Name:	 February 28, 2006
Section Number/Time	
ΓΑ	

MATH 201, MIDTERM #1

Directions: This is a pencil-and-paper exam. You are asked to put away all books, notes, calculators, cell phones, and other computing and/or telecommunications equipment. The last page of this booklet is blank and is intended for use as scrap paper. Additional sheets of paper are available upon request.

Grading: There are fifteen questions on the exam, each worth 4 points, for a total of 60 points.

Special Note: Many of the problems in this exam are interrelated. If the answer to one question appears to require the answer to a previous question which you have not solved, you may instead explain how this missing information would be used to solve the problem.

Problems 1-11 will examine a wide range of properties of the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ -2 & 2 & 2 \\ 3 & -1 & 3 \end{bmatrix}$.

- 1. What is the domain of A? [In other words, what is the domain of the function $T(\vec{x}) = A\vec{x}$?]
- 2. What is the codomain of A?
- 3. What is rref (A)?

4. What is the rank of A?

Name		
Section/TA		

We are still considering various properties of the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ -2 & 2 & 2 \\ 3 & -1 & 3 \end{bmatrix}$. $\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ -2 & 2 & 2 \\ 3 & -1 & 3 \end{bmatrix}$.

- **5.** What is the dimension of the image of *A*?
- 6. Find a basis for the image of A.

- 7. What is the dimension of the kernel of A?
- 8. Find a basis for the kernel of A.

Name		
Section/TA		

We are still considering various properties of the matrix
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ -2 & 2 & 2 \\ 3 & -1 & 3 \end{bmatrix}$$
. rref $(A) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ -2 & 2 & 2 \\ 3 & -1 & 3 \end{bmatrix}$.

9. Is there a vector \vec{b} in \mathbb{R}^4 so that the equation $A\vec{x} = \vec{b}$ has exactly one solution? Explain your answer.

10. Is there a vector \vec{b} in \mathbb{R}^4 so that the equation $A\vec{x} = \vec{b}$ has no solutions? Explain your answer.

Problems 11-15 will use the set of vectors
$$\mathcal{B} = (\vec{e_1}, \vec{e_2}, \vec{v}) = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \end{pmatrix}$$
 in \mathbb{R}^3 .

11. Suppose \mathcal{B} is a basis for \mathbb{R}^3 . What does that say about the coordinate v_3 ?

Name _____ Section/TA ____

We continue to work with the vectors $\mathcal{B} = (\vec{e}_1, \vec{e}_2, \vec{v}) = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \end{pmatrix}$ and we continue to assume they form a basis of \mathbb{R}^3 .

12. If T is a linear transformation with the properties that $T(\vec{e_1}) = \vec{0}$, $T(\vec{e_2}) = \vec{0}$, and $T(\vec{v}) = \vec{v}$, what is the B-matrix of the transformation T? Call this matrix B.

- 13. What is the image of T?
- 14. Give a geometric description of what the linear transformation T does to vectors in \mathbb{R}^3 .

15. The linear transformation T can also be written in standard coordinates as $T(\vec{x}) = A\vec{x}$. Write a formula for the matrix A in terms of your answer to Problem 12 and the invertible matrix $S = \begin{bmatrix} 1 & 0 & v_1 \\ 0 & 1 & v_2 \\ 0 & 0 & v_3 \end{bmatrix}$.

16. [Extra Credit] Find the matrix A exactly, using your favorite method. Please write on the next page. Suggestion: We know what $T(\vec{e}_1)$ and $T(\vec{e}_2)$ are. What is $T(\vec{e}_3)$?