERM #1 SOLUTIONS

Problems 1-11 examine a wide range of properties of the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ -2 & 2 & 2 \\ 3 & -1 & 3 \end{bmatrix}$.

- 1. The domain of A is \mathbb{R}^3 .
- 2. The codomain of A is \mathbb{R}^4 . Other answers which describe the image of A in more detail are also acceptable.
- 3. To find rref(A), follow the calculations:

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ -2 & 2 & 2 \\ 3 & -1 & 3 \end{bmatrix}_{-3} + 2 I \longrightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 2 & 6 \\ 0 & -1 & -3 \end{bmatrix}_{-2} II \longrightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- 4. The rank of A is 2.
- 5. The image of A has dimension 2, same as the rank.
- 6. The first two columns of A, which are $\begin{bmatrix} 1 \\ 0 \\ -2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 2 \\ -1 \end{bmatrix}$ form a basis for the image.
- 7. The kernel of A has dimension 1, since there is column of rref(A) without a leading 1.
- 8. The relation among the columns is $2\vec{v}_1 + 3\vec{v}_2 \vec{v}_3 = \vec{0}$, so any multiple of $\begin{bmatrix} 2\\3\\-1 \end{bmatrix}$ is a basis for the kernel.
- 9. The kernel of A contains more than just the zero vector (because x_3 is a free variable in this system of equations), so $A\vec{x} = \vec{b}$ will have infinitely many solutions whenever it has any solutions at all.
- 10. The bottom two rows of $\operatorname{rref}(A)$ contain only zeros. The vector \vec{b} can be chosen to make one or both of these rows inconsistent. Therefore it is possible for $A\vec{x} = \vec{b}$ to have no solutions. In other words, the image of A is not all of \mathbb{R}^4 .

MATH 201, MIDTERM #1 SOLUTIONS (continued)

Problems 11-15 use the set of vectors
$$\mathcal{B} = (\vec{e_1}, \vec{e_2}, \vec{v}) = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \end{pmatrix}$$
 in \mathbb{R}^3 .

- 11. \mathcal{B} is a basis provided the vector \vec{v} is linearly independent from \vec{e}_1 and \vec{e}_2 . This will be satisfied whenever the third co-ordinate v_3 is not zero.
- 12. The fact that $T(\vec{e_1}) = \vec{0}$ tells us that the first column of the \mathcal{B} -matrix will have all zeros.

The fact that $T(\vec{e}_2)$ tells us the same will be true of the second column as well.

The fact that $T(\vec{v}) = 0\vec{e}_1 + 0\vec{e}_2 + \vec{v}$ tells us that the third column of the \mathcal{B} -matrix should have entries of 0, 0, and 1.

So the full matrix for T according to this basis is $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- 13. The image of T is span(\vec{v}), which is the line L in the direction $\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$.
- 14. T is the projection onto the line L and parallel to the xy-plane. For any vector \vec{x} in \mathbb{R}^3 , $T(\vec{x})$ is the point on L at the same height $(x_3 \text{ coordinate})$ as \vec{x} .
- 15. The matrix for T in standard coordinates can be found using the formula $A = SBS^{-1}$.
- 16. [2 points Extra Credit] We know that $T(\vec{e_1}) = \vec{0}$ and $T(\vec{e_2}) = \vec{0}$, and can calculate the fact that

$$T(\vec{e_3}) = \begin{bmatrix} \frac{v_1}{v_3} \\ \frac{v_2}{v_3} \\ 1 \end{bmatrix} \text{ in standard coordinates. Therefore } A = \begin{bmatrix} 0 & 0 & \frac{v_1}{v_3} \\ 0 & 0 & \frac{v_2}{v_3} \\ 0 & 0 & 1 \end{bmatrix}.$$