Quiz 5 Solutions

April 24, 2005

Thursday

(1) This was a homework problem (HW 9). Let d_n be the determinant of the $n \times n$ matrix shown. Then by Laplace expanding along the first row, we see that

$$d_n = (-1)^{n+1} d_{n-1}$$

for n > 1 . Using this recursion, we find that

$$d_n = (-1)^{\sum_{j=2}^n j+1}$$

The summation in the exponent is equal to n(n+3)/2. This is an even number when n(n+3)/2 is odd and an odd number otherwise. Elementary arithmetic shows that n(n+3) is divisible by four whenever n or n+3 is, and not divisible by four when n and n+3 are not. Therefore d_n is equal to one whenever n is congruent to 1 or 4 (mod 4) and -1 otherwise.

(2) (a) Recalling that $\det AB = (\det A)(\det B)$ for $n \times n$ matrices A and B, we see that $A^2 = A$ implies that $(\det A)^2 = (\det A)$ Thus $(\det A)$ can be equal to zero or one.

(b) If det A = 0 then A is not invertible, implying m < n. If det A = 1, A is invertible and m = n. The equation satisfied by A is the equation obeyed by a projection operator, i.e. A represents a projection onto some subspace V of \mathbb{R}^n . Therefore A is equal to the identity on image(A). It now follows easily that if m = n, A is the identity matrix.

(3) The flaw is that $det(-A) = (-1)^n det A$, which can be seen by using multilinearity of the determinant function. Thus if n is even, det(-A) = det A and we get a trivial equality det AB = det BA = det A det B.