110.201 Linear Algebra 5th Quiz

April 21, 2005

Problem 1 Find the determinant of the $n \times n$ matrix

$$
A=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Problem 2 Let A be an $n \times n$ matrix obeying the equation

$$
A^{2}=A
$$

a) What are the possible values of $\operatorname{det}(A)$? Why?
b) Let V be the image of A and $m=\operatorname{dim} V$ Find all relationships between m, n and the values for $\operatorname{det}(A)$ you found above
[An acceptable statement would be something like "If $\operatorname{det}(A)=\ldots$, then ..."].
Can $m=n$? If so, and $m=n$, what can you say about A ?

Problem 3 Suppose that two square matrices satisfy the following identity $A B=-B A$. Find the flaw in the following argument, showing a counterexample:
Taking determinants gives $(\operatorname{det} A)(\operatorname{det} B)=-(\operatorname{det} B)(\operatorname{det} A)$, so either A or B must have zero determinant. Thus $A B=-B A$ is only possible if A or B is singular.

