Quiz 5 Solutions

April 24, 2005

Thursday

(1) This was a homework problem (HW 9). Let d_{n} be the determinant of the $n \times n$ matrix shown. Then by Laplace expanding along the first row, we see that

$$
d_{n}=(-1)^{n+1} d_{n-1}
$$

for $n>1$. Using this recursion, we find that

$$
d_{n}=(-1)^{\sum_{j=2}^{n} j+1}
$$

The summation in the exponent is equal to $n(n+3) / 2$. This is an even number when $n(n+3) / 2$ is odd and an odd number otherwise. Elementary arithmetic shows that $n(n+3)$ is divisible by four whenever n or $n+3$ is, and not divisible by four when n and $n+3$ are not. Therefore d_{n} is equal to one whenever n is congruent to 1 or $4(\bmod 4)$ and -1 otherwise.
(2) (a) Recalling that $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$ for $n \times n$ matrices A and B, we see that $A^{2}=A$ implies that $(\operatorname{det} A)^{2}=(\operatorname{det} A)$ Thus $(\operatorname{det} A)$ can be equal to zero or one.
(b) If $\operatorname{det} A=0$ then A is not invertible, implying $m<n$. If $\operatorname{det} A=1, A$ is invertible and $m=n$. The equation satisfied by A is the equation obeyed by a projection operator, i.e. A represents a projection onto some subspace V of \mathbb{R}^{n}. Therefore A is equal to the identity on image (A). It now follows easily that if $m=n, A$ is the identity matrix.
(3) The flaw is that $\operatorname{det}(-A)=(-1)^{n} \operatorname{det} A$, which can be seen by using multilinearity of the determinant function. Thus if n is even, $\operatorname{det}(-A)=$ $\operatorname{det} A$ and we get a trivial equality $\operatorname{det} A B=\operatorname{det} B A=\operatorname{det} A \operatorname{det} B$.

