110.201 Linear Algebra 6th Quiz

May 5, 2005

Problem 1 Let

$$
A=\left[\begin{array}{cc}
1 & 4 \\
1 & -2
\end{array}\right] .
$$

1. Find an invertible matrix S and a diagonal matrix D such that $S^{-1} A S=$ D.
2. Find a formula for the entries of A^{n}, where n is a positive integer.

Solution The eigenvalues are 2 and -3 , and we may choose $S=\left[\begin{array}{cc}4 & 1 \\ 1 & -1\end{array}\right]$, with $D=\left[\begin{array}{cc}2 & 0 \\ 0 & -3\end{array}\right]$. Next,

$$
A^{n}=S^{-1} D^{n} S=\left[\begin{array}{cc}
1 / 5 & 1 / 5 \\
1 / 5 & -4 / 5
\end{array}\right]\left[\begin{array}{cc}
2^{n} & 0 \\
0 & (-3)^{n}
\end{array}\right]\left[\begin{array}{cc}
4 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
4 * 2^{n} / 5+(-3)^{n} / 5 & 2^{n} / 5-(-3)^{n} / 5 \\
4 * 2^{n} / 5-4 *(-3)^{n} / 5 & 2^{n} / 5+4+(-3)^{n} / 5
\end{array}\right]
$$

Problem 2 Let

$$
A=\left[\begin{array}{cc}
0 & -i \\
2 i & 1
\end{array}\right], \quad i^{2}=-1
$$

1. Find the eigenvalues of A .

2 Find A^{30}.

Solution The eigenvalues are 2 and -1 . We may take $S=\left[\begin{array}{cc}-i & i \\ 2 & 1\end{array}\right]$. To compute A^{30},

$$
A^{30}=S^{-1} D^{30} S=\left[\begin{array}{cc}
i / 3 & 1 / 3 \\
-2 i / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{cc}
2^{30} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-i & i \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
2^{30} / 3+2 / 3 & 1 / 3-2^{30} / 3 \\
2 / 3-2 * 2^{30} / 3 & 2 * 2^{30} / 3+1 / 3
\end{array}\right]
$$

Problem 3 Let A to be a 3×3 matrix with eigenvalues $1,-1,2$.
Let $B=A^{3}-5 A^{2}$.

1. Find the eigenvalues of B. Is B diagonalizable? If yes, find a diagonal matrix D such that $D=S^{-1} B S$, for some orthogonal matrix S.
2. Find $\operatorname{det}(B)$ and $\operatorname{det}\left(A-5 I_{3}\right)$.

Solution $B \vec{v}=A^{3} \vec{v}-5 A^{2} \vec{v}=\left(\lambda^{3}-5 \lambda^{2}\right) \vec{v}$, so that plugging in the eigenvalues of A, we get $-4,-6,-12$ as the eigenvalues of B. Since they are distinct, B is diagonalizable, with determinant $-4 *-6 *-12=-288$. Since $\operatorname{det}(A-\lambda I)=$ $(\lambda+4)(\lambda+6)(\lambda+12)$, we plug in 5 for λ to get $\operatorname{det} B=9 * 11 * 17=1683$.

