110.201 Linear Algebra 6th Quiz

May 6, 2005

Problem 1 Let

$$
A=\left[\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right]
$$

1. Find an invertible matrix S and a diagonal matrix D such that $S^{-1} A S=$ D.
2. Find a formula for the entries of A^{n}, where n is a positive integer.

Solution $\quad \lambda_{1}=2$ and $\lambda_{2}=3 . S=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right], D=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ and $A=S^{-1} D S$.
Next,

$$
A^{n}=S^{-1} D^{n} S=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2^{n} & 0 \\
2^{n}-3^{n} & 3^{n}
\end{array}\right]
$$

Problem 2 Let

$$
A=\left[\begin{array}{cc}
1 & 2 i \\
-i & 0
\end{array}\right], \quad i^{2}=-1
$$

1. Find the eigenvalues of A.

2 Find A^{50}.

Solution The eigenvalues are 2 and -1 . One choice for S is $S=\left[\begin{array}{cc}2 i & -i \\ 1 & 1\end{array}\right]$.
Then
$A^{50}=S^{-1} D^{50} S=\left[\begin{array}{cc}-i / 3 & 1 / 3 \\ i / 3 & 2 / 3\end{array}\right]\left[\begin{array}{cc}2^{50} & 0 \\ 0 & (-1)\end{array}\right]\left[\begin{array}{cc}2 i & -i \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}2^{51} / 3-1 / 3 & -2^{50} / 3-1 / 3 \\ -2^{51}-2 / 3 & 2^{50} / 3-2 / 3\end{array}\right]$.

Problem 3 Let A to be a 3×3 matrix with eigenvalues $2,-2,1$.
Let $B=A^{3}-3 A^{2}$.

1. Find the eigenvalues of B. Is B diagonalizable? If yes, find a diagonal matrix D such that $D=S^{-1} B S$, for some orthogonal matrix S.
2. Find $\operatorname{det}(B)$ and $\operatorname{det}\left(A-3 I_{3}\right)$.

Solution $B \vec{v}=A^{3} \vec{v}-3 A^{2} \vec{v}=\left(\lambda^{3}-3 \lambda^{2}\right) \vec{v}$, so plugging in $2,-2$, and 1 we get $-4,-20$, and -2 as the eigenvalues of B. Then B is diagonalizable since it has 3 distinct eigenvalues. We may take $D=\left[\begin{array}{ccc}-4 & 0 & 0 \\ 0 & -20 & 0 \\ 0 & 0 & -2\end{array}\right]$. The determinant of B is the product of the eigenvalues, or -160 . Next, we have $\operatorname{det}(A-\lambda I)=(\lambda-2)(\lambda+2)(\lambda-1)$. Taking $\lambda=3$, we get 10 .

