110.201 Linear Algebra 5th Quiz

April 21, 2005

Problem 1 Find the determinant of the $n \times n$ matrix

	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 0 \end{array}$	· · · ·	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	
A =	:	÷	·	÷	÷	
	0	1	• • •	0	0	
	1	0	•••	0	0	

Problem 2 Let A be an $n \times n$ matrix obeying the equation

 $A^2 = A.$

- a) What are the possible values of det(A)? Why?
- b) Let V be the image of A and $m = \dim V$ Find all relationships between m, n and the values for det(A) you found above [An acceptable statement would be something like "If $det(A) = \dots$, then ..."].

Can m = n? If so, and m = n, what can you say about A?

Problem 3 Suppose that two square matrices satisfy the following identity AB = -BA. Find the flaw in the following argument, showing a counterexample:

Taking determinants gives $(\det A)(\det B) = -(\det B)(\det A)$, so either A or B must have zero determinant. Thus AB = -BA is only possible if A or B is singular.