Friday

(1) Use the row operations

1. (IV - III)
2. (III - II)
3. (II - I)
to reduce A to the matrix

$$
A^{\prime}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 3 & 3 & 3 \\
0 & 0 & 5 & 5 \\
0 & 0 & 0 & 7
\end{array}\right]
$$

Since adding a row to another row does not change the determinant, $\operatorname{det} A=$ $\operatorname{det} A^{\prime}=105$.
(2) (a) False. Here is a counterexample:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
4 & 0
\end{array}\right]
$$

You can check that $\operatorname{det} B=-8=\operatorname{det} A$.
(b) This one is false, but tricky because it is very nearly true. Here is a counterexample:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

After switching the second and third rows we see that $\operatorname{det} A=-1$, but the product of the pivots is 1 . It is true, however, that the determinant is equal to the product of the pivots up to a sign.
(c) False; let $B=-A$ for any $n \times n$ invertible matrix A.
(d) True. By the product rule for determinants, if the determinant of A or B is zero, so is the determinant of $A B$.
(3) (a) If A is $n \times n$, then $\operatorname{det}(-A)=(-1)^{n} \operatorname{det} A$. The matrix for T is $-I_{n}$. Thus $\operatorname{det}(T)=(-1)^{n} \operatorname{det} I_{n}=(-1)^{n}$. Therefore T is orientation preserving if n is even and orientation reversing when n is odd.
(b) $\operatorname{det} L^{t}=\operatorname{det} L$, so $\operatorname{det}\left(L L^{t}\right)=(\operatorname{det} L)^{2}>0$ since L is invertible.
(c) Let $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ be a basis for V, and let \hat{n} be the unit normal to V. These three vectors are linearly independent and thus span \mathbb{R}^{3}. We compute

$$
\operatorname{ref}_{V} \vec{v}_{1}=\vec{v}_{1}, \operatorname{ref}_{v} \vec{v}_{2}=\vec{v}_{2}, \operatorname{ref}_{V} \hat{n}=\hat{n}
$$

Thus in the basis $\left\{\vec{v}_{1}, \vec{v}_{2}, \hat{n}\right\}$, the matrix for ref_{V} is given by $\operatorname{diag}(1,1,-1)$, where $\operatorname{diag}(a, b, c)$ is the diagonal matrix with entries a, b, c. It follows immediately that det $\operatorname{ref}_{V}=-1$ since det does not depend on the choice of basis. So, ref_{V} is orientation reversing no matter what V is.

